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Abstract: In this article we investigate the IVPs for 1-dimensional and 2-dimensional Boussinesq equations. A new
topological approach is applied to prove the existence of at least one classical solution and at least two nonnegative
classical solutions for the considered IVPs. The arguments are based upon recent theoretical results.
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1. Introduction
In this paper, we investigate the IVPs for 1-dimensional and 2-dimensional Boussinesq equation

utt = uxx + βuxxxx +
(
u2
)
xx
, t > 0, x ∈ R,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R,
(1.1)

and
utt +

(
uxx + u2 − u

)
xx

− uyy = 0, t > 0, (x, y) ∈ R2,

u(0, x, y) = v0(x, y), ut(0, x, y) = v1(x, y), (x, y) ∈ R2,
(1.2)

respectively, where

(H1) u0, u1 ∈ C4(R) , 0 ≤ u0, u1 ≤ B on R , β = ±1 ,

(G1) v0, v1 ∈ C4(R2) , 0 ≤ v0, v1 ≤ B on R2 ,

for some positive constant B .
The local well-posedness for dispersive equations with quadratic nonlinearities has been extensively

studied in Sobolev spaces with negative indices. The proof of these results is based on the Fourier restriction
norm approach introduced by Bourgain [2, 3].

In [7], Luiz Farah proved that the good Boussinesq equation with data in Hs(R) , s > −1/4 , is well-posed.
Esfahani and Farah [6] proved local well-posedness in Hs(R) with s > −1/2 for the sixth-order Boussinesq
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equation {
utt = uxx + βuxxxx + uxxxxxx +

(
u2
)
xx
, x ∈ R, t ≥ 0

u(0, x) = φ(x); ut(0, x) = ψx(x).
(1.3)

The well-posedness of IVP (1.3) on a periodic domain is shown in [13] for s > − 1
2 .

The main aim of this paper is to investigate the IVPs (1.1) and (1.2) for the existence of at least
one classical solution and the existence of at least two classical solutions. We propose a new approach for
investigating for the existence of classical solutions. This approach can be applied to other classes IVPs for
ordinary and partial differential equations.

The paper is organized as follows. In the next section, we give some auxiliary results. In Section 3
we prove the existence of at least one classical solution and the existence of at least two nonnegative classical
solutions for the IVP (1.1). In Section 4 we prove the existence of at least one classical solution and the existence
of at least two nonnegative classical solutions for the IVP (1.2).

2. Preliminary results

To prove our existing result we will use the following fixed point theorem. Its proof can be found in [8].

Theorem 2.1 Let ϵ > 0 , B > 0 , E be a Banach space and X = {x ∈ E : ∥x∥ ≤ B} . Let also, Tx = −ϵx ,
x ∈ X , S : X → E is a continuous, (I − S)(X) resides in a compact subset of E and

{x ∈ E : x = λ(I − S)x, ∥x∥ = B} = ∅ (2.1)

for any λ ∈
(
0, 1ϵ
)
. Then there exists x∗ ∈ X so that

Tx∗ + Sx∗ = 0.

Let X be a real Banach space.

Definition 2.2 A mapping K : X → X is said to be completely continuous if it is continuous and maps
bounded sets into relatively compact sets.

The concept for l -set contraction is related to that of the Kuratowski measure of noncompactness which we
recall for completeness.

Definition 2.3 Let ΩX be the class of all bounded sets of X . The Kuratowski measure of noncompactness
α : ΩX → [0,∞) is defined by

α(Y ) = inf

δ > 0 : Y =

m⋃
j=1

Yj and diam(Yj) ≤ δ, j ∈ {1, . . . ,m}

 ,

where diam(Yj) = sup{∥x− y∥X : x, y ∈ Yj} is the diameter of Yj , j ∈ {1, . . . ,m} .

For the main properties of the measure of noncompactness, we refer the reader to [1].
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Definition 2.4 A mapping K : X → X is said to be l -set contraction if it is continuous, bounded, and there
exists a constant l ≥ 0 such that

α(K(Y )) ≤ lα(Y ),

for any bounded set Y ⊂ X . The mapping K is said to be a strict set contraction if l < 1 .

Obviously, if K : X → X is a completely continuous mapping, then K is 0 -set contraction (see [5], pp. 264).

Definition 2.5 Let X and Y be real Banach spaces. A mapping K : X → Y is said to be expansive if there
exists a constant h > 1 such that

∥Kx−Ky∥Y ≥ h∥x− y∥X ,

for any x, y ∈ X .

Definition 2.6 A closed, convex set P in X is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P ,

2. x,−x ∈ P implies that x = 0 .

Denote P∗ = P\{0} .

Lemma 2.7 Let X be a closed convex subset of a Banach space E , P be a cone in E and U ⊂ X a bounded
open subset with 0 ∈ U. Assume that there exists ε > 0 small enough and that K : U → X is a strict k -set
contraction that satisfies the boundary condition:

Kx ̸∈ {x, λx} for all x ∈ ∂U and λ ≥ 1 + ε.

Then the fixed point index i (K,U,X) = 1.

Proof Consider the homotopic deformation H : [0, 1]× U → X defined by

H(t, x) =
1

ε+ 1
tKx.

The operator H is continuous and uniformly continuous in t for each x, and the mapping H(t, .) is a strict
set contraction for each t ∈ [0, 1] . In addition, H(t, .) has no fixed point on ∂U . On the contrary,
• If t = 0 , there exists some x0 ∈ ∂U such that x0 = 0 , contradicting x0 ∈ U.

• If t ∈ (0, 1] , there exists some x0 ∈ P ∩ ∂U such that 1
ε+1 tKx0 = x0 ; then Kx0 = 1+ε

t x0 with 1+ε
t ≥ 1 + ε,

contradicting the assumption. From the invariance under homotopy and the normalization properties of the
index, we deduce

i (
1

ε+ 1
K,U,X) = i (0, U,X) = 1.

Now, we show that

i (K,U,X) = i (
1

ε+ 1
K,U,X).

We have
1

ε+ 1
Kx ̸= x, ∀x ∈ ∂U. (2.2)
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Then there exists γ > 0 such that

∥x− 1

ε+ 1
Kx∥ ≥ γ, ∀x ∈ ∂U.

On the other hand, we have 1
ϵ+1Kx→ Kx as ϵ→ 0, for x ∈ U. So, for ε small enough, we have

∥Kx− 1

ε+ 1
Kx∥ < γ

2
, ∀x ∈ ∂U.

Define the convex deformation G : [0, 1]× U → X by

G(t, x) = tKx+ (1− t)
1

ε+ 1
Kx.

The operator G is continuous and uniformly continuous in t for each x, and the mapping G(t, .) is a strict set
contraction for each t ∈ [0, 1] (since t+ 1

ε+1 (1− t) < t+ 1− t = 1). In addition, G(t, .) has no fixed point on
∂U . In fact, for all x ∈ ∂U , we have

∥x−G(t, x)∥ = ∥x− tKx− (1− t) 1
ε+1Kx∥

≥ ∥x− 1
ε+1Kx∥ − t∥Kx− 1

ε+1Kx∥
> γ − γ

2 >
γ
2 .

Then our claim follows from the invariance property by homotopy of the index.
2

Proposition 2.8 Let P be a cone in a Banach space E . Let also, U be a bounded open subset of P with
0 ∈ U. Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1, S : U → E is a l -set
contraction with 0 ≤ l < h− 1 , and S(U) ⊂ (I − T )(Ω). If there exists ε ≥ 0 such that

Sx ̸∈ {(I − T )(x), (I − T )(λx)} for all x ∈ ∂U ∩ Ω and λ ≥ 1 + ε,

then the fixed point index i∗ (T + S,U ∩ Ω,P) = 1.

Proof The mapping (I − T )−1S : U → P is a strict set contraction and it is readily seen that the following
condition is satisfied

(I − T )−1Sx ̸∈ {x, λx} for all x ∈ ∂U and λ ≥ 1 + ϵ.

Our claim then follows from the definition of i∗ and Lemma 2.7. 2

The following result will be used to prove our main result.

Theorem 2.9 Let P be a cone of a Banach space E ; Ω a subset of P and U1, U2 and U3 three open bounded
subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is an expansive mapping with
constant h > 1, S : U3 → E is a k -set contraction with 0 ≤ k < h− 1 and S(U3) ⊂ (I − T )(Ω). Suppose that
(U2 \ U1) ∩ Ω ̸= ∅, (U3 \ U2) ∩ Ω ̸= ∅, and there exists u0 ∈ P∗ such that the following conditions hold:

(i) Sx ̸= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0),

(ii) there exists ϵ ≥ 0 such that Sx ̸= (I − T )(λx), for all λ ≥ 1 + ϵ, x ∈ ∂U2 and λx ∈ Ω ,
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(iii) Sx ̸= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).

Then T + S has at least two nonzero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω,

or
x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

Proof If Sx = (I − T )x for x ∈ ∂U2 ∩ Ω , then we get a fixed point x1 ∈ ∂U2 ∩ Ω of the operator
T + S . Suppose that Sx ̸= (I − T )x for any x ∈ ∂U2 ∩ Ω . Without loss of generality, assume that
Tx + Sx ̸= x on ∂U1 ∩ Ω and Tx + Sx ̸= x on ∂U3 ∩ Ω , otherwise the conclusion has been proved. By [4,
Proposition 2.16] and Proposition 2.8, we have

i∗ (T + S,U1 ∩ Ω,P) = i∗ (T + S,U3 ∩ Ω,P) = 0 and i∗ (T + S,U2 ∩ Ω,P) = 1.

The additivity property of the index yields

i∗ (T + S, (U2 \ U1) ∩ Ω,P) = 1 and i∗ (T + S, (U3 \ U2) ∩ Ω,P) = −1.

Consequently, by the existence property of the index, T + S has at least two fixed points x1 ∈ (U2 \ U1) ∩
Ω and x2 ∈ (U3 \ U2) ∩ Ω. 2

3. The 1-dimensional Boussinesq equation

In this section, we will investigate the IVP (1.1).

3.1. Auxiliary results

Let X = C2([0,∞), C4(R)) be endowed with the norm

∥u∥ = max

{
sup

(t,x)∈[0,∞)×R
|u(t, x)|, sup

(t,x)∈[0,∞)×R
|ut(t, x)|,

sup
(t,x)∈[0,∞)×R

|utt(t, x)|, sup
(t,x)∈[0,∞)×R

|ux(t, x)|,

sup
(t,x)∈[0,∞)×R

|uxx(t, x)|, sup
(t,x)∈[0,∞)×R

|uxxx(t, x)|,

sup
(t,x)∈[0,∞)×R

|uxxxx(t, x)|
}
,

provided it exists. For u ∈ X , define the operator

S1u(t, x) = u(t, x)− u0(x)− tu1(x)

−
∫ t

0

(t− t1)

(
uxx(t1, x) + βuxxxx(t1, x)

+2 (ux(t1, x))
2
+ 2u(t1, x)uxx(t1, x)

)
dt1,
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(t, x) ∈ [0,∞)× R .

Lemma 3.1 Suppose that (H1) holds. Let u ∈ X satisfies the equation

S1u(t, x) = 0, (t, x) ∈ [0,∞)× R. (3.1)

Then u is a solution to the IVP (1.1).

Proof We have

0 = u(t, x)− u0(x)− tu1(x)

−
∫ t

0
(t− t1)

(
uxx(t1, x) + βuxxxx(t1, x)

+2 (ux(t1, x))
2
+ 2u(t1, x)uxx(t1, x)

)
dt1,

(3.2)

(t, x) ∈ [0,∞)× R , which we differentiate with respect to t and we get

0 = ut(t, x)− u1(x)

−
∫ t

0

(
uxx(t1, x) + βuxxxx(t1, x)

+2 (ux(t1, x))
2
+ 2u(t1, x)uxx(t1, x)

)
dt1,

(3.3)

(t, x) ∈ [0,∞)× R . We differentiate (3.3) with respect to t and we find

0 = utt(t, x)− uxx(t, x)− βuxxxx(t, x)

−2 (ux(t, x))
2 − 2u(t, x)uxx(t, x), (t, x) ∈ [0,∞)× R,

i.e. u satisfies the first equation of (1.1). Now, we put t = 0 into (3.2) and (3.3) and we arrive at

0 = u(0, x)− u0(x), 0 = ut(0, x)− u1(x), x ∈ R.

This completes the proof. 2

Let B1 = 4B2 .

Lemma 3.2 Suppose that (H1) holds. If u ∈ X , ∥u∥ ≤ B , then

|S1u(t, x)| ≤ (1 + t+ t2)B1, (t, x) ∈ [0,∞)× R.
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Proof We have

|S1u(t, x)| =

∣∣∣∣u(t, x)− u0(x)− tu1(x)

−
∫ t

0

(t− t1)

(
uxx(t1, x) + βuxxxx(t1, x)

+2 (ux(t1, x))
2
+ 2u(t1, x)uxx(t1, x)

)
dt1

∣∣∣∣
≤ |u(t, x)|+ |u0(x)|+ t|u1(x)|

+

∫ t

0

(t− t1)

(
|uxx(t1, x)|+ |uxxxx(t1, x)|

+2 |ux(t1, x)|2 + 2|u(t1, x)||uxx(t1, x)|
)
dt1

≤ 2B + tB +

∫ t

0

(t− t1)(2B + 4B2)dt1

≤ B1(1 + t+ t2), (t, x) ∈ [0,∞)× R.

This completes the proof. 2

Below, suppose that

(H2) there exists a function g ∈ C([0,∞) × R) so that g > 0 on (0,∞) × (R\{0}) , g(0, x) = g(t, 0) = 0 ,
(t, x) ∈ [0,∞)× R , and a positive constant A such that

4!28(1 + t+ t2 + t3 + t4)(1 + |x|+ x2 + |x|3 + x4)

×
∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1 ≤ A.

In the end of this section we will give an example for such function g and such constant A . For u ∈ X , define
the operator

S2u(t, x) =

∫ t

0

∫ x

0

(t− t1)
2(x− x1)

4g(t1, x1)S1u(t1, x1)dx1dt1, (t, x) ∈ [0,∞)× R.

Lemma 3.3 Suppose that (H1) and (H2) hold. If u ∈ X satisfies the equation

S2u(t, x) = 0, (t, x) ∈ [0,∞)× R, (3.4)

then u is a solution to the IVP (1.1).
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Proof We differentiate three times with respect to t and five times with respect to x and we find

g(t, x)S1u(t, x) = 0, (t, x) ∈ [0,∞)× R.

Hence,

S1u(t, x) = 0, (t, x) ∈ (0,∞)× (R\{0}).

Since S1u(·, ·) is a continuous function on [0,∞)× R , we get

0 = lim
t→0

S1u(t, x) = S1u(0, x)

= lim
x→0

S1u(t, x) = S1u(t, 0), (t, x) ∈ [0,∞)× R.

Thus,

S1u(t, x) = 0, (t, x) ∈ [0,∞)× R.

Now, applying Lemma 3.1, we get the desired result. 2

Lemma 3.4 Suppose that (H1) and (H2) hold. If u ∈ X , ∥u∥ ≤ B , then

∥S2u∥ ≤ AB1.

Proof We will use the inequality (x+ y)p ≤ 2p(xp + yp) , o > 0, x > 0, y > 0 . We have

|S2u(t, x)| =

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)
2(x− x1)

4g(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)
2(x− x1)

4g(t1, x1)|S1u(t1, x1)|dx1
∣∣∣∣dt1

≤ B12
8|x|4t2

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)(1 + t1 + t21)dx1

∣∣∣∣dt1
≤ B12

8|x|4(1 + t+ t2 + t3 + t4)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1, (t, x) ∈ [0,∞)× R,
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and

|(S2u)t(t, x)| = 2

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)(x− x1)
4g(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)(x− x1)
4g(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣dt1
≤ B12

8|x|4t
∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)(1 + t1 + t21)dx1

∣∣∣∣dt1
≤ B12

8|x|4(1 + t+ t2 + t3)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1, (t, x) ∈ [0,∞)× R,

and

|(S2u)tt(t, x)| = 2

∣∣∣∣ ∫ t

0

∫ x

0

(x− x1)
4g(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

(x− x1)
4g(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣dt1
≤ B12

6|x|4
∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)(1 + t1 + t21)dx1

∣∣∣∣dt1
≤ B12

6|x|4(1 + t+ t2)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1, (t, x) ∈ [0,∞)× R,

and

|(S2u)x(t, x)| = 4

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)
2(x− x1)

3g(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣
≤ 4

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)
2(x− x1)

3g(t1, x1)|S1u(t1, x1)|dx1
∣∣∣∣dt1

≤ B12
8|x|3t2

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)(1 + t1 + t21)dx1

∣∣∣∣dt1
≤ B12

8|x|3(1 + t+ t2 + t3 + t4)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1, (t, x) ∈ [0,∞)× R,
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and

|(S2u)xx(t, x)| = 12

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)
2(x− x1)

2g(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣
≤ 12

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)
2(x− x1)

2g(t1, x1)|S1u(t1, x1)|dx1
∣∣∣∣dt1

≤ 12B12
6x2t2

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)(1 + t1 + t21)dx1

∣∣∣∣dt1
≤ 12B12

6x2(1 + t+ t2 + t3 + t4)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1, (t, x) ∈ [0,∞)× R,

and

|(S2u)xxx(t, x)| = 24

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)
2(x− x1)g(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣
≤ 24

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)
2(x− x1)g(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣dt1
≤ 24B12

8|x|t2
∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)(1 + t1 + t21)dx1

∣∣∣∣dt1
≤ 24B12

8|x|(1 + t+ t2 + t3 + t4)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1, (t, x) ∈ [0,∞)× R,

and

|(S2u)xxxx(t, x)| = 24

∣∣∣∣ ∫ t

0

∫ x

0

(t− t1)
2g(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣
≤ 24

∫ t

0

∣∣∣∣ ∫ x

0

(t− t1)
2g(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣dt1
≤ 24B12

8t2
∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)(1 + t1 + t21)dx1

∣∣∣∣dt1
≤ 24B12

8(1 + t+ t2 + t3 + t4)

∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣dt1
≤ AB1, (t, x) ∈ [0,∞)× R.
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Consequently,
∥S2u∥ ≤ AB1.

This completes the proof. 2

3.2. Main results
Our first main result is read as follows.

Theorem 3.5 Suppose that (H1) and (H2) hold. Then the IVP (1.1) has at least one solution in C2([0,∞), C4(R)) .

Proof Below, suppose

(H3) ϵ ∈ (0, 1) , A and B satisfy the inequalities ϵB1(1 +A) < B and AB1 < B .

Let
˜̃̃
Y denote the set of all equicontinuous families in X with respect to the norm ∥ · ∥ . Let also, ˜̃Y =

˜̃̃
Y be

the closure of
˜̃̃
Y , Ỹ =

˜̃
Y ∪ {u0, u1} ,

Y = {u ∈ Ỹ : ∥u∥ ≤ B}.

Note that Y is a compact set in X . For u ∈ X , define the operators

Tu(t, x) = −ϵu(t, x),

Su(t, x) = u(t, x) + ϵu(t, x) + ϵS2u(t, x), (t, x) ∈ [0,∞)× R.

For u ∈ Y , using Lemma 3.4, we have

∥(I − S)u∥ = ∥ϵu− ϵS2u∥

≤ ϵ∥u∥+ ϵ∥S2u∥

≤ ϵB1 + ϵAB1

= ϵB1(1 +A)

< B.

Thus, S : Y → E is continuous and (I − S)(Y ) resides in a compact subset of E . Now, suppose that there is
a u ∈ E so that ∥u∥ = B and

u = λ(I − S)u,

or
1

λ
u = (I − S)u = −ϵu− ϵS2u,

or (
1

λ
+ ϵ

)
u = −ϵS2u,
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for some λ ∈
(
0, 1ϵ
)
. Hence, ∥S2u∥ ≤ AB1 < B ,

ϵB <

(
1

λ
+ ϵ

)
B =

(
1

λ
+ ϵ

)
∥u∥ = ϵ∥S2u∥ < ϵB,

which is a contradiction. Hence and Theorem 2.1, it follows that the operator T + S has a fixed point u∗ ∈ Y .
Therefore

u∗(t, x) = Tu∗(t, x) + Su∗(t, x)

= −ϵu∗(t, x) + u∗(t, x) + ϵu∗(t, x) + ϵS2u
∗(t, x), (t, x) ∈ [0,∞)× R,

whereupon

0 = S2u
∗(t, x), (t, x) ∈ [0,∞)× R.

From here and from Lemma 3.3, it follows that u is a solution to the IVP (1.1). This completes the proof. 2

Our next result is as follows.

Theorem 3.6 Suppose that (H1) and (H2) hold. Then the IVP (1.1) has at least two nonnegative solutions
in C2([0,∞), C4(R)) .

Proof Suppose

(H4) Let m > 0 be large enough and A , B , r , L , R1 be positive constants that satisfy the following conditions

r < L < R1, ϵ > 0, R1 >

(
2

5m
+ 1

)
L,

AB1 <
L

5
.

Let

P̃ = {u ∈ X : u ≥ 0 on [0,∞)× R}.

With P we will denote the set of all equi-continuous families in P̃ . For v ∈ X , define the operators

T1v(t, x) = (1 +mϵ)v(t, x)− ϵ
L

10
,

S3v(t, x) = −ϵS2v(t, x)−mϵv(t, x)− ϵ
L

10
,
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t ∈ [0,∞) , x ∈ R . Note that any fixed point v ∈ X of the operator T1 + S3 is a solution to the IVP (1.1).
Define

U1 = Pr = {v ∈ P : ∥v∥ < r},

U2 = PL = {v ∈ P : ∥v∥ < L},

U3 = PR1 = {v ∈ P : ∥v∥ < R1},

R2 = R1 +
A

m
B1 +

L

5m
,

Ω = PR2 = {v ∈ P : ∥v∥ ≤ R2}.

1. For v1, v2 ∈ Ω , we have

∥T1v1 − T1v2∥ = (1 +mε)∥v1 − v2∥,

whereupon T1 : Ω → X is an expansive operator with a constant h = 1 +mε > 1 .

2. For v ∈ PR1 , we get

∥S3v∥ ≤ ε∥S2v∥+mε∥v∥+ ε
L

10

≤ ε

(
AB1 +mR1 +

L

10

)
.

Therefore S3(PR1
) is uniformly bounded. Since S3 : PR1

→ X is continuous, we have that S3(PR1
) is

equi-continuous. Consequently S3 : PR1 → X is a 0 -set contraction.

3. Let v1 ∈ PR1 . Set

v2 = v1 +
1

m
S2v1 +

L

5m
.

Note that S2v1 +
L
5 ≥ 0 on [0,∞)× R2 . We have v2 ≥ 0 on [0,∞)× R2 and

∥v2∥ ≤ ∥v1∥+
1

m
∥S2v1∥+

L

5m

≤ R1 +
A

m
B1 +

L

5m

= R2.

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L

10
− ε

L

10
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or

(I − T1)v2 = −εmv2 + ε
L

10

= S3v1.

Consequently S3(PR1
) ⊂ (I − T1)(Ω) .

4. Assume that for any v0 ∈ P ∗ there exist λ > 0 and z ∈ ∂Pr ∩ (Ω + λv0) or z ∈ ∂PR1 ∩ (Ω + λv0) such
that

S3z = (I − T1)(z − λv0).

Then

−ϵS2z −mϵz − ϵ
L

10
= −mϵ(z − λv0) + ϵ

L

10
,

or

−S2z = λmv0 +
L

5
.

Hence,

∥S2z∥ =

∥∥∥∥λmv0 + L

5

∥∥∥∥ > L

5
.

This is a contradiction.

5. Suppose that for any ϵ1 ≥ 0 small enough there exist a x1 ∈ ∂PL and λ1 ≥ 1+ ϵ1 such that λ1x1 ∈ PR1

and
S3x1 = (I − T1)(λ1x1). (3.5)

In particular, for ϵ1 > 2
5m , we have x1 ∈ ∂PL , λ1x1 ∈ PR1

, λ1 ≥ 1+ ϵ1 and (3.5) holds. Since x1 ∈ ∂PL

and λ1x1 ∈ PR1
, it follows that (

2

5m
+ 1

)
L < λ1L = λ1∥x1∥ ≤ R1.

Moreover,

−ϵS2x1 −mϵx1 − ϵ
L

10
= −λ1mϵx1 + ϵ

L

10
,

or

S2x1 +
L

5
= (λ1 − 1)mx1.

From here,

2
L

5
≥
∥∥∥∥S2x1 +

L

5

∥∥∥∥ = (λ1 − 1)m∥x1∥ = (λ1 − 1)mL,

and
2

5m
+ 1 ≥ λ1,

which is a contradiction.
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Therefore all conditions of Theorem 2.9 hold. Hence, the IVP (1.1) has at least two solutions u1 and u2 so
that

∥u1∥ = L < ∥u2∥ < R1,

or
r < ∥u1∥ < L < ∥u2∥ < R1.

2

Example 3.7 Below, we will illustrate our main results in this section. Let B = 1 and

R1 = 10, L = 5, r = 4, m = 1050, A =
1

5B1
, ϵ =

1

5B1(1 +A)
.

Then B1 = 4 and

AB1 =
1

5
< B, ϵB1(1 +A) < B,

i.e. (H3) holds. Next,

r < L < R1, ϵ > 0, R1 >

(
2

5m
+ 1

)
L, AB1 <

L

5
.

i.e. (H4) holds. Take

h(s) = log
1 + s4

√
2 + s8

1− s4
√
2 + s8

, l(s) = arctan
s4
√
2

1− s8
, s ∈ R, s ̸= ±1.

Then

h′(s) =
8
√
2s3(1− s8)

(1− s4
√
2 + s8)(1− s4

√
2 + s8)

,

l′(s) =
4
√
2s3(1 + s8)

1 + s16
, s ∈ R, s ̸= ±1.

Therefore,

lim
s→±∞

4∑
r=0

srh(s) = lim
s→±∞

h(s)
1∑4

r=0 sr

= lim
s→±∞

h′(s)

−
∑3

r=0(r+1)sr

(
∑4

r=0 sr)
2

= − lim
s→±∞

8
√
2s3(1− s8)

(∑4
r=0 s

r
)2

(∑3
r=0(r + 1)sr

)
(1− s4

√
2 + s8)(1− s4

√
2 + s8)

̸= ±∞
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and

lim
s→±∞

4∑
r=0

srl(s) = lim
s→±∞

l(s)
1∑4

r=0 sr

= lim
s→±∞

l′(s)

−
∑3

r=0(r+1)sr

(
∑4

r=0 sr)
2

= − lim
s→±∞

4
√
2s3(1 + s8)

(∑4
r=0 s

r
)2

(1 + s16)
(∑3

r=0(r + 1)sr
)

̸= ±∞.

Consequently,

−∞ < lim
s→±∞

(
4∑

r=0

sr

)
h(s) <∞,

−∞ < lim
s→±∞

(
4∑

r=0

sr

)
l(s) <∞.

Hence, there exists a positive constant C1 so that

4∑
r=0

|s|r
(

1

16
√
2
log

1 + s4
√
2 + s8

1− s4
√
2 + s8

+
1

8
√
2
arctan

s4
√
2

1− s8

)
≤ C1,

s ∈ R . Note that lim
s→±1

l(s) = π
2 and by [12] (pp. 707, Integral 79), we have

∫
dz

1 + z4
=

1

4
√
2
log

1 + z
√
2 + z2

1− z
√
2 + z2

+
1

2
√
2
arctan

z
√
2

1− z2
.

Let

Q(s) =
s3

(1 + s16)
, s ∈ R,

and
g1(t, x) = Q(t)Q(x), t ∈ [0,∞), x ∈ R.

Then there exists a constant C > 0 such that

284!

(
4∑

r=0

tr

)(
4∑

r=0

|x|r
)

×
∫ t

0

∣∣∣∣ ∫ x

0

g1(t1, x1)dx1

∣∣∣∣∣dt1 ≤ C, (t, x) ∈ [0,∞)× R.
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Let

g(t, x) =
A

C
g1(t, x), (t, x) ∈ [0,∞)× R.

Then

284!

(
4∑

r=0

tr

)(
4∑

r=0

|x|r
)

×
∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1)dx1

∣∣∣∣∣dt1 ≤ A, (t, x) ∈ [0,∞)× R.

i.e. (H2) holds. Therefore for the IVP

utt = uxx + uxxxx +
(
u2
)
xx
, t > 0, x ∈ R,

u(0, x) = 1
(1+x2)(1+x4) , x ∈ R,

ut(0, x) = 1
(1+x4)(1+x6) , x ∈ R,

are fulfilled all conditions of Theorem 3.5 and Theorem 3.6.

4. The 2-dimensional Boussinesq equation

In this section, we will investigate the IVP (1.2). Let X = C2([0,∞), C4(R, C2(R))) be endowed with the norm

∥u∥ = max

{
sup

(t,x,y)∈[0,∞)×R2

|u(t, x, y)|, sup
(t,x,y)∈[0,∞)×R2

|ut(t, x, y)|,

sup
(t,x,y)∈[0,∞)×R2

|utt(t, x, y)|, sup
(t,x,y)∈[0,∞)×R2

|ux(t, x, y)|,

sup
(t,x,y)∈[0,∞)×0,∞)×R2

|uxx(t, x, y)|, sup
(t,x,y)∈[0,∞)×R2

|uxxx(t, x, y)|,

sup
(t,x,y)∈[0,∞)×R2

|uxxxx(t, x, y)|, sup
(t,x,y)∈[0,∞)×R2

|uy(t, x, y)|,

sup
(t,x,y)∈[0,∞)×R2

|uyy(t, x, y)|
}
,

provided it exists. For u ∈ X , define the operator

S1u(t, x, y) = u(t, x, y)− v0(x, y)− tv1(x, y)

+

∫ t

0

(t− t1)

(
− uxx(t1, x, y) + uxxxx(t1, x, y)− uyy(t1, x, y)

+2 (ux(t1, x, y))
2
+ 2u(t1, x, y)uxx(t1, x, y)

)
dt1,
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(t, x, y) ∈ [0,∞)× R2 .

Lemma 4.1 Suppose that (G1) holds. Let u ∈ X satisfies the equation

S1u(t, x, y) = 0, (t, x, y) ∈ [0,∞)× R2. (4.1)

Then u is a solution to the IVP (1.2).

Proof We have

0 = u(t, x, y)− v0(x, y)− tv1(x, y)

+
∫ t

0
(t− t1)

(
− uxx(t1, x, y) + uxxxx(t1, x, y)− uyy(t1, x, y)

+2 (ux(t1, x, y))
2
+ 2u(t1, x, y)uxx(t1, x, y)

)
dt1,

(4.2)

(t, x, y) ∈ [0,∞)× R2 , which we differentiate with respect to t and we get

0 = ut(t, x, y)− v1(x, y)

+
∫ t

0

(
− uxx(t1, x, y) + uxxxx(t1, x, y)− uyy(t1, x, y)

+2 (ux(t1, x, y))
2
+ 2u(t1, x, y)uxx(t1, x, y)

)
dt1,

(4.3)

(t, x, y) ∈ [0,∞)× R2 . We differentiate (4.3) with respect to t and we find

0 = utt(t, x, y)− uxx(t, x, y) + uxxxx(t, x, y)− uyy(t, x, y)

+2 (ux(t, x, y))
2
+ 2u(t, x, y)uxx(t, x, y), (t, x, y) ∈ [0,∞)× R2,

i.e. u satisfies the first equation of (1.2). Now, we put t = 0 into (4.2) and (4.3) and we arrive at

0 = u(0, x, y)− v0(x, y), 0 = ut(0, x, y)− v1(x, y), (x, y) ∈ R2.

This completes the proof. 2

Let B1 = 4B2 .

Lemma 4.2 Suppose that (G1) holds. If u ∈ X , ∥u∥ ≤ B , then

|S1u(t, x, y)| ≤ (1 + t+ t2)B1, (t, x, y) ∈ [0,∞)× R2.
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Proof We have

|S1u(t, x, y)| =

∣∣∣∣u(t, x, y)− v0(x, y)− tv1(x, y)

+

∫ t

0

(t− t1)

(
− uxx(t1, x, y) + uxxxx(t1, x, y)− uyy(t1, x, y)

+2 (ux(t1, x, y))
2
+ 2u(t1, x)uxx(t1, x, y)

)
dt1

∣∣∣∣
≤ |u(t, x, y)|+ |u0(x, y)|+ t|u1(x, y)|

+

∫ t

0

(t− t1)

(
|uxx(t1, x, y)|+ |uxxxx(t1, x)|+ |uyy(t1, x, y)|

+2 |ux(t1, x)|2 + 2|u(t1, x)||uxx(t1, x)|
)
dt1

≤ 2B + tB +

∫ t

0

(t− t1)(3B + 4B2)dt1

≤ B1(1 + t+ t2), (t, x, y) ∈ [0,∞)× R2.

This completes the proof. 2

Below, suppose that

(G2) there exists a function g ∈ C([0,∞) × R2) so that g > 0 on (0,∞) × (R2\({x = 0} ∪ {y = 0})) ,
g(0, x, y) = g(t, x, 0) = g(t, 0, y) = 0 , (t, x, y) ∈ [0,∞)× R2 , and a positive constant A such that

4!28(1 + t+ t2 + t3 + t4)(1 + |x|+ x2 + |x|3 + x4)(1 + |y|+ y2)

×
∫ t

0

∣∣∣∣ ∫ x

0

∫ y

0

g(t1, x1, y1)dx1dy1

∣∣∣∣dt1 ≤ A.

In the end of this section we will give an example for such function g and such constant A . For u ∈ X , define
the operator

S2u(t, x, y) =

∫ t

0

∫ x

0

(t− t1)
2(x− x1)

4(y − y1)
2g(t1, x1, y1)S1u(t1, x1, y1)dx1dy1dt1,

(t, x, y) ∈ [0,∞)× R2 .

Lemma 4.3 Suppose that (G1) and (G2) hold. If u ∈ X satisfies the equation

S2u(t, x, y) = 0, (t, x, y) ∈ [0,∞)× R2, (4.4)

then u is a solution to the IVP (1.2).
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Proof We differentiate three times with respect to t and y and five times with respect to x and we find

g(t, x, y)S1u(t, x, y) = 0, (t, x, y) ∈ [0,∞)× R2.

Hence,
S1u(t, x, y) = 0, (t, x, y) ∈ (0,∞)× (R\({x = 0} ∪ {y = 0})).

Since S1u(·, ·, ·) is a continuous function on [0,∞)× R2 , we get

0 = lim
t→0

S1u(t, x, y) = S1u(0, x, y)

= lim
x→0

S1u(t, x, y) = S1u(t, 0, y)

= lim
y→0

S1u(t, x, y) = S1u(t, x, 0), (t, x) ∈ [0,∞)× R.

Thus,
S1u(t, x, y) = 0, (t, x, y) ∈ [0,∞)× R2.

Now, applying Lemma 4.1, we get the desired result. 2

As we have proved Lemma 3.4, one can obtain the following result

Lemma 4.4 Suppose that (G1) and (G2) hold. If u ∈ X , ∥u∥ ≤ B , then

∥S2u∥ ≤ AB1.

As we have proved Theorem 3.5 and Theorem 3.6, one can obtain the following results.

Theorem 4.5 Suppose that (G1) and (G2) hold. Then the IVP (1.2) has at least one solution in C2([0,∞), C4(R, C2(R2))) .

Theorem 4.6 Suppose (G1) and (G2) . Then the IVP (1.2) has at least two nonnegative solutions in
C2([0,∞), C4(R, C2(R))) .

Example 4.7 Let A , B , R1 , L , r , m and ϵ be as in Example 3.7. Then B1 = 4 and (H3) and (H4) hold.
Let also, Q be the same function as in Example 3.7. Take

g1(t, x, y) = Q(t)Q(x)Q(y), t ∈ [0,∞), x ∈ R.

Then there exists a constant C > 0 such that

284!

(
4∑

r=0

tr

)(
4∑

r=0

|x|r
)
(1 + |y|+ y2)

×
∫ t

0

∣∣∣∣ ∫ x

0

∫ y

0

g1(t1, x1, y1)dx1dy1

∣∣∣∣∣dt1 ≤ C, (t, x, y) ∈ [0,∞)× R2.

Let

g(t, x, y) =
A

C
g1(t, x, y), (t, x, y) ∈ [0,∞)× R2.
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Then

284!

(
4∑

r=0

tr

)(
4∑

r=0

|x|r
)
(1 + |y|+ y2)

×
∫ t

0

∣∣∣∣ ∫ x

0

g(t1, x1, y1)dx1dy1

∣∣∣∣∣dt1 ≤ A, (t, x, y) ∈ [0,∞)× R2.

i.e. (G2) holds. Therefore for the IVP

utt = uxx + uyy − uxxxx −
(
u2
)
xx
, t > 0, (x, y) ∈ R2,

u(0, x, y) = 1
(1+3x2)(4+9y4) , (x, y) ∈ R2,

ut(0, x, y) = 1
(1+11x6)(1+12y8) , (x, y) ∈ R2,

are fulfilled all conditions of Theorem 4.5 and Theorem 4.6.
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