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Abstract: In this paper, we use the fractional Laplace transform to solve a class of second-order ordinary differential
equations (ODEs), as well as some conformable fractional differential equations (CFDEs), including the Laguerre
conformable fractional differential equation. Specifically, we apply the transform to convert the differential equations
into first-order, linear differential equations. This is done by using the fractional Laplace transform of order α + β or
α+ β + γ . Also, we investigate some more results on the fractional Laplace transform, obtained by Abdeljawad.
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1. Introduction
Fractional calculus has been of interest to many researchers of the last and present centuries. Many researchers
have dealt with the discrete version of fractional calculus, which benefits from the theory of time scales. However,
in recent decades, fractional calculus and fractional differential equations have gained great development in both
theory and applications, because of their powerful, potential applications. Fractional differential equations are
sometimes referred to as extraordinary differential equations, because of their nature and the fact that they can
be easily found in various fields of applied sciences [2, 10]. For example, fractional-order differential equations
have been applied to the modeling of real-world phenomena in such diverse fields as physics, engineering,
mechanics, control theory, economics, medical sciences, finance, etc. See [1–8, 15, 17].

In recent years, scientists have proposed many efficient and powerful methods to obtain exact or numerical
solutions of fractional differential equations [15, 18]. In addition, many researchers have tried to propose new
definitions of fractional derivatives. Such a definition usually uses an integral form for the fractional derivative.
There are many types of differential derivatives in fractional calculus, including the derivatives of Grunwald–
Letnikov, Riemann–Liouville, Caputo [7], Caputo–Fabrizio [11] and Atangana–Baleanu [2]. Recently, some
authors introduced the concept of nonlocal derivative.

In [15], Khalil et al. proposed a new notion of derivative, prominently compatible with the classical
one. This operator is called a ”conformable derivative”. The chain rule, which is an applicable and useful
rule in calculus, holds authentically only for conformable fractional derivatives. This derivative satisfies some
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conventional properties and can be used to solve conformable differential equations. In [18], the author used
the conformable derivative to find the exact solutions of time heat differential equations. The conformable
fractional derivative has many advantages in its properties. The impact of this fractional derivative in both
pure and applied branches of sciences and engineering has increased substantially during the last decade. As a
result, it is now widely used in many research fields.

This paper is organized as follows. In Section 2, we prove some important theorems based on the
conformable fractional derivative. In Section 3, we present some conformable fractional Laplace theorems
and provide some examples which are solved by taking the fractional Laplace transformation of order α . In
Section 4, we develop some new methods for solving a class of conformable fractional differential equations using
fractional Laplace transformations of order α+β . In Section 5, we present some new methods for solving a class
of second-order ODEs using fractional Laplace transformations. Finally, in Section 6, we solve the Laguerre
conformable fractional differential equation and some other conformable fractional differential equations by
taking the fractional Laplace transformation of order α+ β .

2. Basic definitions and tools related to the conformable fractional derivative
Despite becoming a popular topic in recent years, the concept of the fractional derivative emerged in the late
17th century. There are several definitions for fractional derivatives. Recently, the conformable fractional
derivative was introduced by Khalil et al.[15], using a limit operator. After that, Abdeljawad [17] has also
presented fractional versions of the chain rule, exponential functions, Gronwall’s inequality, Taylor power series
expansions, and fractional Laplace transform for the conformable derivative.

In [15], Khalil et al. introduced a new kind of fractional derivatives as follows.

Definition 2.1 The left conformable fractional derivative of order 0 < α ≤ 1 of a function u : [a,+∞) → R ,
starting from a ∈ R , is defined by

(tT
a
αu)(t) = lim

ϵ→0

u
(
t+ ϵ(t− a)1−α

)
− u(t)

ϵ
. (2.1)

When a = 0,

(tT
0
αu)(t) = tTαu(t) = lim

ϵ→0

u
(
t+ ϵt1−α

)
− u(t)

ϵ
.

If (tT
a
αu)(t) exists on (a,+∞), then (tT

a
αu)(a) = limt→a+(tT

a
αu)(t). If (tT

a
αu)(z0) exists and is finite, then we

say that u is left α−differentiable at z0. See [17].

Theorem 2.2 Suppose that 0 < α ≤ 1, and that u1 and u2 are left α−differentiable functions. Then, the
following statements are true.

1) ∀ω1, ω2 ∈ R, (tT
a
α(ω1u1 + ω2u2)) (t) = ω1 (tT

a
αu1) (t) + ω2 (tT

a
αu2) (t).

2) ∀p ∈ R, tT
a
α ((t− a)p) = p(t− a)p−α.

3) If C is a constant, then tT
a
α(C) = 0.

4) (Product rule for the left CF derivatives) (tT
a
α(u1u2)) (t) = u1(t) (tT

a
αu2) (t) + u2(t) (tT

a
αu1) (t).
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5) (Quotient rule for the left CF derivatives)
(
tT

a
α(

u1

u2
)
)
(t) =

u2(t)(tT
a
αu1)(t)−u1(t)(tT

a
αu2)(t)

(u2(t))2
, u2(t) ̸= 0.

6) (tT
a
αu) (t) = (t− a)1−αu′(t), where u′(t) = limϵ→0

(
u(t+ϵ)−u(t)

ϵ

)
.

Proof See [17]. 2

The chain rule is valid for conformable fractional derivatives.

3. The fractional Laplace transform
In this section, we recall the basic definitions and some useful facts related to the fractional Laplace transform.
The transform, introduced in [17], helps us to solve some conformable fractional differential equations and
second-order ODEs. The conformable fractional Laplace transform is defined as follows.

Definition 3.1 (Abdeljawad [17]) The conformable fractional Laplace transform (CFLT) of order 0 < α ≤ 1

of a function u : [0,∞) → R , starting from a , is defined by

La
α{u(t)} =

∫ ∞

a

e−s
(t−a)α

α u(t)dα(t, a) =

∫ ∞

a

e−s
(t−a)α

α u(t)(t− a)α−1dt = Ua
α(s). (3.1)

If a=0, then

L0
α{u(t)} =

∫ ∞

0

e−s tα

α u(t)tα−1dt = U0
α(s) = Uα(s). (3.2)

In particular, if α = 1, then equation (3.2) is reduced to the definition of the Laplace transform:

L {u(t)} =

∫ ∞

0

e−stu(t)dt = U(s). (3.3)

Theorem 3.2 [14]. If u(t) is piecewise continuous for t > t0 if |u(t)| ≤ v(t) when t ≥ t0 for some positive
constant t0 and if

∫∞
t0
v(t)dαt converges then

∫∞
t0
u(t)dαt also converges. On the other hand if u(t) ≥ v(t) ≥ 0

for t ≥ t0 and if
∫∞
t0
v(t)dαt diverges then

∫∞
t0
u(t)dαt also diverges.

Theorem 3.3 [14]. Let an exponential order function u(t) be piecewise continuous on the interval 0 ≤ t ≤ A

for any positive A and e−a tα

α |u(t)| < M when t > t0. In this equality M, a, t0 are positive real constants and
0 < α ≤ 1. Then the conformable Laplace transform defined by 3.1 exists for any s > a.

Theorem 3.4 Let u : [a,∞) → R be a differentiable real-valued function, and 0 < α ≤ 1 . Then,

La
α {tT a

α(u)(t)} = sUa
α(s)− u(a). (3.4)

Proof See [17]. 2

Theorem 3.5 If u is piecewise continuous on [0,∞) and La
α{u(t)} = Ua

α(s) , then

L0
α {tnαu(t)} = (−1)nαn d

n

dsn
[
U0
α(s)

]
, n ∈ N. (3.5)
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Proof See [12]. 2

Example 3.6 We calculate the fractional Laplace transform of f(t) = 1
t , for 0 < α ≤ 1 and 1

α /∈ N.
By Definition 3.1,

L0
α

{
1

t

}
=

∫ ∞

0

e−s tα

α
1

t
tα−1dt.

Hence, using the change of variable z = tα

α we obtain

L0
α

{
1

t

}
=

∫ ∞

0

e−sz 1

α
1
α z

1
α

dz =
α− 1

α

s1−
1
α

Γ

(
1− 1

α

)
.

Example 3.7 If 0 < α ≤ 1, then the following equalities hold.

1)

∫ ∞

0

e−2
√
tsin2

√
tdt =

1

4
.

2) L0
α{ln(t)} = − 1

αs

(
ln(

s

α
) + γ

)
, γ = .5772157...

Using Theorem 3.5 we can write∫ ∞

0

e−s tα

α f(t)t2α−1dt =

∫ ∞

0

e−s tα

α

(
tαf(t)

)
tα−1dt = −αF

′

α(s).

So, letting f(t) = sin(1 tα

α ) we find that∫ ∞

0

e−s tα

α sin(
tα

α
)t2α−1dt =

2αs

(s2 + 1)2
.

Finally, we let s = 1 and α = 1
2 to obtain ∫ ∞

0

e−2
√
tsin2

√
tdt =

1

4
.

By Definition 3.1 and the change of variable z = tα we can write

L0
α{ln(t)} =

∫ ∞

0

e−s tα

α ln(t)tα−1dt =

∫ ∞

0

e−
s
α z

( 1

α
ln(z)

) 1

α
dz = − 1

αs

(
ln(

s

α
) + γ

)
.

4. Basic properties of converting CFDEs to first order ODEs
In this section, we use the fractional Laplace transform for solving a class of conformable fractional differential
equations. This is done by taking the fractional Laplace transform of such equations and converting them into
first-order ODEs.

Theorem 4.1 [13]. Let u : [a,∞) → R be twice differentiable on (a,∞), α, β > 0 and α+ β ≤ 1. Then,

tTβ [tTαu(t)] = (1− α)t
1−(α+β)

u′(t) + t2−(α+β)u′′(t). (4.1)
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Theorem 4.2 [13]. If u : [a,∞) → R is twice differentiable on (a,∞) , α, β > 0 and α + β ≤ 1, then the
following equalities hold.

1)

∫ ∞

0

e−s tα+β

α+β

(
tu′′(t)

)
dt = u(0)+ s

∫ ∞

0

tα+βu′(t)e−s tα+β

α+β dt− sU(α+β)(s).

2)

∫ ∞

0

(
1−α+stα+β

)
u′(t)e−s tα+β

α+β dt = (α−1)u(0)−(α+β)sU(α+β)(s)+(1−α)sU(α+β)(s)−(α+β)s2U ′
(α+β)(s).

3) L0
(α+β)

{
tTβ

(
tTαu(t)

)}
= αu(0)− (2α+β)sU(α+β)(s)− (α+β)s2U

′

(α+β)(s).

4) L0
(α+β)

{
tTβ

(
tTαu(t)

)
+ tTα

(
tTβu(t)

)}
= (α+ β)u(0)− (3α+ 3β)sU(α+β)(s)− (2α+ 2β)s2U

′

(α+β)(s).

Theorem 4.3 [13]. If s, α, β > 0 and α+ β ≤ 1, then the following are true.

1) L0
α+β

{
t−β

(
tTαu(t)

)}
= −u(0)+ sU(α+β)(s).

2) L0
α+β

{
tα
(

tTαu(t)
)}

= L0
α+β

{
tu

′
(t)

}
= L0

α+β

{
tα+β

(
tTα+βu(t)

)}
= −(α+β)U(α+β)(s)−(α+β)sU ′

(α+β)(s).

Proposition 4.4 If s > 0 and 0 < α ≤ 1 then∫ ∞

0

e−s tα

α

(
tTαf(t)

t

)
t2αdt = −αFα(s)− αsF

′

α(s).

Proof By Theorem 3.4 and Theorem 3.5,∫ ∞

0

e−s tα

α

(
tTαf(t)

t

)
t2αdt =

∫ ∞

0

e−s tα

α

(
tα tTαf(t)

)
tα−1dt = −α d

ds

(
sFα(s)− f(0)

)
= −αFα(s)− αsF

′

α(s).

2

Proposition 4.5 Let an exponential order function u(t) be twice differentiable on (0,∞) and α, β > 0 such
that α+ β ≤ 1 , then, the solution of the CFDE

tTβ

(
tTαu(t)

)
+
(
tα + t−β

)(
tTαu(t)

)
= q(t) (4.2)

is given by

u(t) = (L0
α+β)

−1

{( (s+ 1)
1−α
α+β

s

)(∫
(α− 1)u(0)−Q(α+β)(s)

(α+ β)(s+ 1)
β+1
α+β

ds+ C
)}

.

Proof Applying L0
α+β to the both sides of (4.2), and using Theorem 4.2 and Theorem 4.3, we obtain

αu(0)− (2α+ β)sU(α+β)(s)− (α+ β)s2U ′
(α+β)(s)− (α+ β)U(α+β)(s)− (α+ β)sU

′

(α+β)(s)− u(0) + sU(α+β)(s)

= Q(α+β)(s).
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Therefore, we can write

U
′

(α+β)(s) +
( α− 1

(α+ β)(s+ 1)
+

1

s

)
U(α+β)(s) =

(α− 1)u(0)−Q(α+β)(s)

s(s+ 1)(α+ β)
.

By solving this first-order differential equation we obtain

U(α+β)(s) =
(
e−

∫
( α−1
(α+β)(s+1)

+ 1
s )ds

)(∫
(α− 1)u(0)−Q(α+β)(s)

s(s+ 1)(α+ β)
e
∫
( α−1
(α+β)(s+1)

+ 1
s )dsds+ C

)
.

Hence,

U(α+β)(s) =
( (s+ 1)

1−α
α+β

s

)(∫
(α− 1)u(0)−Q(α+β)(s)

(α+ β)(s+ 1)
β+1
α+β

ds+ C
)
.

Now, the solution u(t) can be found by applying the CF inverse transform. 2

In particular, when α = β = 1
2 and u(0)=0, the solution of the CFDE

tT 1
2

(
tT 1

2
u(t)

)
+
(√

t+
1√
t

)(
tT 1

2
u(t)

)
= 5t+ 2t2

is given by

u(t) = (L0
( 1
2+

1
2 )
)−1{U( 1

2+
1
2 )
(s)} = L−1

{
2

s3
+ C(

√
s+ 1

s
)

}
= t2 + C

( e−t

√
πt

+ erf(
√
t)
)
.

Since u(0) = 0, u(t) = t2.

Theorem 4.6 Let s > 0 , 0 < α ≤ 1 and an exponential order function g(t) be twice differentiable on (0,∞)

such that L0
α{g(t)} = Gα(s), then

L0
α

{
tTαg(t) + t2−αg

′′
(t)

}
= −αsGα(s)− αs2G

′

α(s). (4.3)

Proof By (3.5),

L0
α

{
f(t) +

t

α
f

′
(t)

}
= L0

α {f(t)}+ 1

α
L0
α

{
tα
(

tTαf(t)
)}

= Fα(s) +
1

α
(−α)

(
sFα(s)− f(0)

)′

= −sF
′

α(s).

Now, letting f(t) = tTαg(t) and using Theorem 3.4 we can write

L0
α

{
tTαg(t) +

t

α

(
tTαg(t)

)′}
= −s

(
sGα(s)− g(0)

)′

= −sGα(s)− s2G
′

α(s).

Since tTαg(t) +
t
α

(
tTαg(t)

)′

= 1
α t

1−αg
′
(t) + 1

α t
2−αg

′′
(t),

L0
α

{
tTαg(t) + t2−αg

′′
(t)

}
= L0

α

{
t1−αg

′
(t) + t2−αg

′′
(t)

}
= −αsGα(s)− αs2G

′

α(s).
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2

Therefore, if α, β > 0 and α+ β ≤ 1, then

L0
α+β

{(
tT(α+β)u(t)

)
+ t2−(α+β)u

′′
(t)

}
= L0

α+β

{
t1−(α+β)u

′
(t) + t2−(α+β)u

′′
(t)

}
= −(α+ β)sU(α+β)(s)− (α+ β)s2U

′

(α+β)(s).

Proposition 4.7 Suppose that u(t) is twice differentiable on (0,∞) , α, β > 0 and α + β ≤ 1 . Then, the
solution of the CFDE

tTβ

(
tTαu(t)

)
+

(
tTα+βu(t)

)
+ t2−(α+β)u

′′
(t) = q(t) (4.4)

is given by

u(t) =
(
L0
α+β

)−1
{( 1

s
3α+2β
2α+2β

)(∫
αu(0)−Qα+β(s)

2(α+ β)s
α+2β
2α+2β

ds+ C
)}

.

Proof Applying L0
α+β to the both sides of (4.4), and using Theorem 4.2 and Theorem 4.6, we find that

αu(0)− (2α+ β)sU(α+β)(s)− s2(α+ β)U ′
(α+β)(s)− (α+ β)sU(α+β)(s)− (α+ β)s2U

′

(α+β)(s) = Q(α+β)(s).

This differential equation can be written as

2(α+ β)s2U
′

(α+β)(s) + (3α+ 2β)sU(α+β)(s) = αu(0)−Q(α+β)(s).

Therefore, we can write

U
′

(α+β)(s) +
( α

(2α+ 2β)s
+

1

s

)
U(α+β)(s) =

αu(0)−Q(α+β)(s)

(2α+ 2β)s2
.

By solving this first-order ODE we obtain

Uα+β(s) =
(
e−

∫
( α
(2α+2β)s

+ 1
s )ds

)(∫
αu(0)−Qα+β(s)

(2α+ 2β)s2
e
∫
( α
(2α+2β)s

+ 1
s )dsds+ C

)

=
1

s
3α+2β
2α+2β

(∫
αu(0)−Qα+β(s)

2(α+ β)s
α+2β
2α+2β

ds+ C
)
.

Now, the solution u(t) can be found by applying the CF inverse transform. 2

In particular, when α = β = 1
2 and u(0)=1, the solution of the CFDE

tT 1
2

(
tT 1

2
u(t)

)
+ tT 1

2+
1
2
u(t) + t2−( 1

2+
1
2 )u

′′
(t) = (

3

2
+ 2t)et

is given by

u(t) = L−1

{
1

s1+
1
4

( s
5
4

s− 1
+ C

)}
= L−1

{
1

s− 1

}
+CL−1

{
1

s1+
1
4

}
= et+C

(2√2Γ( 34 )t
1
4

π

)
.
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Theorem 4.8 If s, α > 0 and α ≤ 1, then

L0
α{tα+1u

′
(t)} = 2α2U

′

α(s) + α2sU
′′

α (s). (4.5)

Proof By Theorem 4.3,
L0
α{tu

′
(t)} = −αUα(s)− αsU

′

α(s).

Now, Theorem 3.5 allows us to write

L0
α{tα+1u

′
(t)} = L0

α{tα(tu
′
(t))} = −α d

ds

(
− αUα(s)− αsU

′

α(s)
)
= 2α2U

′

α(s) + α2sU
′′

α (s).

2

Proposition 4.9 Consider the CFDE

tTβ

(
tTαu(t)

)
− tTα

(
tTβu(t)

)
= 0. (4.6)

If α, β > 0 and α+ β ≤ 1, then α = β or u(t) is constant.

Proof Applying L0
α+β and using Theorem 4.2 we obtain

αu(0)− (2α+ β)sU(α+β)(s)− (α+ β)s2U
′

(α+β)(s)− βu(0) + (2β + α)sU(α+β)(s) + (α+ β)s2U
′

(α+β)(s) = 0.

Therefore, (
α− β

)(
u(0)− sU(α+β)(s)

)
= 0.

Therefore, (
α = β

)
or U(α+β)(s) =

u(0)

s
.

Finally, we apply (L0
α+β)

−1 to obtain

u(t) =
(
L0
α+β

)−1{
U(α+β)(s)

}
=

(
L0
α+β

)−1{u(0)
s

}
= u(0).

2

Proposition 4.10 Assume that u(t) is twice differentiable on (0,∞) , k,m ∈ R, α, β > 0 and α + β ≤ 1.

Then, the solution of the CFDE

tTβ [tTαu(t)] + tTα[tTβu(t)] + ktu
′
(t) +mu(t) = q(t) (4.7)

is given by

u(t) =
(
L0
α+β

)−1
{( s

m
k(α+β)

−1

(2s+ k)
m

k(α+β)
+ 1

2

)(∫
(α+ β)u(0)−Q(α+β)(s)

(α+ β)s
m

k(α+β)
(2s+ k)

2m−k(α+β)
2k(α+β) ds+ C

)}
.
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Proof Applying the CF Laplace transform to the both sides of (4.7), and using Theorem 4.2 and Theorem
4.3, we obtain

(α+β)u(0)−(3α+3β)sUα+β(s)−(2α+2β)s2U
′

α+β(s)−k(α+β)
(
U(α+β)(s)+sU

′

(α+β)(s)
)
+mU(α+β)(s) = Q(α+β)(s).

Equivalently,

U
′

(α+β)(s) +
(3(α+ β)s+ k(α+ β)−m

(α+ β)s(2s+ k)

)
U(α+β)(s) =

(α+ β)u(0)−Q(α+β)(s)

(α+ β)s(2s+ k)
.

By solving this first-order ODE we can write

U(α+β)(s) =
(
e−

∫
(
3(α+β)s+k(α+β)−m

(α+β)s(2s+k)
)ds

)(∫
(α+ β)u(0)−Q(α+β)(s)

(α+ β)s(2s+ k)
e
∫
(
3(α+β)s+k(α+β)−m

(α+β)s(2s+k)
)dsds+ C

)

=
( s

m
k(α+β)

−1

(2s+ k)
m

k(α+β)
+ 1

2

)(∫
(α+ β)u(0)−Q(α+β)(s)

(α+ β)s
m

k(α+β)

(2s+ k)
2m−k(α+β)

2k(α+β) ds+ C
)
.

Now, the solution u(t) can be found by applying the CF inverse transform. 2

Therefore the solution may not be unique. For example, if α = 1
3 , β = 2

3 and k = m = 1, then the
conformable-type problem

tT 2
3

(
tT 1

3
u(t)

)
+ tT 1

3

(
tT 2

3
u(t)

)
+ tu

′
(t) + u(t) = 4t3 + 15t2, u(0) = 0

has the solution given by

u(t) = (L0
1
3+

2
3
)−1

( s
1

1( 1
3
+ 2

3
)
−1

(2s+ 1)
1

1( 1
3
+ 2

3
)
+ 1

2

)(∫
( 13 + 2

3 )(0)−
24
s4 − 30

s3

( 13 + 2
3 )s

1

1( 1
3
+ 2

3
)

(2s+ 1)

2(1)−1( 1
3
+ 2

3
)

2(1)( 1
3
+ 2

3
) ds+ C

)
= (L1)

−1

{
1

(2s+ 1)
3
2

(∫
(
−24

s5
− 30

s4
)(2s+ 1)

1
2 ds+ C

)}

= L−1
{ 1

(2s+ 1)
3
2

(6(2s+ 1)
3
2

s4
+ C

)}

= L−1
{ 6

s4

}
+ CL−1

{ 1

(2s+ 1)
3
2

}

= t3 + C
(√2

2

√
t

π
e−

1
2 t
)
.

5. Solving a class of second-order ODEs via the fractional Laplace transform

In this section, we use the fractional Laplace transform to solve some second-order ODEs.
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Proposition 5.1 The solution of the second-order ODE

2tu
′′
(t) + (t+ 1)u

′
(t) + u(t) = q(t) (5.1)

is given by

u(t) = L−1

{
1

(2s+ 1)
3
2

(∫
u(0)−Q(s)

s
(2s+ 1)

1
2 ds+ C

)}
.

Proof Equation (5.1) can be rewritten as

2

3
u

′
(t) + tu

′′
(t) +

1

3
u

′
(t) + tu

′′
(t) + tu

′
(t) + u(t) = q(t),

or equivalently,

(1− 1

3
)t1−( 1

3+
2
3 )u

′
(t) + t2−( 1

3+
2
3 )u

′′
(t) + (1− 2

3
)t1−( 2

3+
1
3 )u

′
(t) + t2−( 2

3+
1
3 )u

′′
(t) + tu

′
(t) + u(t) = q(t).

Using (4.1) we can write

tT 2
3

(
tT 1

3
u(t)

)
+ tT 1

3

(
tT 2

3
u(t)

)
+ 1tu

′
(t) + 1u(t) = q(t).

Now, (4.7) gives us

u(t) = (L0
1)

−1

{
1

(2s+ 1)
3
2

(∫
u(0)−Q1(s)

s
(2s+ 1)

1
2 ds+ C

)}

= L−1

{
1

(2s+ 1)
3
2

(∫
u(0)−Q(s)

s
(2s+ 1)

1
2 ds+ C

)}
.

2

For example, the solution of the differential equation

2tu′′(t) + (t+ 1)u
′
(t) + u(t) = te−t, u(0) = 1

is given by

u(t) = (L0
1)

−1

{
1

(2s+ 1)
3
2

(∫ 1− 1
(s+1)2

s
(2s+ 1)

1
2 ds+ C

)}
= L−1

{
1

(2s+ 1)
3
2

( (2s+ 1)
3
2

s+ 1
+ C

)}

= L−1

{
1

s+ 1

}
+ L−1

{
C

(2s+ 1)
3
2

}

= e−t + C
(√2

2

√
t

π
e−

1
2 t
)
.

Proposition 5.2 If k, m ∈ R, then the solution of the second-order ODE

2tu
′′
(t) + (kt+ 1)u

′
(t) +mu(t) = q(t) (5.2)
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is given by

u(t) = L−1

{( s
m−k

k

(2s+ k)
2m+k

2k

)(∫
u(0)−Q(s)

s
m
k

(2s+ k)
2m−k

2k ds+ C
)}

.

Proof Equation (5.2) can be rewritten as

2

3
u

′
(t) + tu

′′
(t) +

1

3
u

′
(t) + tu

′′
(t) + ktu

′
(t) +mu(t) = q(t),

or equivalently,

(1− 1

3
)t1−( 1

3+
2
3 )u

′
(t) + t2−( 1

3+
2
3 )u

′′
(t) + (1− 2

3
)t1−( 2

3+
1
3 )u

′
(t) + t2−( 2

3+
1
3 )u

′′
(t) + ktu

′
(t) +mu(t) = q(t).

Using (4.1) we can write

tT 2
3

(
tT 1

3
u(t)

)
+ tT 1

3

(
tT 2

3
u(t)

)
+ ktu

′
(t) +mu(t) = q(t).

Finally, (4.7) gives us

u(t) = (L0
( 1
3+

2
3 )
)−1

{
U( 1

3+
2
3 )
(s)

}

=
(
L0
( 1
3+

2
3 )

)−1

( s
m

k( 1
3
+ 2

3
)
−1

(2s+ k)
m

k( 1
3
+ 2

3
)
+ 1

2

)(∫ ( 13 + 2
3 )u(0)−Q 1

3+
2
3
(s)

( 13 + 2
3 )s

m

k( 1
3
+ 2

3
)

(2s+ k)

2m−k( 1
3
+ 2

3
)

2k( 1
3
+ 2

3
) ds+ C

)
= L−1

{( s
m−k

k

(2s+ k)
2m+k

2k

)(∫
u(0)−Q(s)

s
m
k

(2s+ k)
2m−k

2k ds+ C
)}

.

2

Proposition 5.3 Let a, b, p ∈ R, and a, b ̸= 0. Then, the solution of the second-order ODE

2atu
′′
(t) + (bt+ a)u

′
(t) + pu(t) = q(t) (5.3)

is given by

u(t) = L−1

{( s
p
b−1

(2s+ b
a )

p
b+

1
2

)(∫
u(0)− 1

aQ(s)

s
p
b

(2s+
b

a
)

p
b−

1
2 ds+ C

)}
.

Proof Equation (5.3) can be rewritten as

2

3
u

′
(t) + tu

′′
(t) +

1

3
u

′
(t) + tu

′′
(t) +

b

a
tu

′
(t) +

p

a
u(t) =

1

a
q(t),

or equivalently

(1− 1

3
)t1−( 1

3+
2
3 )u

′
(t) + t2−( 1

3+
2
3 )u

′′
(t) + (1− 2

3
)t1−( 2

3+
1
3 )u

′
(t) + t2−( 2

3+
1
3 )u

′′
(t) +

b

a
tu

′
(t) +

p

a
u(t) =

1

a
q(t).
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Using (4.1) we can write

tT 2
3

(
tT 1

3
u(t)

)
+ tT 1

3

(
tT 2

3
u(t)

)
+
b

a
tu

′
(t) +

p

a
u(t) =

1

a
q(t).

Letting k = b
a , m = p

a and q(t) =
1
aq(t) in (4.7) we get

u(t) = L−1

{( s
p
b−1

(2s+ b
a )

p
b+

1
2

)(∫
u(0)− 1

aQ(s)

s
p
b

(2s+
b

a
)

p
b−

1
2 ds+ C

)}
.

2

In particular, if a = b = 2, p = 1 and u(0) = 0, then the solution of the ODE

4tu
′′
(t) + (2t+ 2)u

′
(t) + u(t) =

(
2− 17t+ 12t2

)
e−2t

is given by

u(t) = te−2t + C
(−√

2

2
Ie−

1
2 terf(

√
2

2
I
√
t)
)
.

Since u(0) = 0, C=0. So, we conclude that
u(t) = te−2t.

6. Solving some conformable fractional differential equations via the fractional Laplace transform
In this section, we use the fractional Laplace transform to solve the Laguerre fractional differential equation.
Also, we obtain some new results on some second-order ODEs and some other conformable fractional differential
equations.

Theorem 6.1 If s, α > 0 , α ≤ 1 and L0
α{u(t)} = Uα(s), then the following equalities hold.

1) L0
α

{
t2−αu

′′
(t)

}
=

(
− 1− α

)
sUα(s) + u(0)− αs2U

′

α(s).

2) L0
α

{
t2u

′′
(t)

}
=

(
α+ α2

)
Uα(s) + αs

(
1 + 3α

)
U

′

α(s) + α2s2U
′′

α (s).

Proof By Theorem 4.6,

L0
α

{
tTαu(t) + t2−αu

′′
(t)

}
= −αsUα(s)− αs2U

′

α(s).

Therefore, Theorem 3.4 gives us the first formula:

L0
α

{
t2−αu

′′
(t)

}
=

(
− 1− α

)
sUα(s) + u(0)− αs2U

′

α(s).

Now, using Theorem 3.5 we can write

L0
α

{
tα
(
t2−αu

′′
(t)

)}
= −α d

ds

(
(−1− α)sUα(s) + u(0)− αs2U

′

α(s)
)
.
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So, we obtain

L0
α

{
t2u

′′
(t)

}
=

(
α+ α2

)
Uα(s) + αs

(
1 + 3α

)
U

′

α(s) + α2s2U
′′

α (s),

which completes the proof.
2

Therefore, if α, β > 0 , α+ β ≤ 1 and m ∈ R , then we obtain the following equalities.

1) L0
α+β

{
t1−(α+β)u

′
(t)

}
= L0

α+β {Tα+βu(t)} = −u(0)+sUα+β(s).

2) L0
α+β

{
t2−(α+β)u

′′
(t)

}
=

(
− 1− (α+ β)

)
sUα+β(s) + u(0)−

(
α+ β

)
s2U

′

α+β(s).

3) L0
α+β

{
(m+ 1)t1−(α+β)u

′
(t) + t2−(α+β)u

′′
(t)

}
= −mu(0)−

(
α+ β −m

)
sUα+β(s)−

(
α+ β

)
s2U

′

α+β(s).

Theorem 6.2 If s, α, β, γ > 0 and α+ β + γ ≤ 1 , then the following equalities hold.

I)

∫ ∞

0

e−s t(α+β+γ)

(α+β+γ)

(
t2u

′′′
(t)

)
dt = −2

∫ ∞

0

e−s t(α+β+γ)

(α+β+γ)

(
tu

′′
(t)

)
dt+ s

∫ ∞

0

e−s t(α+β+γ)

(α+β+γ)

(
tα+β+γ+1u

′′
(t)

)
dt.

II)

∫ ∞

0

((
1− 2α− β

)
t+ stα+β+γ+1

)
e−s t(α+β+γ)

(α+β+γ) u
′′
(t)dt

= −
∫ ∞

0

((
1− 2α− β

)
+ s

(
α+ β + γ + 1

)
tα+β+γ

)(
e−s t(α+β+γ)

(α+β+γ) u
′
(t)

)
dt

+s
(
1− 2α− β

) ∫ ∞

0

tα+β+γe−s t(α+β+γ)

(α+β+γ) u
′
(t)dt+ s2

∫ ∞

0

t2α+2β+2γe−s t(α+β+γ)

(α+β+γ) u
′
(t)dt.

Proof Using integration by parts we can write∫ ∞

0

e−s t(α+β+γ)

(α+β+γ) (t2u
′′′
(t))dt

= t2e−s t(α+β+γ)

(α+β+γ) u
′′
(t)

]∞
0

−
∫ ∞

0

u
′′
(t)

(
2t− stα+β+γ+1

)
e−s t(α+β+γ)

(α+β+γ) dt

= 0− 2

∫ ∞

0

e−s t(α+β+γ)

(α+β+γ)

(
tu

′′
(t)

)
dt+ s

∫ ∞

0

e−s t(α+β+γ)

(α+β+γ)

(
tα+β+γ+1u

′′
(t)

)
dt.

Also,∫ ∞

0

(
(1−2α−β)t+stα+β+γ+1

)
e−s t(α+β+γ)

(α+β+γ) u
′′
(t)dt

=
(
(1− 2α− β)t+ stα+β+γ

)
e−s t(α+β+γ)

(α+β+γ) u
′
(t)

]∞
0

−
∫ ∞

0

{
(1− 2α− β) + s(α+ β + γ + 1)tα+β+γ

}(
e−s t(α+β+γ)

(α+β+γ) u
′
(t)

)
dt
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+s
(
1− 2α− β

)∫ ∞

0

tα+β+γ
(
e−s t(α+β+γ)

(α+β+γ)

)
u

′
(t)dt+ s2

∫ ∞

0

t2α+2β+2γ
(
e−s t(α+β+γ)

(α+β+γ)

)
u

′
(t)dt

= 0−
∫ ∞

0

{(
1− 2α− β

)
+ s

(
α+ β + γ + 1

)
tα+β+γ

}(
e−s t(α+β+γ)

(α+β+γ) u
′
(t)

)
dt

+s
(
1− 2α− β

) ∫ ∞

0

tα+β+γ
(
e−s t(α+β+γ)

(α+β+γ)

)
u

′
(t)dt+ s2

∫ ∞

0

t2α+2β+2γ
(
e−s t(α+β+γ)

(α+β+γ)

)
u

′
(t)dt.

2

Theorem 6.3 If s, α, β, γ > 0 and α+ β + γ ≤ 1, then∫ ∞

0

{
(α2+αβ)−(3α+2β+γ)stα+β+γ+s2t2α+2β+2γ

}{
e−s t(α+β+γ)

(α+β+γ) u
′
(t)

}
dt

= −
(
α2 + αβ

)
u(0) +

(
3α+ 2β + γ

)(
α+ β + γ

)
sUα+β+γ(s)

+2
(
α+ β + γ

)2
s2U

′

α+β+γ(s) +
(
α2 + αβ

)
sUα+β+γ(s)

+
(
3α+ 2β + γ

)(
α+ β + γ

)
s2U

′

α+β+γ(s) +
(
α+ β + γ

)2
s3U

′′

α+β+γ(s).

Proof Using integration by parts and Theorem 3.5 we obtain∫ ∞

0

{
(α2+αβ)− (3α+2β+γ)stα+β+γ +s2t2α+2β+2γ

}{
e−s t(α+β+γ)

(α+β+γ) u
′
(t)

}
dt

=
{
(α2 + αβ)− (3α+ 2β + γ)stα+β+γ + s2t2α+2β+2γ

}(
e−s t(α+β+γ)

(α+β+γ) u(t)
)]∞

0

−
∫ ∞

0

{
(−3α−2β−γ)s(α+β+γ)tα+β+γ−1+s2(2α+2β+2γ)tα+β+γ−1(tα+β+γ)

}
e−s tα+β+γ

α+β+γ u(t)dt

+

∫ ∞

0

{
stα+β+γ−1

(
α2+αβ−s(3α+2β+γ)

)
(tα+β+γ)+s3tα+β+γ−1(t(2α+2β+2γ))

}
e−s tα+β+γ

α+β+γ u(t)dt

= (−α2 − αβ)u(0)

+

∫ ∞

0

(3α+ 2β + γ)s(α+ β + γ)tα+β+γ−1e−s tα+β+γ

α+β+γ u(t)dt

−s2
∫ ∞

0

(2α+ 2β + 2γ)(tα+β+γu(t))tα+β+γ−1e−s tα+β+γ

α+β+γ dt

+s(α2 + αβ)

∫ ∞

0

tα+β+γ−1e−s tα+β+γ

α+β+γ u(t)dt

−s2(3α+2β+γ)

∫ ∞

0

(tα+β+γu(t))tα+β+γ−1e−s tα+β+γ

α+β+γ dt

+s3
∫ ∞

0

(t2α+2β+2γu(t))tα+β+γ−1e−s tα+β+γ

α+β+γ dt
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= −(α2 + αβ)u(0)

+(3α+2β+ γ)(α+ β+ γ)sUα+β+γ(s)

+2s2(α+ β + γ)2U
′

α+β+γ(s) + (α2 + αβ)sUα+β+γ(s)

+(3α+ 2β + γ)(α+ β + γ)s2U
′

α+β+γ(s)

+s3(α+ β + γ)2U
′′

α+β+γ(s).

2

Theorem 6.4 If α, β, γ > 0 and α+ β + γ ≤ 1 , then

tTγ

(
tTβ

(
tTαu(t)

))
=

(
1−α

)(
1−α− β

)
t1−(α+β+γ)u

′
(t) +

(
3− (2α+ β)

)
t2−(α+β+γ)u

′′
(t) + t3−(α+β+γ)u

′′′
(t).

Proof By Theorem 2.2 and Theorem 4.1,

tTγ

(
tTβ(tTαu(t))

)
= tTγ

((
1−α

)
t1−(α+β)u

′
(t)+t2−(α+β)u

′′
(t)

)
= t1−γ d

dt

{
(1− α)t1−(α+β)u

′
(t) + t2−(α+β)u

′′
(t)

}
=

(
1− α

)(
1− α− β

)
t1−(α+β+γ)u

′
(t) +

(
3− (2α+ β)

)
t2−(α+β+γ)u

′′
(t) + t3−(α+β+γ)u

′′′
(t).

2

Theorem 6.5 If s, α, β, γ > 0 and α+ β + γ ≤ 1 , then

L0
α+β+γ

{
tTγ

(
tTβ

(
tTαu(t)

))}
= −

(
α2 + αβ

)
u(0)

+
{(

3α+ 2β + γ
)(
α+ β + γ

)
+ α2 + αβ

}
sUα+β+γ(s)

+
(
5α+ 4β + 3γ

)(
α+ β + γ

)
s2U

′

α+β+γ(s)

+
(
α+ β + γ

)2
s3U

′′

α+β+γ(s).

Proof By Theorem 6.4,

L0
α+β+γ

{
tTγ

(
tTβ

(
tTαu(t)

))}
= L0

α+β+γ

{
(1− α)(1− (α+ β))t1−(α+β+γ)u

′
(t)

}
+L0

α+β+γ

{(
3− (2α+ β)

)
t2−(α+β+γ)u

′′
(t)

}
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+L0
α+β+γ

{
t3−(α+β+γ)u

′′′
(t)

}
=

(
(1− α)2 + β(α− 1)

)∫ ∞

0

e−s t(α+β+γ)

(α+β+γ) u
′
(t)dt

+
(
3− 2α− β

)∫ ∞

0

e−s t(α+β+γ)

(α+β+γ)

(
tu

′′
(t)

)
dt

+

∫ ∞

0

e−s t(α+β+γ)

(α+β+γ)

(
t2u

′′′
(t)

)
dt.

Now, the proof is straightforward using Theorem 6.2 and Theorem 6.3.
2

Proposition 6.6 If α, β > 0 , α+ β ≤ 1, k, m∈ R and k ̸= 0, then the solution of the second-order ODE

t2−(α+β)u
′′
(t) + ktu

′
(t) +mu(t) = q(t) (6.1)

is given by

u(t) =
(
L0
α+β

)−1
{( s

m
k(α+β)

−1

(s+ k)
m+k

k(α+β)

)(∫
u(0)−Qα+β(s)

(α+ β)s
m

k(α+β)
(s+ k)

m+k
k(α+β)

−1ds+ C
)}

.

Proof Applying the CF Laplace transform L0
α+β to the both sides of (6.1), and using Theorem 4.3 and

Theorem 6.1, we obtain(
−1−(α+β)

)
sUα+β(s)+u(0)−(α+β)s2U

′

α+β(s)+k
(
−(α+β)Uα+β(s)−(α+β)sU

′

α+β(s)
)
+mUα+β(s) = Qα+β(s).

Equivalently,

U
′

α+β(s) +
(s+ (α+ β)(s+ k)−m

(α+ β)s(s+ k)

)
Uα+β(s) =

u(0)−Qα+β(s)

(α+ β)s(s+ k)
.

By solving this first-order ODE we can write

Uα+β(s) =
(
e−

∫
(
s+(α+β)(s+k)−m

(α+β)s(s+k)
)ds

)(∫
u(0)−Qα+β(s)

(α+ β)s(s+ k)
e
∫
(
s+(α+β)(s+k)−m

(α+β)s(s+k)
)dsds+ C

)

=
( s

m
k(α+β)

−1

(s+ k)
m+k

k(α+β)

)(∫
u(0)−Qα+β(s)

(α+ β)s
m

k(α+β)
(s+ k)

m+k
k(α+β)

−1ds+ C
)
.

Now, the solution u(t) can be found by applying the CF inverse transform. 2

For example, we use the fractional Laplace transform to find the solution of the second-order ODE

tu
′′
(t) + ktu

′
(t) +mu(t) = q(t),

where k, m ∈ R and k ̸= 0 . To do so, we let α = β = 1
2 in (6.1) to obtain

t2−( 1
2+

1
2 )u

′′
(t) + ktu

′
(t) +mu(t) = q(t).
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Therefore,

u(t) = (L0
1)

−1
{
U1(s)

}
= L−1

{( s
m
k −1

(s+ k)
m
k +1

)(∫ (
u(0)−Q(s)

)(
1 +

k

s

)m
k

ds+ C
)}

.

In particular, if k = m = 1 and u(0) = 1, then the solution of the differential equation

tu
′′
(t) + 1tu

′
(t) + 1u(t) = 2tet + et

is given by

u(t) = L−1
{( 1

(s+ 1)2

)(∫ (
1− 2

(s− 1)2
− 1

s− 1

)(
1 +

1

s

)
ds+ C

)}
= et + (C − 3)te−t.

Proposition 6.7 If α, β > 0 , α+ β ≤ 1, a, b, m∈ R and a ̸= 0, then the solution of the second-order ODE

at2−(α+β)u
′′
(t) + bt1−(α+β)u

′
(t) +mu(t) = q(t) (6.2)

is given by

u(t) =
(
L0
α+β

)−1
{( e

−m
a(α+β)s

s1−
b−a

a(α+β)

)(∫
(a− b)u(0)−Qα+β(s)

a(α+ β)s1+
b−a

a(α+β)

e
m

a(α+β)s ds+ C
)}

.

Proof Applying the CF Laplace transform L0
α+β to the both sides of (6.2) and using Theorem 6.1 we find

that

a
{(

− 1− (α+ β)
)
sUα+β(s) + u(0)− (α+ β)s2U

′

α+β(s)
}
+ b

{
− u(0) + sUα+β(s)

}
+mUα+β(s) = Qα+β(s).

Therefore,

U
′

α+β(s) +
(a(α+ β)s− bs+ as−m

a(α+ β)s2

)
Uα+β(s) =

(a− b)u(0)−Qα+β(s)

a(α+ β)s2
.

By solving this first-order ODE we obtain

Uα+β(s) =
( e

−m
a(α+β)s

s1−
b−a

a(α+β)

)(∫
(a− b)u(0)−Qα+β(s)

a(α+ β)s1+
b−a

a(α+β)

e
m

a(α+β)s ds+ C
)
.

Now, the solution u(t) can be found by applying the CF inverse transform. 2

In particular, letting α = β = 1
2 in (6.2) we observe that the solution of the second-order ODE

atu′′(t) + bu′(t) +mu(t) = q(t)

is given by

u(t) = L−1

( e
−m

a( 1
2
+ 1

2
)s

s
1− b−a

a( 1
2
+ 1

2
)

)(∫ (a− b)u(0)−Q 1
2+

1
2
(s)

a( 12 + 1
2 )s

1+ b−a

a( 1
2
+ 1

2
)

e
m

a( 1
2
+ 1

2
)s ds+ C

)
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= L−1

{
e

−m
as

s2−
b
a

(∫
(a− b)u(0)−Q(s)

as
b
a

e
m
as ds+ C

)}
.

For example, if a = b = m = 1 , then the solution of the differential equation

tu′′(t) + u′(t) + u(t) = te−t

is given by

u(t) = L−1
{e−1

s

s

(∫
− 1

(s+ 1)2s
e

1
s ds+ C

)}
= L−1

{e−1
s

s

( se
1
s

s+ 1
+ C

)}
= L−1

{ 1

s+ 1

}
+ L−1

{
C
e

−1
s

s

}
= e−t + CBesselJ

(
0, 2

√
t
)
.

Proposition 6.8 (The Laguerre conformable fractional differential equation) Suppose that u(t) is twice dif-
ferentiable on (0,∞) , α, β > 0 , α + β ≤ 1 , k,m, n ∈ R and k ̸= 0 . Then, the solution of the CFDE

tTβ

(
tTαu(t)

)
+
(
α+m

)(
tTα+βu(t)

)
+ ktu′(t) +

(
n−m

)
u(t) = q(t) (6.3)

is given by

u(t) =
(
L0
α+β

)−1
{(

(s+ k)
(k+1)m−n

k(α+β) s
n−m

k(α+β)
−1

)(∫
−mu(0)−Qα+β(s)

(α+ β)s
n−m

k(α+β)

(s+ k)
n−m(k+1)

k(α+β)
−1ds+ C

)}
.

Proof By Theorem 2.2 and Theorem 4.1, equation (6.3) can be rewritten as

t2−(α+β)u
′′
(t) + (m+ 1)t1−(α+β)u

′
(t) + ktu

′
(t) + (n−m)u(t) = q(t). (6.4)

Now, by applying L0
α+β to the both sides of (6.4), and using Theorem 4.3 and Theorem 6.1, we obtain

−mu(0)− (α+ β −m)sUα+β(s)− (α+ β)s2U
′

α+β(s) + k
{
− (α+ β)Uα+β(s)− (α+ β)sU

′

α+β(s)
}

+(n−m)Uα+β(s) = Qα+β(s).

Therefore,

U
′

α+β(s) +
( (α+ β −m)s+ (α+ β)k +m− n

(α+ β)s(s+ k)

)
Uα+β(s) =

−mu(0)−Qα+β(s)

(α+ β)(s)(s+ k)
.

By solving this first-order ODE we obtain

Uα+β(s) =
(
e−

∫
(
(α+β−m)s+(α+β)k+m−n

(α+β)s(s+k)
)ds

)(∫
−mu(0)−Qα+β(s)

(α+ β)s(s+ k)
e
∫
(
(α+β−m)s+(α+β)k+m−n

(α+β)s(s+k)
)dsds+C

)

=
(
(s+ k)

(k+1)m−n
k(α+β) s

n−m
k(α+β)

−1
)(∫

−mu(0)−Qα+β(s)

(α+ β)s
n−m

k(α+β)

(s+ k)
n−m(k+1)

k(α+β)
−1ds+ C

)
.

Now, the solution u(t) can be found by applying the CF inverse transform. 2
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In particular, if α + β = 1, k = −1 and m, n ∈ N
∪{

0
}

in (6.4), then we obtain the solution of the
differential equation

tu
′′
(t) + (m+ 1− t)u

′
(t) + (n−m)u(t) = 0 (6.5)

as

u(t) = L−1

{
(s− 1)nsm−n−1

(∫
−mu(0)
sm−n

(s− 1)−n−1ds+ C
)}

.

On the other hand, we can find the Laguerre dependent function using equation (6.5):

ψm
n (t) =

dm

dtm
ψn(t) =

dm

dtm

(
et
dn

dtn
(tne−t)

)
= L−1

{
(s− 1)nsm−n−1

(∫
−mu(0)
sm−n

(s− 1)−n−1ds+ C
)}
.

For example, letting m=0 in (6.5) we find that the solution of the Laguerre differential equation

tu
′′
(t) + (1− t)u

′
(t) + nu(t) = 0

is given by

u(t) = L−1
{
C
(s− 1)n

sn+1

}
.

So, we obtain the Laguerre polynomial of degree n , that is,

ψn(t) = L−1
{
C
(s− 1)n

sn+1

}
.

7. Conclusion
The conformable fractional derivative is a new kind of fractional derivative that still needs to be further
investigated. We discussed the fractional Laplace transform, as a transform compatible with this type of
fractional derivatives. The conformable fractional derivative behaves well in the product rule and the chain rule,
while complicated formulas appear in case of the usual fractional calculus. Some new results were reported,
which were shown to be useful in the theory of conformable fractional differential equations. The method of
fractional Laplace transform, as a powerful approach for extracting the exact solutions of differential equations,
was developed for the conformable time fractional differential equations. Using the fractional Laplace transform,
we were able to convert some ordinary differential equations and conformable fractional differential equations
into first-order ordinary differential equations.

References

[1] Abdon A, Dumitru B, Ahmed AL. New properties of conformable derivative. Journal of Open Mathematics 2015;
13 (1): doi: 10.1515/math-2015-0081

[2] Abdon A, Ilknur K. Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order.
Journal of Chaos, Solitons & Fractals 2016; 89: 447-454. doi: 10.1016/j.chaos.2016.02.012

[3] Angelo B M. On generalized and fractional derivatives and their applications to classical mechanics. Journal of
Physics A: Mathematical and Theoretical 2018; 51 (36): 365204.

[4] Dumitru B, Jihad H A, Amin J. The fractional model of spring pendulum: New features within different kernels.
Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science
2018; 19 (3): 447-454.

3043



MOLAEI et al./Turk J Math

[5] Dumitru B, Samaneh Sadat S, Amin J, Jihad H A. New features of the fractional Euler-Lagrange equations for a
physical system within non-singular derivative operator. The European Physical Journal Plus 2019; 134 (4): 181.
doi: 10.1140/epjp/i2019-12561-x

[6] Hamid M, Ali Asghar JA. Two classes of conformable fractional Sturm-Liouville problems: Theory and applications.
Mathematical Methods in the Applied Sciences 2021; 44 (1): 166-195. doi: 10.1002/mma.6719

[7] Igor P. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations,
to methods of their solution and some of their applications. Elsevier 1998;

[8] Keith BO, Jerome S. The fractional calculus theory and applications of differentiation and integration to arbitrary
order. Mathematics in Science and Engineering 1974; 111.

[9] Manuel D O, JA Tenreiro M. What is a fractional derivative? Journal of computational Physics 2015; 293: 4-13.
doi: 10.1016/j.jcp.2014.07.019

[10] Mehmet E, Mohammad M, Mostafa E, Qin Z, Seithuti P M, Anjan B, Milivoj B. Optical soliton perturbation with
fractional-temporal evolution by first integral method with conformable fractional derivatives. Journal of Optik
2016; 127 (22): 10659-10669. doi: 10.1016/j.ijleo.2016.08.076

[11] Michele C, Mauro F. A new definition of fractional derivative without singular kernel. Journal of Progr. Fract.
Differ. Appl 2015; 1 (2): 1-13.

[12] Mir Sajjad H. Invariant subspaces admitted by fractional differential equations with conformable derivatives. Journal
of Chaos, Solitons & Fractals 2018; 107: 161-169. doi: 10.1016/j.chaos.2018.01.002

[13] Mohammad M, Farhad DS, Mohammad J, Yaghoub M. New analytical methods for solving a class of conformable
fractional differential equations by fractional Laplace transform. Computational Methods for Differential Equations
2022; 10 (2): 396-407. doi: 10.22034/cmde.2021.40834.1775

[14] Ozan O, Ali K. The analytical solutions for conformable integral equations and integro–differential equations by
conformable Laplace transform. Journal of Opt. Quant. Electron 2018; 50: 81.

[15] Roshdi KH, Mohammed AL, Abdelrahman Y, Mohammad S. A new definition of fractional derivative. Journal of
Computational and Applied Mathematics 2014; 264: 65-70. doi: 10.1016/j.cam.2014.01.002

[16] Shaobo H, Kehui S, Xiaoyong M, Bo Y, Siwei XU. Numerical analysis of a fractional-order chaotic system
based on conformable fractional-order derivative. The European Physical Journal Plus 2017; 132 (1): 1-11. doi:
10.1140/epjp/i2017-11306-3

[17] Thabet A. On conformable fractional calculus. Journal of Computational and Applied Mathematics 2015; 279:
57-66. doi: 10.1016/j.cam.2014.10.016

[18] YÜCEL C, Ali K. The solution of time fractional heat equation with new fractional derivative definition. 8th
International Conference on Applied Mathematics, Simulation and Modelling 2014; 195.

[19] Yücel C, Dumitru B, Ali K, Orkun T. New exact solutions of Burgers’ type equations with conformable derivative.
Waves in Random and complex Media 2017; 27 (1): 103-116. doi: 10.1080/17455030.2016.1205237

[20] Yousef ET, Mehrdad L, Mohsen R. Study of B-spline collocation method for solving fractional optimal
control problems. Transactions of the Institute of Measurement and Control 2021; 0142331220987537. doi:
10.1177/0142331220987537

[21] Zeyad AL, Nouf AL, Fatimah AL, Raed AL. New theoretical results and applications on conformable fractional
Natural transform. Ain Shams Engineering Journal 2021; 12 (1): 927-933. doi: 10.1016/j.asej.2020.07.006

3044


	Introduction
	Basic definitions and tools related to the conformable fractional derivative
	The fractional Laplace transform
	Basic properties of converting CFDEs to first order ODEs
	Solving a class of second-order ODEs via the fractional Laplace transform
	Solving some conformable fractional differential equations via the fractional Laplace transform 
	Conclusion

