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Abstract: Laguerre differential equation is a well known equation that appears in the quantum mechanical description of
the hydrogen atom. In this paper, we aim to develop a new form of Laguerre Fractional Differential Equation (LFDE) of
order 2α and we investigate the solutions and their properties. For a positive real number α , we prove that the equation
has solutions of the form Ln,α(x) =

∑n
k=0 akx

k , where the coefficients of the polynomials are computed explicitly. For
integer case α = 1 we show that these polynomials are identical to classical Laguerre polynomials. Finally, we solve
some fractional differential equations by defining a suitable integral transform.

Key words: Fractional Laguerre equation, Fractional Sturm-Liouville operator, Riemann-Liouville and Caputo deriva-
tives

1. Introduction
Developing classical integer order differential equations to the fractional order is one of those mathematical topics
that received much attention. It has been shown for many years that the use of this emerging tool in modeling
and design helps to improve the efficiency of various sciences. In recent years, it has been proved that in some
applications modeling by fractional derivatives generates more accurate solutions than modeling by integer order
derivatives [5, 9, 16, 18]. The recent applications of fractional differential equations in science and engineering
are significant motivation for researchers to study and develop their research in this subject, for more details see
[7, 10–13]. It is well known that polynomials such as Legendre, Chebyshev and Laguerre play a fundamental
role in studying ordinary and partial differential equation [4, 6, 8, 22]. Laguerre differential equation is a well-
known equation that appears in the quantum mechanical description of the hydrogen atom [20]. M. Klimek
and O.P. Agrawal considered the fractional Legendre equation as a singular fractional Sturm-Liouville problem
and they presented some results on the applications of Legendre polynomials in ordinary and partial differential
equations in a finite interval [a, b] [15]. The research of fractional differential equations in semiinfinite interval
(0,∞) is also of great interest. Some authors tried to obtain analytical and numerical solutions for fractional
order differential equations on an unbounded interval, for more details see [1–3, 17, 21]. T. Aboelenen et al.
[1] considered a generalized Laguerre fractional differential equation in half-line and investigated spectral data
subject to a homogeneous Dirichlet and homogeneous fractional integro-differential boundary conditions. In this
paper, we aim to develop a new type of LFDE in half-line domain which is different from [1]. Our method is
constructive in finding solutions of LFDE. The classical Laguerre differential equation is a second-order ordinary
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differential equation, where the solutions are Laguerre polynomials. It is well-known that the classical Laguerre
differential equation has the following form [20, 22][

Dxe−xD + ne−x
]
Ln(x) = 0, 0 < x < ∞, (1.1)

where Ln(x) are Laguerre polynomials of degree n . In this paper, we define a fractional order Laguerre
differential equation of the following form[

−Dα
−x

αe−αxDα
0+ + λe−αx

]
y(x) = 0, (1.2)

where Dα
− and Dα

0+ are left and right Riemann-Liouville fractional derivatives, respectively. We find values of
parameter λ for which the solutions are polynomials Ln,α . This paper is organised in the following manner.
In section 2 some preliminary materials on fractional calculus and Laguerre polynomials are given. We find the
solutions of (1.2) in section 3. We prove that the solutions are polynomials of the form Ln,α(x) =

∑n
k=0 akx

k ,
where the coefficients of the polynomials are computed by solving a system of algebraic equations by a backward
recursive formula with an = (−1)nαn

Γ(n+1) . Orthogonality of the polynomials Ln,α(x) with weight function e−αx

are proved. Moreover, we show that for α = 1 the polynomials Ln,α(x) are indeed the classical Laguerre
polynomials Ln(x) and we show that Ln,α(

x
α ) = Ln(x) . In section 4 we give some applications in solving

fractional differential equations.

2. Preliminaries
In this section, we give some preliminary materials of fractional calculus [14, 18, 19] and Laguerre polynomials
[22]. It is well-known that the Sturm-Liouville form of the classical Laguerre equation is of the form (1.1), where
the Laguerre polynomial Ln(x) are given by

Ln(x) =

n∑
k=0

(
n

k

)
(−1)k

k!
xk. (2.1)

Moreover, the following orthogonality property holds∫ +∞

0

e−xLm(x)Ln(x)dx = δm,n. (2.2)

The Laguerre polynomials satisfy the following recursive relation

Ln+1(x) =
(2n+ 1− x)Ln(x)− nLn−1(x)

n+ 1
, L0(x) = 1, L1(x) = 1− x. (2.3)

Let α be a positive real number. Left and right Riemann-Liouville integrals of order α are defined by

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(s)

(x− s)1−α
ds, x > a, (2.4)

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(s)

(s− x)1−α
ds, x < b. (2.5)
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If we consider half line then left and right Riemann-Liouville integrals of order α are defined by

Iα+f(x) =
1

Γ(α)

∫ x

−∞

f(s)

(x− s)1−α
ds, (2.6)

Iα−f(x) =
1

Γ(α)

∫ +∞

x

f(s)

(s− x)1−α
ds. (2.7)

Let m− 1 < α < m where m ∈ N . Then left and right Riemann-Liouville derivatives are defined by

(Dα
a+f)(x) = Dm(Im−α

a+ f)(x),

(Dα
b−f)(x) = (−D)m(Im−α

b− f)(x).

If we consider half line then left and right Riemann-Liouville derivative of order α is defined by

(Dα
+f)(x) = Dm(Im−α

+ f)(x), (2.8)

(Dα
−f)(x) = (−D)m(Im−α

− f)(x). (2.9)

If m− 1 < α < m and f ∈ C[a, b] then it can be proved that the following properties are satisfied

Dα
a+Iαa+f(x) = f(x), Dα

b−I
α
b−f(x) = f(x),

Dα
a+I

β
a+f(x) = Iβ−α

a+ f(x), Dα
b−I

β
b−f(x) = Iβ−α

b− f(x),

Iαa+I
β
a+f(x) = Iα+β

a+ f(x), Iαb−I
β
b−f(x) = Iα+β

b− f(x).

Moreover if α > 0 and β > α then we have

Iαa+(x− a)β−1 =
Γ(β)

Γ(β + α)
(x− a)β+α−1,

Dα
a+(x− a)β−1 =

Γ(β)

Γ(β − α)
(x− a)β−α−1,

Iαb−(b− x)β−1 =
Γ(β)

Γ(β + α)
(b− x)β+α−1,

Dα
b−(b− x)β−1 =

Γ(β)

Γ(β − α)
(b− x)β−α−1.

Theorem 2.1 [19] Let α > 0, p ≥ 1, q ≥ 1,
1

p
+

1

q
≤ 1 + α, f(x) ∈ Iα0+(Lp), g(x) ∈ Iα−(Lq) . Then

∫ ∞

0

g(x)Dα
0+f(x)dx =

∫ ∞

0

f(x)Dα
−g(x)dx. (2.10)
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3. Laguerre fractional differential equation

In this section, we define Laguerre fractional differential equation and obtain the main results of this paper.
We introduced the classical Laguerre differential equation by (1.1). Now, we define the fractional form of the
Laguerre differential equation as follows

[
−Dα

−x
αe−αxDα

0+ + λn,αe
−αx

]
Ln,α(x) = 0, (3.1)

where

λn,α =
Γ(n+ 1)

Γ(n− α+ 1)
αα. (3.2)

We find an explicit formula for Ln,α(x) in Theorem 3.2. In the following Lemma we prove the self-adjoint
property of fractional operator ℓα := −Dα

−x
αe−αxDα

0+ .

Lemma 3.1 If f and g satisfy in the conditions of Theorem 2.1, then we have ⟨ℓαf, g⟩ = ⟨f, ℓαg⟩ , i.e.

∫ +∞

0

[
f(x)Dα

−x
αe−αxDα

0+g(x)− g(x)Dα
−x

αe−αxDα
0+f(x)

]
dx = 0. (3.3)

Proof Using the equation (2.10) two times implies

∫ +∞

0

f(x)Dα
−x

αe−αxDα
0+g(x)dx =

∫ +∞

0

xαe−αxDα
0+g(x).D

α
0+f(x)dx

=

∫ +∞

0

g(x)Dα
−x

αe−αxDα
0+f(x)dx.

2

Now we prove that the solutions of the LFDE for λ = λn,α are orthogonal polynomials and we find a procedure
to construct the coefficients of these polynomials.

Theorem 3.2 The solutions of the LFDE (3.1) are orthogonal polynomials of the form

Ln,α(x) =

n∑
k=0

akx
k, (3.4)

where ak are computed by a constructive backward recursive formula of the form

ak = − 1

Γ(1− α)(λα,n − λα,k)

n∑
j=k+1

[
λα,j

(
j

k

)
Γ(j − k − α)αk−j+1aj

]
,

k = n− 1, n− 2, . . . , 1, 0, (3.5)

and an is an arbitrary nonzero constant.
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Proof We assume that the solutions of the LFDE are polynomials of the form (3.5) and then we construct
the coefficients ak . First, we compute the first term of the left-hand side of the equation (3.1).

[
−Dα

−x
αe−αxDα

0+

]
Ln,α(x) = DI1−α

− xαe−αx
n∑

k=0

ak
Γ(k + 1)

Γ(k − α+ 1)
xk−α

= D

n∑
k=0

ak
Γ(k + 1)

Γ(k − α+ 1)
.

1

Γ(1− α)

∫ +∞

x

(t− x)−αtke−αtdt

= D

n∑
k=0

ak
Γ(k + 1)

Γ(k − α+ 1)
.

1

Γ(1− α)

∫ +∞

0

u−α(u+ x)ke−α(u+x)du

= D

n∑
k=0

ak
Γ(k + 1)

Γ(k − α+ 1)
.

1

Γ(1− α)
e−αx

∫ +∞

0

e−αuu−α

(
k∑

i=0

(
k

i

)
uixk−i

)
du

= D

n∑
k=0

k∑
i=0

ak

(
k

i

)
Γ(k + 1)

Γ(k − α+ 1)
.

1

Γ(1− α)
e−αxxk−i

(∫ +∞

0

e−αuui−αdu

)

= D

n∑
k=0

k∑
i=0

ak

(
k

i

)
Γ(k + 1)

Γ(k − α+ 1)
.

1

Γ(1− α)
e−αxxk−iΓ(i− α+ 1)

αi−α+1

= −
n∑

k=0

k∑
i=0

ak

(
k

i

)
Γ(k + 1)Γ(i− α+ 1)

Γ(k − α+ 1)Γ(1− α)
αα−ie−αxxk−i

+

n∑
k=0

k∑
i=0

ak

(
k

i

)
Γ(k + 1)Γ(i− α+ 1)

Γ(k − α+ 1)Γ(1− α)
(k − i)αα−i−1e−αxxk−i−1.

Now by substituting the resulting expression above in (3.1) and deleting the factor e−αx , we find

−
∑n

k=0

∑k
i=0 ak

(
k
i

) Γ(k + 1)Γ(i− α+ 1)

Γ(k − α+ 1)Γ(1− α)
αα−ixk−i

+
∑n

k=0

∑k
i=0 ak

(
k
i

) Γ(k + 1)Γ(i− α+ 1)

Γ(k − α+ 1)Γ(1− α)
(k − i)αα−i−1xk−i−1 + λn,α

∑n
k=0 akx

k = 0.

(3.6)

Equating the coefficients of xk to zero we find an algebraic system that computes ak . Equating the coefficient
of xn to zero we find

−an
Γ(n+ 1)Γ(1− α)

Γ(n− α+ 1)Γ(1− α)
ααxn + λn,αanx

n = 0,

thus we obtain λn,α =
Γ(n+ 1)

Γ(n− α+ 1)
αα . It is clear that an can be any arbitrary nonzero real number. Now

we find a recursive formula to compute the coefficients ak for k < n . We can rewrite the equation (3.6) in the
following form

n∑
k=0

k∑
i=0

ak

(
k

i

)
Γ(k + 1)Γ(i− α+ 1)

Γ(k − α+ 1)Γ(1− α)
αα−ixk−i((k − i)x−1α−1 − 1) + λn,α

n∑
k=0

akx
k = 0. (3.7)
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Expanding the sums, choosing an an arbitrary real number and equating the coefficient of xn−1 to zero implies
that

an−1 =
−1

λn,α − Γ(n)

Γ(n− α)
αα

nΓ(n+ 1)

Γ(n+ 1− α)
ααan,

Similarly, we find

an−2 = − 1

Γ(1− α)[λn,α − λn−2,α]
[λn−1,α

(
n− 1

n− 2

)
Γ(1− α)an−1

+λn,α

(
n

n− 2

)
Γ(2− α)α−1an].

Using induction and simple calculations, we obtain the final formula (3.5). Now we show the orthogonality of
the polynomials Ln,α(x) . Suppose that m ̸= n . We have[

−Dα
−x

αe−αxDα
0+ + λn,αe

−αx
]
Ln,α(x) = 0,[

−Dα
−x

αe−αxDα
0+ + λm,αe

−αx
]
Lm,α(x) = 0.

Multiplying the first equation by Lm,α(x) and the second equation by Ln,α(x) then subtracting implies that

−Lm,α(x)D
α
−x

αe−αxDα
0+Ln,α(x) + Ln,α(x)D

α
−x

αe−αxDα
0+Lm,α(x)

= (λm,α − λn,α)e
−αxLn,α(x)Lm,α(x).

Integrating over [0,∞) and using Lemma 3.1 implies that

(λm,α − λn,α)

∫ +∞

0

e−αxLn,α(x)Lm,α(x)dx = 0. (3.8)

Since m and n are distinct, this completes the orthogonality of the polynomials.
2

Corollary 3.3 For α = 1 the polynomials Ln,1 are identical to the classical Laguerre polynomials.

Proof We may write the equation (3.5) for k = n− 1, n− 2, . . . , 1, 0 as follows

ak = − 1

(λn,α − λk,α)
λk+1,α

(
k + 1

k

)
ak+1

− 1

(λn,α − λk,α)

n∑
j=k+2

[
λj,α

(
j

k

)
(j − k − α− 1)(j − k − α− 2) . . . (1− α)αk−j+1aj

]
.

The second sum for α = 1 is zero and λn,1 = n , thus we have

ak = − (k + 1)2

(n− k)
ak+1, k = n− 1, n− 2, . . . , 1, 0. (3.9)
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Considering an = (−1)n

n! and using induction we find

aj =
(−1)j

j!

(
n

j

)
, j = 1, 2, . . . , n. (3.10)

According to (2.1) aj given by (3.10) is the same as coefficients of the classical Laguerre polynomials. 2

Now we give an interesting relation between the polynomials Ln,α(x) and the classical Laguerre polynomials
Ln in the following theorem.

Theorem 3.4 If n is a nonnegative integer and x ∈ [0,∞) then for an = (−1)n

n! αn , we have

Ln,α(
x

α
) = Ln(x). (3.11)

Proof We use induction to prove this result. For n = 0 the statement is true since we have

L0,α(
x

α
) = 1 = L0(x).

Suppose that the statement is true for all j < n , i.e.

Lj,α(
x

α
) = Lj(x).

We may write Ln,α(
x
α ) as a linear combination as follows

Ln,α(
x

α
) =

n∑
k=0

An
kLk(x) = An

nLn(x) +

n−1∑
k=0

An
kLk,α(

x

α
). (3.12)

Using (3.8) for two different and arbitrary indices n,m and changing variables αx = u imply that∫ +∞

0

e−uLn,α(
u

α
)Lj,α(

u

α
)du = 0.

Multiplying both sides of (3.12) by e−xLj,α(
x

α
) for j < n and integrating over [0,∞) and using orthogonality

of the classical Laguerre polynomials given by (2.2) implies that An
j = 0 , for j = 0, 1, 2, · · · , n − 1 . Thus by

using (3.12) we find

Ln,α(
x

α
) = An

nLn(x).

On the other hand we have an = (−1)nαn

n! . Since the leading coefficients of Ln,α(
x
α ) and Ln(x) are both (−1)n

n! .
Thus, we conclude An

n = 1 that completes the proof. 2

Corollary 3.5 Theorem 3.4 implies that the coefficients of polynomial Ln,α(x) are ak =
(−1)k

k!

(
n
k

)
αk .

Corollary 3.6 Orthogonality of the polynomials Ln,α(x) implies that∫ +∞

0

e−αxLm,α(x)Ln,α(x)dx =
1

α
δm,n. (3.13)

3004



KAVOOCI et. al./Turk J Math

Proof If m = n and u = αx then we have∫ +∞

0

e−αxL2
n,α(x)dx =

1

α

∫ +∞

0

e−uL2
n,α(

u

α
)du.

Using (3.11) and (2.2) implies (3.13). 2

Definition 3.7 We define the Laguerre norm of the function f(x) as follows

∥f∥L = (

∫ +∞

0

e−αxf2(x)dx)
1
2 . (3.14)

Corollary 3.8 Orthogonal property in Corollary 3.6 implies that

∥Ln,α∥2L =
1

α
. (3.15)

Now we introduce a recursive formula to compute fractional Laguerre polynomials in the following theorem.

Theorem 3.9 The fractional Laguerre polynomials Lk,α(x) satisfy the following recursive formula

Ln+1,α(x) =
1

n+ 1
[(2n+ 1− αx)Ln,α(x)− nLn−1,α(x)] , n ≥ 1,

L0,α(x) = 1, L1,α(x) = 1− αx.

(3.16)

Proof It is well known that the classical Laguerre polynomials Ln(x) satisfy the following recursive relation
[22]

Ln+1(x) =
1

n+ 1
[(2n+ 1− x)Ln(x)− nLn−1(x)] , n ≥ 1, L0(x) = 1, L1(x) = 1− x.

Now using (3.11) implies that

Ln+1,α(
x

α
) =

1

n+ 1

[
(2n+ 1− x)Ln,α(

x

α
)− nLn−1,α(

x

α
)
]
, n ≥ 1,

L0,α(
x

α
) = 1, L1,α(

x

α
) = 1− x,

Changing variable u = x
α in the last equations implies the result. 2

4. Integral transform and applications

In this section, we define integral transform corresponding to fractional Laguerre polynomials Ln,α(x) and
introduce inverse transform to solve some fractional differential equations.

Integral transform of a function f ∈ L2(0,+∞) corresponding to Laguerre polynomials Ln,α(x) is defined
by

F (n) = T [f ](n) =

∫ +∞

0

e−αxf(x)Ln,α(x)dx. (4.1)
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The corresponding inverse transform is defined by

T−1[F (n)] =

+∞∑
n=0

αF (n)Ln,α(x). (4.2)

Lemma 4.1 Considering the Laguerre operator ℓα = Dα
−x

αe−αxDα
0+ , we have

T [eαxℓαf(x)] = λn,αF (n). (4.3)

Proof Using Lemma 3.1 we have the following equality

T [eαxℓαf(x)] =

∫ +∞

0

ℓαf(x).Ln,α(x)dx =

∫ +∞

0

f(x).ℓαLn,α(x)dx

= λn,α

∫ +∞

0

e−αxf(x)Ln,α(x)dx = λn,αF (n).

2

Now we give some applications in finding the solutions of some special fractional differential equations. We use
Ln,α to solve typical fractional differential equations. Indeed, we generate a particular solution in the form of
series in terms of Ln,α using the integral transform (4.1).

Theorem 4.2 Suppose g ∈ L2(0,∞] and λ ̸= λn,α . If the integral transform of g satisfies the following
inequality

|G(n)| ≤ kαn
β , (4.4)

then the solution of the fractional differential equation

[eαxℓα − λ] f(x) = g(x), (4.5)

for α > β + 1 is given by the following infinite series

f(x) =

∞∑
n=0

α
G(n)

λn,α − λ
Ln,α(x). (4.6)

Proof Taking integral transform of (4.5) and using (4.3) implies that

[λn,α − λ]F (n) = G(n) =⇒ F (n) =
G(n)

λn,α − λ
.

Applying inverse transform (4.2), the function f could be expressed in the form (4.6). For n > n0 using
Corollary 3.8 we have

∥α G(n)

λn,α − λ
Ln,α∥L ⩽

√
α

|λn,α − λ|
kαn

β .

3006



KAVOOCI et. al./Turk J Math

Using the asymptotic property of the eigenvalues [14] we find

λn,α
∼= αα(n+ 1)α, n −→ ∞. (4.7)

Thus we have

√
αkαn

β 1

|λn,α − λ|
∼=

√
αkα

nα−β
, n −→ ∞.

The assumption α− β > 1 implies uniform convergence of (4.6) in [0,∞) . 2

Corollary 4.3 If we truncate the series (4.6) as fN (x) =
∑N

n=0 α
G(n)

λn,α − λ
Ln,α(x) , then we have ∥f −fN∥L =

O( 1
nα−β ) .

Example 4.4 For a fix m ∈ N , we consider the following nonhomogeneous equation in [0,+∞)

[eαxℓα − λ] f(x) = Lm,α(x). (4.8)

Taking Ln,α integral transform of (4.4) implies

F (m) =
1

α(λm,α − λ)
,

and F (n) = 0 for n ̸= m . Using relation (4.6), the particular solution of nonhomogeneous fractional equation
(4.8) is obtained as follows

f(x) =
1

λm,α − λ
Lα,m(x).

Example 4.5 We consider the following nonhomogeneous equation in [0,+∞)

[eαxJα − λ] f(x) = e−x. (4.9)

The Ln,α integral transform of the above equation gives,

(λn,α − λ)F (n) =

∫ +∞

0

e−x(α+1)Ln,α(x)dx

=

n∑
k=0

ak(

∫ +∞

0

e−x(α+1)xkdx) =

n∑
k=0

ak
Γ(k + 1)

(1 + α)k+1
.

Substituting the values of ak from Corollary 3.5, we obtain

F (n) =
1

(1 + α)n+1(λn,α − λ)
.

Using relation (4.2), the particular solution of nonhomogeneous fractional equation (4.9) is obtained as follows:

f(x) =

∞∑
n=0

α
Ln,α(x)

(1 + α)n+1(λn,α − λ)
.
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We truncate the series above and approximate the solution f(x) with fN (x) . For α = 1.5, 0.9 and different
values of N , the graphs of fN (x) are plotted in Figures 1 and 2. The Infinity norm and Laguerre norm
(Definition 3.7) of (fN+2 − fN ) for different values of N are computed in Tables 1 and 2.

x
0 1 2 3 4 5 6 7 8 9 10

f N
(x

)
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0

1

2

3
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(a)

N=4
N=8
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x
0 2 4 6 8 10 12 14 16 18 20

f N
(x

)

-5

0

5

10

15

20

25

30
(b)

N=4
N=8
N=12
N=14

Figure 1. Graphs of truncated solutions fN (x) for Example 4.5 with α = 1.5, λ = 2 . (a) for interval [0, 10] and (b)
for interval [0, 20] .
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Figure 2. Graphs of truncated solutions fN (x) for Example 4.5 with α = 0.9, λ = 2 . (a) for interval [0, 10] and (b)
for interval [0, 20] .

5. Conclusions
In this paper, we introduce a fractional Laguerre differential equation which leads to a family of orthogonal
polynomials Ln,α(x) , where α is a positive real number. For α = 1 , we prove that Ln,1(x) are identical to the
classical Laguerre polynomials. We find the relation between Ln,α(x) and the classical Laguerre polynomials.
Moreover, by defining an integral transform corresponding to Ln,α(x) , we find the exact series solution of
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Table 1. Results of Example 4.5 for α = 1.5 and λ = 2 .

N ∥fN+2 − fN∥∞ in [0, 10] ∥fN+2 − fN∥∞ in [0, 20] ∥fN+2 − fN∥L
4 0.1436 4.2109 3.08× 10−4

6 0.0129 8.1319 2.79× 10−5

8 0.0012 1.9839 2.98× 10−6

10 9.24× 10−5 0.1624 3.47× 10−7

12 8.98× 10−6 0.0126 4.28× 10−8

14 2.06× 10−6 0.0015 5.48× 10−9

16 2.46× 10−7 9.29× 10−5 7.23× 10−10

Table 2. Results of Example 4.5 for α = 0.9 and λ = 2 .

N ∥fN+2 − fN∥∞ in [0, 10] ∥fN+2 − fN∥∞ in [0, 20] ∥fN+2 − fN∥L
4 0.2504 15.8528 0.0113

6 0.0317 0.9845 0.0019

8 0.0039 0.1994 3.70× 10−4

10 0.0015 0.0582 8.04× 10−5

12 1.66× 10−4 0.0201 1.84× 10−5

14 6.99× 10−5 0.0057 4.34× 10−6

16 9.93× 10−6 6.13× 10−4 1.05× 10−6

some fractional differential equations. Finally, we introduced two numerical examples showing truncated
approximation fN (x) of the solutions for different values of N and α , shown in Figures 1 and 2 with intervals
[0, 10] and [0, 20] , respectively. The norm ∥fN+2 − fN∥ is decreasing sharply in both examples with increasing
N . The results show that using this method we can obtain efficient solutions on large intervals.
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