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Abstract: We present and develop different approaches to study the asymptotic behavior of the distribution functions
in the odd continued fractions case. Firstly, by considering the transition operator of the Markov chain associated with
these expansions on a certain Banach space of complex-valued functions of bounded variation, we make a brief survey of
the solution in the Gauss-Kuzmin-type problem. Secondly, we use the method of Szüsz to obtain a similar asymptotic
result and to give a good estimate of the convergence rate involved.
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1. Introduction

We define OCF(x) the continued fraction expansions with odd partial quotients of x ∈ [0, 1] as follows.

Let us partition the unit interval [0, 1] into intervals
(

1
2k ,

1
2k−1

]
, for k = 1, 2, 3, . . . , and

(
1

2k−1 ,
1

2k−2

]
, for

k = 2, 3, 4, . . . , and consider the transformation T : [0, 1] → [0, 1] defined by T (0) = 0 and

T (x) :=


1

x
−
⌊
1

x

⌋
, x ∈

⋃
k≥1

(
1

2k
,

1

2k − 1

]
1−

(
1

x
−
⌊
1

x

⌋)
, x ∈

⋃
k≥2

(
1

2k − 1
,

1

2k − 2

]
.

(1.1)

With auxiliary functions

ε1(x) =


1, x ∈

⋃
k≥1

(
1

2k
,

1

2k − 1

]
,

−1, x ∈
⋃
k≥2

(
1

2k − 1
,

1

2k − 2

] (1.2)
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and

a1(x) =


⌊
1

x

⌋
x ∈

⋃
k≥1

(
1

2k
,

1

2k − 1

]
,

1 +

⌊
1

x

⌋
x ∈

⋃
k≥2

(
1

2k − 1
,

1

2k − 2

] (1.3)

we arrive at

T (x) = ε1(x)

(
1

x
− a1(x)

)
, x ∈ (0, 1).

Note that

T (x) = ε1(x)

(
1

x
− (2k − 1)

)
,

where ε1(x) = 1 if x ∈
(

1
2k ,

1
2k−1

]
and ε1(x) = −1 if x ∈

(
1

2k−1 ,
1

2k−2

]
. We obtain

x =
1

2k − 1 + ε1(x)T (x)

and, therefore, the map T generates the continued fraction

x =
1

a1 +
ε1

a2 +
ε2

a3 +
. . .

=: [1/a1, ε1/a2, ε2/a3, . . .], (1.4)

where

an = an(x) = a1
(
Tn−1(x)

)
, εn = εn(x) = ε1

(
Tn−1(x)

)
, n ≥ 1,

εn ∈ {−1,+1}, an ≥ 1, an ≡ 1(mod 2) and an + εn > 1, n ≥ 1.
(1.5)

On the OCF expansion, the iterates of the map T act as a shift map by

Tn([1/a1, ε1/a2, ε2/a3, . . .]) = [1/an+1, εn+1/an+2, εn+2/an+3, . . .].

Let us denote

rn = rn(x) = an(x) + εn(x)T
n(x)

= an + [εn/an+1, εn+1/an+2, εn+2/an+3, . . .], n ≥ 1
(1.6)

which yields

rn = an +
εn
rn+1

, n ≥ 1. (1.7)

The rational approximants to x arise in a manner similar to that in the case of other continued fraction
algorithms. However, the OCF case is the most intricate, because the sequence of denominators of successive
convergents in OCF(x) is not necessarily increasing as in the regular continued fractions (RCF) or in the
continued fractions with even partial quotients (ECF) cases.
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Let us define

p−1 = 1, p0 = 0, pn = anpn−1 + εn−1pn−2, (1.8)

q−1 = 0, q0 = 1, qn = anqn−1 + εn−1qn−2 (1.9)

for n ≥ 1 . The sequence of rationals
{
pn
qn

}
, n ≥ 1 are the convergents to x in [0, 1] .

The following elementary fundamental relations are satisfied

pn−1qn − pnqn−1 = (−1)kε0ε1 . . . εn−1 =: δn, (1.10)

pn−1

qn−1
− pn

qn
=

δn
qn−1qn

, n ≥ 0, (1.11)

x =
pn + pn−1εntn
qn + qn−1εntn

, n ≥ 0, (1.12)

where tn = Tn(x) . Equation (1.12) is equivalent to

εntn =
qnx− pn

−qn−1x+ pn−1
, n ≥ 0. (1.13)

Upon (1.13), we infer that for any irrational number x ∈ [0, 1]

0 <

∣∣∣∣ qnx− pn
−qn−1x+ pn−1

∣∣∣∣ < 1, n ≥ 0.

Let us consider

s0(x) = 0, s1(x) =
1

a1(x)
, sn(x) =

1

an(x) + εn−1(x)sn−1(x)
, n ≥ 2 (1.14)

which yields
sn = [1/an, εn−1/an−1, εn−2/an−2, . . . , ε1/a1]. (1.15)

Obviously, sn =
qn−1

qn
, n ≥ 0 .

The golden ratios G =
√
5+1
2 = 1.6180 . . . and g =

√
5−1
2 = 0.6180 . . . will be used often. Without

further mention we shall frequently use identities like

g + 1 = G, g2 = 1− g, G2 = G+ 1, gG = 1, g + 2 = G2.

Denominators of successive convergents for OCF(x) satisfy
qn

qn−1
= an + εn−1[1/an−1, εn−2/an−2, . . . , ε1/a1] ≥

≥ an − [1/3,−1/3, . . . ,−1/3]

> an − [1/3,−1/3,−1/3, . . .] = an − 1 +
1

G
= an − 2 +G.

Also, one has
qn

qn−1
= an +

εn−1
qn−1

qn−2

< an +
εn−1

an−1 − 2 +G
≤ an +

1

G− 1
= an +G.
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Whatever n ≥ 1 we have an ≥ 3 if and only if 0 < sn < g2 and an = 1 if and only if g2 < sn < G .
Studied by Rieger [9] and Schweiger [10, 11] in the early times, the OCF continue to raise the interest

in many ways. Any continued fraction algorithm on [0, 1] generates a natural filtration {Yn} of Q ∩ [0, 1] ,
obtained by taking into account the sum of the partial quotients of the rationals. One can consider the simple
nondecreasing functions

Qn : [0, 1] → [0, 1], Qn(x) =
|{y ∈ Yn : y < x}|

|Yn| − 1
.

For the regular continued fraction, Yn is the set of rationals with sum of partial quotients at most n . The
limit Q(x) := lim

n→∞
Qn(x) provides an analogue of the Minkowski question mark function. The resulting map

QO in the situation of continued fractions with odd partial quotients has been introduced and investigated by
Zhabitskaya [15]. Actually, the analogue of Minkowski’s question mark function related to continued fractions
with odd partial quotients QO(x) coincides with her F 0(x) . Following Zhabitskaya’s work [15], Boca and
Linden [2] proved that the function QO is Hölder continuous with best exponent log λ

2 logG ≈ 0.63317 , where

λ ≈ 1.83929 denotes the unique real root of the equation x3 − x2 − x− 1 = 0 . They also proved that the map
QO linearizes the odd Gauss and the odd Farey maps.

Boca and Merriman [3] described coding of geodesics on the modular surface MO connected to the
dynamics of odd continued fractions.

Recently, Boca and Merriman [4] studied an analogue of Nakada’s α -continued fraction transformation
in the setting of continued fractions with odd partial quotients and described the natural extension of this
transformation.

The purpose of this paper is to develop a different approach from [8] and [12] to study the asymptotic
behavior of the distribution functions in the OCF case. Based on the finite T -invariant measure on the σ -algebra
B[0,1] of all Borel subsets of [0, 1]

ρ(A) =
1

3 logG

∫
A

(
1

x+G− 1
− 1

x−G− 1

)
dx, A ∈ B[0,1] (1.16)

introduced by Schweiger [10], Kalpazidou [6] investigated the ergodic behavior of a certain homogeneous random
system with complete connections (RSCC). In fact, it was proved that this RSCC is uniformly ergodic and its
associated transition operator under the invariant measure ρ is regular with respect to the Banach space of
Lipschitz functions. These results allowed to find the limit lim

n→∞
µ(rn > t) = ℓ for a given nonatomic measure

µ on B[0,1] and to estimate the error µ(rn > t)− ℓ .
On the other hand, Popescu [7, 8] studied the [0, G] -valued Markov chain {sn} , n ≥ 1 and its associated

RSCC and solved a variant of the Gauss-Kuzmin problem.
Sebe [12] solved a Gauss-Kuzmin-type problem for the OCF expansion by considering the transition

operator of the Markov chain {sn} , n ≥ 1 as an operator on a certain Banach space of complex-valued functions
of bounded variation. It was also obtained an improvement of the result given in [8] concerning the convergence
rate. It should be said that Wirsing’s method [14] cannot be applied in this case because the corresponding
transition operator is not positive.

The paper is organized as follows. In Section 2, we introduce the definitions and present preliminary
results. We also make a brief survey of the method used in [12].
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In Section 3, to continue our investigation on the asymptotic behavior of the distribution functions of the
map T , we use an approach in the spirit of Szüsz [13]. We mention that using the method of Szüsz to prove
a Gauss-Kuzmin-type theorem for OCF expansions, we obtain a very good estimate of the convergence rate
involved.

2. Preliminary results

2.1. The random system with complete connections associated with the sequence {sn}

In the sequel, we present some investigations on the sequence {sn} , n ≥ 1 studied in detail in [7].

Denoting by E
1j1...jn−1

i1i2...in
the set of irrational numbers

x = [1/a1(x), ε1/a2(x), ε2/a3(x), . . .] ∈ [0, 1]

for which aℓ(x) = iℓ , 1 ≤ ℓ ≤ n , εk(x) = jk , 1 ≤ k ≤ n− 1 , with jk = ±1 , ik + jk > 1 , 1 ≤ k ≤ n− 1 , iℓ ≥ 1 ,
iℓ ≡ 1(mod 2) , 1 ≤ ℓ ≤ n , n ≥ 2 , we have

λ
(
rn+1 > t, εn = e

∣∣∣E1j1...jn−1

i1i2...in

)
=


1− s2n

2(t+ esn)
, in ̸= 1, e = ±1,

0, in = 1, e = −1,
1 + sn
t+ sn

, in = 1, e = 1,

(2.1)

where t ≥ 1 , n ≥ 1 , and λ is the Lebesgue measure (see [7]). Also, since r1(x) =
1

x
, we have

λ (r1(x) > t) = λ

([
0,

1

t

])
=

1

t
.

As is well-known ( see [7]), the sequence {sn} , n ≥ 1 is a W -valued Markov chain with transition probability
function Q defined as

Q(w,B) =
∑

{(e,i):u(w(e,i))∈B}

P (w(e, i)), w ∈ W, B ∈ W,

where W = [0, G] , W = B[0,G]= the collection of all Borel subsets of W , X = {−1, 1} × {1, 3, 5, . . .} , X =the
collection of all subsets of X ,

u(w, (−1, i)) =


1

i− w
, w ∈

[
0, g2

)
=: W1,

1

i− g2
, w ∈

[
g2, G

]
=: W2,

, u(w, (1, i)) =
1

i+ w
, w ∈ W,

P (w, (e, i)) =


(1− w2)(2− δ(i, 1))

2(i− 1 + δ(i, 1) + ew)(i+ 1 + ew)
, w ∈ W1,

(1 + w)(2− δ(i, 1))δ(e, 1)

(i− 1 + δ(i, 1) + w)(i+ 1 + w)
, w ∈ W2,

(2.2)

for all i ≥ 1 , i ≡ 1(mod 2) and e = ±1 , where δ is the Kronecker’s symbol.
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According to the general theory [5]

((W,W), (X,X ), u, P ) (2.3)

is the random system with complete connections (RSCC) associated with the sequence {sn} , n ≥ 1 . Let Qn ,
n ≥ 1 , be the n -step transition probability function associated with Q . The stationary probability Q∞ for
{sn} , n ≥ 1 is given by

Q∞(B) =

∫
B

dξ(w), B ∈ W, (2.4)

where

ξ(w) =


1

3 logG
log

1 + w

1− w
, w ∈ W1,

1

3 logG
log

1 + w

1− g2
, w ∈ W2.

(2.5)

Therefore, for any B ∈ B[0,G] , we have ∫
W

Q∞(dw)Q(w,B) = Q∞(B). (2.6)

2.2. An operatorial treatment

Let us consider the transition operator U associated with RSCC (2.3) which is defined as

Uf(w) =
∑

(e,i)∈X

P (w, (e, i))f(u(w, (e, i))), w ∈ W,

for any f ∈ B(W ) (= the Banach space of bounded measurable complex-valued functions f on W under the
supremum norm |f | = sup

w∈W
|f(w)|). Note that U is also the transition operator of the Markov chain {sn} ,

n ≥ 1 and we have

Uf(w) =

∫
W

Q(w, dw′)f(w′)

which implies that

Unf(w) =

∫
W

Qn(w, dw′)f(w′), w ∈ W, n ≥ 1.

The basic ideea is to consider U as an operator on BV (W )(=the Banach space of all complex-valued
functions f of bounded variation on W under the norm ∥f∥v = varf + |f |). Remember that the variation
varAf over A ⊂ W of f ∈ B(W ) is defined as

sup

k−1∑
i=1

|f(ti)− f(ti+1)|

the supremum being taken over all t1 < . . . < tk ∈ A and k ≥ 2 . We write simply varf for varW f and, if
varf < ∞ , then f is called a function of bounded variation.

We recall two elementary results obtained in [12].
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Proposition 2.1 For any f ∈ BV (W ) , we have

varUf ≤ θ1varf + θ2|f |, (2.7)

where θ1 and θ2 are positive constants such that θ1 = 0.4270508 . . . and θ2 ≤ 0.396312 . . .

Corollary 2.2 There exists a positive constant θ = θ1 + θ2 ≤ 0.8233628 . . . such that for all n ∈ N and
f ∈ BV (W ) we have

varUnf ≤ θn · var f, (2.8)

|Unf − U∞f | ≤ θn · var f, (2.9)

where U∞f =

∫
W

f(w)Q∞(dw) .

Let us define two functions

Fn(x, e) := λ

(
rn+k+1 >

1

x
, εn+k = e

∣∣∣∣E1j1...jk−1

i1i2...ik

)
(2.10)

and

F (x, e) :=

∫
W1

(1− y2)x

2(1 + yx)
Q∞(dy) +

∫
W2

(1 + y)δ(e, 1)x

1 + yx
Q∞(dy) (2.11)

for x ∈ [0, 1] , e = ±1 , n > 0 and k ≥ 1 .
The Corollary 2.2 allows us to solve a Gauss-Kuzmin-type problem, namely to obtain the asymptotic

behavior as n → ∞ of the distribution function Fn and estimate the convergence rate. In fact, we show that
for all n ≥ 1 , x ∈ [0, 1] , e = ±1 , we have

|Fn(x, e)− F (x, e)| ≤ θn.

Our convergence rate, O (θn) , with θ ≤ 0.8233628 . . . < 0.854120 . . . , is better than the one obtained in [8]. To
proceed, by (2.1), we have

F0(x, e) = λ

(
rk+1 >

1

x
, εk = e

∣∣∣∣E1j1...jk−1

i1i2...ik

)

=


(1− s2k)x

2(1 + eskx)
, sk ∈ W1, e = ±1,

0, sk ∈ W2, e = −1,
(1 + sk)x

1 + skx
, sk ∈ W2, e = 1.

(2.12)

Note that we also have

F0(x, e) =



∫
W1

(1− y2)x

2(1 + yx)
dG0(y) +

∫
W2

(1 + y)x

1 + yx
dG0(y), e = 1,

∫
W1

(1− y2)x

2(1− yx)
dG0(y), e = −1,

(2.13)
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with

G0(y) =

{
0, y ≤ sk,
1, y > sk,

y ∈ W. (2.14)

Now, for any n ≥ 1 , by (2.12), we have

Fn(x, e) =
∑

λ

(
rn+k+1 >

1

x
, εn+k = e, εn+k−1 = jn,

an+k = in, . . . , εk = j1, ak+1 = i1|E
1j1...jk−1

i1i2...ik

)
=
∑

λ

(
rn+k+1 >

1

x
, εn+k = e

∣∣∣∣E1...jk−1,j
′
1...j

′
n

i1...ik,i′1...i
′
n

)
× λ

(
εn+k−1 = j′n, an+k = i′n, . . . , εk = j′1, ak+1 = i′1|E

1...jk−1

i1...ik

)

=



∫
W1

(1− y2)x

2(1 + yx)
dGn(y) +

∫
W2

(1 + y)x

1 + yx
dGn(y), e = 1,

∫
W1

(1− y2)x

2(1− yx)
dGn(y), e = −1,

where the sums are taken over all i′1, . . . , i′n ≥ 1 and j′ℓ = ±1 , 1 ≤ ℓ ≤ n , for which i′ℓ ≡ 1(mod 2) , i′k + j′k > 1 ,
1 ≤ ℓ ≤ n , 1 ≤ k ≤ n− 1 , and

Gn(y) = Gn

(
y,E

1j1...jk−1

i1i2...ik

)
= Qn (sk, [0, y)) , y ∈ W, n ≥ 1.

Let us define G∞(y) = Q∞([0, y)) , y ∈ W .

Theorem 2.3 For all n ≥ 1 , x ∈ [0, 1] , e = ±1 , θ ≤ 0.8233628 . . . and y ∈ W , we have

|Fn(x, e)− F (x, e)| ≤ θn, (2.15)

|Gn(y)−G∞(y)| ≤ θn. (2.16)

Proof First, we have

|Fn(x, 1)− F (x, 1)|

=

∣∣∣∣∫
W1

(1− y2)x

2(1 + yx)
d (Gn(y)−G∞(y)) +

∫
W2

(1 + y)x

1 + yx
d (Gn(y)−G∞(y))

∣∣∣∣
≤
∫
W1

|Gn(y)−G∞(y)| x
2 + 2xy + x2y2

2(1 + yx)2
dy

+

∫
W2

|Gn(y)−G∞(y)| x(1− x)

(1 + yx)2
dy +

∣∣Gn(g
2)−G∞(g2)

∣∣ 5g2x

2(1 + g2x)
.

Also,

|Fn(x,−1)− F (x,−1)| =
∣∣∣∣∫

W1

(1− y2)x

2(1− yx)
d (Gn(y)−G∞(y))

∣∣∣∣ . (2.17)
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If 0 < x ≤ 2g2

g4 + 1
, then (2.17) becomes

|Fn(x,−1)− F (x,−1)| ≤
∫ 1−

√
1−x2

x

0

|Gn(y)−G∞(y)| x(xy
2 + x− 2y)

2 (1− yx2)
dy

+

∫ g2

1−
√

1−x2

x

|Gn(y)−G∞(y)| x(−xy2 − x+ 2y)

2(1− yx2)
dy

+
∣∣Gn(g

2)−G∞(g2)
∣∣ (1− g4)x

2(1− g2x)
.

(2.18)

And if 2g2

g4 + 1
< x ≤ 1 , then (2.17) becomes

|Fn(x,−1)− F (x,−1)| ≤
∫
W1

|Gn(y)−G∞(y)| x(xy
2 + x− 2y)

2(1− yx)2
dy

+
∣∣Gn(g

2)−G∞(g2)
∣∣ (1− g4)x

2(1− g2x)
.

(2.19)

Now, for all y ∈ W we have

|Gn(y)−G∞(y)| = |Qn(sk, [0, y))−Q∞([0, y))| = |Unfy(sk)− U∞fy| , (2.20)

where U is the transition operator of the Markov chain {sn} , n ≥ 1 , U∞f =

∫
W

f(w)Q∞(dy) , and fy is a

function defined on W as

fy(w) =

{
1, 0 ≤ w ≤ y,
0, y < w ≤ G.

(2.21)

Hence, by (2.9), for all y ∈ W and n > 0 , we obtain

|Unfy(sk)− U∞fy| ≤ θn var fy = θn. (2.22)

It follows that for all y ∈ W and n > 0 we have (2.16). Now, we can obtain a good estimate of |Fn(x, e)− F (x, e)| ,
namely

|Fn(x, e)− F (x, e)|

≤



θn sup

(
xy(x2 + 2x+ 7g + 3)

2(1 + g2x)(1 +Gx)

)
, e = 1,

θn sup

(
2(1−

√
1− x2)

x
− x

2

)
, e = −1 and 0 < x ≤ 2g2

g4 + 1
,

θn sup

(
x(g2x+ 1− 2g4)

2(1− g2x)

)
, e = −1 and 2g2

g4 + 1
< x ≤ 1.

(2.23)

As is easy to see, the supremum does not exceed 1 , so that we get (2.15). 2
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3. A new solution of the Gauss-Kuzmin-type problem

Let µ be a nonatomic probability measure on B[0,1] and define:

H0(x) := µ([0, x]), x ∈ [0, 1], (3.1)

Hn(x) := µ(r−1
n+1 < x), x ∈ [0, 1], n ≥ 1 (3.2)

where rn is as in (1.6). Then the following holds.

Theorem 3.1 Let rn and Hn be as in (1.6) and (3.2) . Then there exists a constant 0 < η < 1 such that Hn

can be written as

Hn(x) =
1

3 logG
log

(G+ 1)(G− 1 + x)

(G− 1)(G+ 1− x)
+O(ηn) (3.3)

uniformly with respect to x ∈ [0, 1] .

To prove Theorem 3.1, we need the following results.

Lemma 3.2 For functions {Hn} in (3.2) , the following Gauss-Kuzmin-type equation holds:

Hn+1(x) =
∑
(i,ε)

ε

(
Hn

(
1

i

)
−Hn

(
1

i+ εx

))
(3.4)

for x ∈ [0, 1] and n > 0 . Here (i, ε) denotes that i ≡ 1(mod 2) , |ε| = 1 and i+ ε > 1 .

Proof From (1.7) and (3.2) , we have

Hn+1(x) =µ
(
r−1
n+2 < x, εn+1 = 1

)
+ µ

(
r−1
n+2 < x, εn+1 = −1

)
=

∑
i≡1(mod 2)

µ

(
1

i+ x
< r−1

n+1 <
1

i

)

+
∑

i≡1(mod 2),i̸=1

µ

(
1

i
< r−1

n+1 <
1

i− x

)

=
∑
(i,ε)

ε

(
Hn

(
1

i

)
−Hn

(
1

i+ εx

))
.

2

Remark 3.3 Assume that for some p > 0 , the derivative H ′
p exists everywhere in [0, 1] and is bounded. Then

it is easy to see by induction that H ′
p+n exists and is bounded for all n ≥ 1 . This allows us to differentiate

(3.4) term by term, obtaining

H ′
n+1(x) =

∑
(i,ε)

1

(i+ εx)2
H ′

n

(
1

i+ εx

)
. (3.5)
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We introduce functions {hn} as follows:

hn(x) :=
H ′

n(x)

(x+G− 1)−1 − (x−G− 1)
−1 , x ∈ [0, 1], n > 0. (3.6)

Then (3.5) is

hn+1(x) =
(
G2 − (1− x2)

)∑
(i,ε)

V (x, (i, ε))hn

(
1

i+ εx

)
, (3.7)

where

V (x, (i, ε)) =
1

((G− 1)(i+ εx) + 1) ((G+ 1)(i+ εx)− 1)
. (3.8)

Lemma 3.4 For {hn} in (3.6), define Mn := max
x∈[0,1]

|h′
n(x)| . Then

Mn+1 ≤ η ·Mn, (3.9)

where

η := 4g
∑

i=1,3,...

1

(G+ i)i(i+ 2)
. (3.10)

Proof Before we derive (3.7) , we bring it to a convenient form. First,

hn+1(x) =
(
G2 − (1− x2)

)
×

 ∑
i=1,3,...

V (x, (i, 1))hn

(
1

i+ x

)
+

∑
i=3,5,...

V (x, (i,−1))hn

(
1

i− x

) .
(3.11)

Since 1

G− 1
= G and 1

G+ 1
= 2−G , then

V (x, (i, 1)) =
1

G2 − 1

1

(i+ x+G)(i+ x+G− 2)

=
1

2 (G2 − 1)

(
1

i− 2 + x+G
− 1

i+ x+G

)
.

Similarly, we get

V (x, (i,−1)) =
1

2 (G2 − 1)

(
1

i− 2− x+G
− 1

i− x+G

)
.

Therefore, (3.11) becomes

hn+1(x) =

(
G2 − (1− x2)

)
2 (G2 − 1)

 ∑
i=1,3,...

(
1

i− 2 + x+G
− 1

i+ x+G

)
hn

(
1

i+ x

)

+
∑

i=3,5,...

(
1

i− 2− x+G
− 1

i− x+G

)
hn

(
1

i− x

) .
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Now, by calculus we have

h′
n+1(x) =

g

2

{
2(1− x) (S1 + S2) +

(
G2 − (1− x)2

)
(S3 + S4 − S5 + S6)

}
(3.12)

where

S1 :=
∑

i=1,3,...

(
1

i− 2 + x+G
− 1

i+ x+G

)
hn

(
1

i+ x

)
, (3.13)

S2 :=
∑

i=3,5,...

(
1

i− 2− x+G
− 1

i− x+G

)
hn

(
1

i− x

)
, (3.14)

S3 :=
∑

i=1,3,...

(
1

(i+ x+G)2
− 1

(i− 2 + x+G)2

)
hn

(
1

i+ x

)
, (3.15)

S4 :=
∑

i=3,5,...

(
1

(i− 2− x+G)2
− 1

(i− x+G)2

)
hn

(
1

i− x

)
, (3.16)

S5 :=
∑

i=1,3,...

(
1

i− 2 + x+G
− 1

i+ x+G

)
h′
n

(
1

i+ x

)
1

(i+ x)2
, (3.17)

S6 :=
∑

i=3,5,...

(
1

i− 2− x+G
− 1

i− x+G

)
h′
n

(
1

i− x

)
1

(i− x)2
. (3.18)

However,

S1 =
hn

(
1

x+1

)
x+G− 1

−
∑

i=1,3,...

2

(x+G+ i)(x+ i)(x+ i+ 2)
h′
n(αi), (3.19)

S2 =
hn

(
1

3−x

)
−x+G+ 1

−
∑

i=3,5,...

2

(i− x+G)(i+ 2− x)(i− x)
h′
n(βi), (3.20)

S3 :=
−hn

(
1

x+1

)
(x+G− 1)2

+
∑

i=1,3,...

2

(x+G+ i)2(x+ i)(x+ i+ 2)
h′
n(αi), (3.21)

S4 =
hn

(
1

3−x

)
(−x+G+ 1)2

−
∑

i=3,5,...

2

(i− x+G)2(i+ 2− x)(i− x)
h′
n(βi), (3.22)
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where 1

x+ i+ 2
< αi <

1

x+ i
and 1

i+ 2− x
< βi <

1

i− x
. From (3.19) -(3.22) and (3.12) , we have

h′
n+1(x) = g

{
−h′

n(γ)
1− x

(x+ 1)(3− x)

−
∑

i=1,3,...

2(1− x)

(x+G+ i)(x+ i)(x+ i+ 2)
h′
n(αi)

−
∑

i=3,5,...

2(1− x)

(i− x+G)(i+ 2− x)(i− x)
h′
n(βi)

+
(
G2 − (1− x)2

) ∑
i=1,3,...

1

(x+G+ i)2(x+ i)(x+ i+ 2)
h′
n(αi)

−
∑

i=3,5,...

1

(i− x+G)2(i+ 2− x)(i− x)
h′
n(βi)−

1

2
S5 +

1

2
S6

 ,

(3.23)

where 1

3− x
< γ <

1

x+ 1
. Now, for x = 1 we have αi = βi+2 , and then h′

n+1(1) = 0 . By the Mean Value

Theorem, we know that there exists at least one c ∈ (0, 1) such that

h′
n+1(1)− h′

n+1(0) = h′′
n+1(c), (3.24)

i.e. −h′
n+1(0) = h′′

n+1(c) . If h′
n+1(0) < 0 , then h′′

n+1(c) > 0 . Since h′
n+1 ̸= 0 on (0, 1) and h′

n+1 is increasing in
a neighbourhood of c , it follows that h′

n+1 is increasing on [0, 1] . Similarly, if h′
n+1(0) > 0 , then h′′

n+1(c) < 0 ,
and it follows that h′

n+1 is nonincreasing on [0, 1] . In both cases, it results that

Mn+1 = max
x∈[0,1]

∣∣h′
n+1(x)

∣∣ = ∣∣h′
n+1(0)

∣∣ . (3.25)

For, x = 0 , we have αi = βi , γ = α1 and we obtain

h′
n+1(0) = −4 · g ·

∑
i=1,3,5,...

h′
n(αi)

(G+ i)i(i+ 2)
. (3.26)

Thus,

Mn+1 ≤ 4 · g ·Mn ·
∑

i=1,3,5,...

1

(G+ i)i(i+ 2)
(3.27)

and the proof is complete. 2

Proof of Theorem 3.1. For {Hn} in (3.2), we introduce a function Rn(x) such that

Hn(x) =
1

3 logG
log

(G+ 1)(G− 1 + x)

(G− 1)(G+ 1− x)
+Rn(x). (3.28)

Because Hn(0) = 0 and Hn(1) = 1 , we have Rn(0) = Rn(1) = 0 . To prove Theorem 3.1, we have to show the
existence of a constant 0 < η < 1 such that

Rn(x) = O(ηn). (3.29)
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For {hn} in (3.6), if we can show that hn(x) = 1
3 logG + O(ηn) , then integrating (3.6) will show (3.3). To

demonstrate that {hn} has this desired form, it suffices to prove the following lemma.

Lemma 3.5 For any x ∈ [0, 1] and n > 0 , there exists a constant η := η(x) with 0 < η < 1 such that

h′
n(x) = O(ηn). (3.30)

Proof Let η be as in Lemma 3.4. Using this lemma, to show that (3.30) is enough to prove that η < 1 .
Calculating the sum of the series involved, we obtain η = 4 · g · 0.150853 = 0.372929. 2
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