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Abstract: In this paper, we shall establish some new oscillation theorems for the functional differential equations with
sublinear and superlinear neutral terms of the form

(r(t)(z′(t))α)′ = q(t)xα(τ(t)),

where z(t) = x(t) + p1(t)x
β(σ(t)) − p2(t)x

γ(σ(t)) with 0 < β < 1 and γ > 1 . Moreover, σ(t) ≤ t and τ(t) is a mixed
type deviating argument specially. Finally, some relevant examples are indicated to illustrate the applicability of our
results.
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1. Introduction
The present paper is meant to investigate the oscillation for a class of second-order mixed-type differential
equations with sublinear and superlinear neutral terms of the form

(r(t)(z′(t))α)′ = q(t)xα(τ(t)), t ≥ t0, (1.1)

where z(t) = x(t) + p1(t)x
β(σ(t)) − p2(t)x

γ(σ(t)) and r, p1, p2, q, σ, τ are continuous real-valued functions
on [t0,∞) . It is worth noting that τ(t) is of mixed type. The deviating argument τ(t) is said to be of mixed
type if its delay part

Dτ = {t ∈ [t0,∞) : τ(t) < t}

and its advanced part
Aτ = {t ∈ [t0,∞) : τ(t) > t}

are both unbounded subsets of [t0,∞) . This has been mentioned by Kusano in [11].
The following assumptions will be also needed throughout the paper:

(H1) α, β, γ are ratios of odd positive integers with 0 < β < 1 and γ > 1 ;
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(H2) r ∈ C1([t0,∞),R+) and

R(t) :=

∫ t

t0

1

r1/α(s)
ds → ∞ as t → ∞; (1.2)

(H3) p1, p2, q ∈ C[t0,∞) are nonnegative, and 0 < p2 ≤ p < 1 ;

(H4) τ ∈ C1[t0,∞) , τ ′(t) > 0 , σ(t) ≤ t , and lim
t→∞

τ(t) = lim
t→∞

σ(t) = ∞ .

By a solution of Eq. (1.1), we mean a function x(t) ∈ C([tx,∞)), tx ≥ t0 , with z , r(t)(z′(t))α ∈
C1([tx,∞)) that satisfies the differential equation Eq. (1.1) on [tx,∞) . We only focus on the solutions that
satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ tx . As usual, a solution x(t) of Eq. (1.1) is called oscillatory if
it is neither eventually positive nor eventually negative. Otherwise, it is called nonoscillatory. Eq. (1.1) is
oscillatory if all its solutions oscillate.

Differential equations with neutral terms have a special meaning because they appear in many appli-
cations, including control system, electrodynamics, mixed liquids, neutron transmission and so on. In the
qualitative analysis of this kind of system, it is indeed the oscillation for the solution of the differential equation
that plays a vital role, the growth rate of which not only depends on the current and past or future but also
the rate of change in the past or future. And it has been studied extensively during the past the few decades,
see [2, 4, 5, 8, 14] and the references cited therein.

Observing the literature, one can see that many results are applicable to the oscillation for second
order differential equation with linear neutral term. Moreover, there are fewer articles devoted to investigating
differential equations with the sublinear neutral term, or the superlinear neutral term, of the form

z(t) := x(t) + p(t)xβ(σ(t)) ,

where 0 < β < 1 or β > 1 , see for instance, [1, 6, 7, 9, 12, 13]. However, compared with the mentioned above,
few results are available on the equations with both sublinear and superlinear neutral terms. Motivated by
the above, the purpose of this paper is to establish the oscillation criteria for a class of second order mixed
functional differential equation with subliner and superlinear neutral terms.

Recently, B. Baculíková studied halflinear second order differential equations with mixed argument of the
form

(r(t)(y′(t))α)′ = q(t)xα(τ(t)),

where τ(t) is a mixed deviating argument. The known results in [3] are generalized to the neutral differential
equations that we studied.

If we denote the set of all nonoscillatory solutions of Eq. (1.1) by N , then the set N is the union

N =

4⋃
i=1

Ni,

where
N1 : z(t) > 0 and z′(t) < 0, N2 : z(t) > 0 and z′(t) > 0,

N3 : z(t) < 0 and z′(t) < 0, N4 : z(t) < 0 and z′(t) > 0.
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We consider the situation in which N = ∅ for Eq. (1.1), that is, all nontrivial solutions of Eq. (1.1) are
oscillatory.

The paper is organized as follows: First, we present the auxiliary results and our main oscillation criteria.
Then, some examples are proposed to illustrate the applicability of our criteria.

2. Main results
Without loss of generality, we only need to consider the case of eventually positive ones of Eq. (1.1). Next, we
state a preliminary lemma, which will be necessary to proof our main results.

Lemma 2.1 [10] If X and Y are nonnegative, then

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0, for λ > 1, (2.1)

and
Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0, for 0 < λ < 1, (2.2)

where equalities hold if and only if X = Y .

Now, we present the first oscillation theorem for Eq. (1.1). For the sake of convenience, we adopt the
following notations:

g1(t) := (γ − 1)γ
γ

1−γ p
1

1−γ

2 (t)p
γ

γ−1 (t),

g2(t) := (1− β)β
β

1−β p
β

β−1 (t)p
1

1−β

1 (t),

and

G1(t) := 1− g1(t) + g2(t)

c1R(t)
, G2(t) := 1− g1(t) + g2(t)

c2
,

where c1, c2 are two constants with c1 < 0, c2 > 0 and p(t) is a positive continuous real-valued function.

Theorem 2.2 Suppose that there exists a positive continuous function p(t) such that

lim
t→∞

(g1(t) + g2(t)) = 0. (2.3)

Further, assume the following condition:∫ ∞

t0

1

r1/α(u)

(∫ ∞

u

q(s)ds

)1/α

du = ∞. (2.4)

If there exist two sequences {tk} , {sk} with tk, sk → ∞ as k → ∞ such that tk ∈ Dτ and sk ∈ Aτ ,

lim sup
k→∞

∫ tk

τ(tk)

mα
1 q(s)[R(τ(tk))−R(τ(s))]αds > 1, (2.5)

and

lim sup
k→∞

∫ τ(sk)

sk

mα
2 q(s)[R(τ(s))−R(τ(sk))]

αds > 1, (2.6)

for all k = 1, 2, ... , where m1 and m2 are constants. Then all solutions of Eq. (1.1) are oscillatory.
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Proof Assume that x(t) is an eventually positive solution of Eq. (1.1). Hence, we get that x(t) > 0, x(σ(t)) >

0, x(τ(t)) > 0, for large enough t . Then, we have the following cases:
Case 1. Assume that z(t) ∈ N1 . From the definition of z , we get

x(t) = z(t)− p1(t)x
β(σ(t)) + p2(t)x

γ(σ(t))

= z(t)− (p(t)x(σ(t))− p2(t)x
γ(σ(t)))− (p1(t)x

β(σ(t))− p(t)x(σ(t))).

Applying (2.1) with λ = γ > 1, X = p
1
γ

2 (t)x(σ(t)) and Y = ( 1γ p(t)p
− 1

γ

2 (t))
1

γ−1 , we have

p(t)x(σ(t))− p2(t)x
γ(σ(t)) ≤ (γ − 1)γ

γ
1−γ p

1
1−γ

2 (t)p
γ

γ−1 (t) := g1(t).

Applying (2.2) with 0 < λ = β < 1, X = p
1
β

1 (t)x(σ(t)) and Y = ( 1β p(t)p
− 1

β

1 (t))
1

β−1 , we have

p1(t)x
β(σ(t))− p(t)x(σ(t)) ≤ (1− β)β

β
1−β p

β
β−1 (t)p

1
1−β

1 (t) := g2(t).

Thus, we arrive at

x(t) ≥
[
1− g1(t) + g2(t)

z(t)

]
z(t). (2.7)

Since r(t)(z′(t))α is increasing, we obtain that

z(t) ≥
∫ t

t0

r1/α(s)z′(s)

r1/α(s)
ds

≥ r1/α(t0)z
′(t0)

∫ t

t0

1

r1/α(s)
ds

= c1R(t),

where c1 < 0 is a constant. So

x(t) ≥
[
1− g1(t) + g2(t)

c1R(t)

]
z(t) := G1(t)z(t). (2.8)

Now, there exists a constant m1 ≥ 1 such that

x(t) ≥ m1z(t). (2.9)

There exists a sequence {tk} such that tk ∈ Dτ , in view of τ ′(t) > 0, which implies (τ(tk), tk) ⊂ Dτ . Integrating
Eq. (1.1) from τ(tk) to tk , we get

−r(τ(tk))(z
′(τ(tk)))

α ≥
∫ tk

τ(tk)

q(s)xα(τ(s))ds

≥ mα
1

∫ tk

τ(tk)

q(s)zα(τ(s))ds.

(2.10)
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For s ∈ (τ(tk), tk) , one gets

z(τ(s)) ≥
∫ τ(tk)

τ(s)

−r1/α(u)z′(u)

r1/α(u)
du

≥ −r1/α(τ(tk))z
′(τ(tk))

∫ τ(tk)

τ(s)

1

r1/α(u)
du

= −r1/α(τ(tk))z
′(τ(tk))[R(τ(tk))−R(τ(s))],

which, combining with (2.10), gives

−r(τ(tk))(z
′(τ(tk)))

α ≥ −mα
1 r(τ(tk))(z

′(τ(tk)))
α

∫ tk

τ(tk)

q(s)[R(τ(tk))−R(τ(s))]αds,

that is

1 ≥
∫ tk

τ(tk)

mα
1 q(s)[R(τ(tk))−R(τ(s))]αds.

This contradicts with (2.5), and thus, N1 = ∅ .
Case 2. Assume that z(t) ∈ N2 . Since z(t) is increasing, there exists a constant c2 > 0 such that

z(t) ≥ c2 for large enough t . Hence, the inequality (2.7) becomes

x(t) ≥
[
1− g1(t) + g2(t)

c2

]
z(t) := G2(t)z(t). (2.11)

Now, there exists a constant m2 ∈ (0, 1) such that

x(t) ≥ m2z(t). (2.12)

Taking into account the fact that τ(t) is increasing, it is easy to see that sk ∈ Aτ implies that (sk, τ(sk)) ⊂ Aτ .
By integrating Eq. (1.1) and using (r(t)(z′(t))α)′ > 0 and (2.12), we get

−r(τ(sk))(z
′(τ(sk)))

α ≥
∫ τ(sk)

sk

q(s)xα(τ(s))ds

≥ mα
2

∫ τ(sk)

sk

q(s)zα(τ(s))ds.

(2.13)

For s ∈ (sk, τ(sk)) ,

z(τ(s)) ≥
∫ τ(s)

τ(sk)

r1/α(u)z′(u)

r1/α(u)
du

≥ r1/α(τ(tk))z
′(τ(tk))

∫ τ(s)

τ(sk)

1

r1/α(u)
du

= r1/α(τ(tk))z
′(τ(tk))[R(τ(s))−R(τ(sk))].
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Therefore, (2.13) can be written as

r(τ(sk))(z
′(τ(sk)))

α ≥ mα
2 r(τ(tk))z

′(τ(sk))
α

∫ τ(sk)

sk

q(s)[R(τ(s))−R(τ(sk))]
αds,

or, equivalent to

1 ≥
∫ τ(sk)

sk

mα
2 q(s)[R(τ(s))−R(τ(sk))]

αds,

which contradicts (2.6). So N2 = ∅ .
Case 3. Assume that z(t) ∈ N3 . In this case z(t) satisfies either

lim
t→∞

z(t) = −∞ (2.14)

or
lim
t→∞

z(t) = l < 0. (2.15)

We claim that (2.14) holds. Otherwise, by the definition of z(t) , we obtain

x(t) ≥
(
−z(σ−1(t))

p

)1/γ

, t ≥ t1 .

It is easy to see that x(t) is bounded and there exists a M1 > 0 such that x(t) ≥ M1 > 0 for all t ≥ t2 ≥ t1 .
From Eq. (1.1), we have

(r(t)(z′(t))α)′ ≥ Mα
1 q(t), t ≥ t2.

Integrating it from t to u and let u → ∞ , we get

Mα
1

∫ ∞

t

q(s)ds ≤ −r(t)(z′(t))α.

Taking integration from t2 to t again, we obtain that as t → ∞

z(t) ≤ −M1

∫ ∞

t2

1

r1/α(u)

(∫ ∞

u

q(s)ds

)1/α

du,

which is a contradiction with (2.15) from (2.4). So (2.14) holds and N3 = ∅ .
Case 4. Assume that z(t) ∈ N4 . Since r(t)(z′(t))α is increasing and positive, there exists a M2 > 0

such that r(t)(z′(t))α ≥ M2 for all t ≥ t1 . Integrating it from t1 to t and let t → ∞ , we get

z(t) ≥ z(t1) +M
1/α
2

∫ ∞

t1

1

r1/α(s)
ds.

However, this is impossible due to (1.2). Hence, N4 = ∅ . The proof is complete. 2

Next, we will further improve Theorem 2.2 by establishing new monotonicity of nonoscillatory solutions
of Eq. (1.1). To this end, let us state the following necessary conclusions.
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Lemma 2.3 Assume that there exists a sequence {tk} , tk → ∞ as k → ∞ , such that tk ∈ Dτ . Suppose that
there exists a η > 0 such that

mα
1 (R(t)−R(τ(t)))αR(t)r1/α(t)q(t) ≥ η, on (τ(τ(tk)), τ(tk)) (2.16)

for all k = 1, 2, ... . If x(t) is a positive solution of Eq. (1.1) such that z(t) ∈ N1 , then −Rη(t)r(t)(z′(t))α is
decreasing on (τ(τ(tk)), τ(tk)) .

Proof Since −r(t)(z′(t))α is decreasing, then

z(τ(t)) ≥
∫ t

τ(t)

−r1/α(u)z′(u)

r1/α(u)
du

≥ −r1/α(t)z′(t)[R(t)−R(τ(t))].

By virtue of Eqs. (1.1) and (2.9), we have

(r(t)(z′(t))α)′ ≥ mα
1 q(t)r(t)(−z′(t))α[R(t)−R(τ(t))]α.

The rest of the proof is similar to that of the Lemmas in [3], hence we omitted it. 2

Lemma 2.4 Assume that there exists a sequence {sk} , sk → ∞ as k → ∞ , such that sk ∈ Aτ . Suppose that
there exists a ξ > 0 such that

mα
2 (R(τ(t))−R(t))αR(t)r1/α(t)q(t) ≥ ξ, on (τ(sk), τ(τ(sk))) (2.17)

for all k = 1, 2, ... . If x(t) is a positive solution of Eq. (1.1) such that z(t) ∈ N2 , then R−ξ(t)r(t)(z′(t))α is
increasing on (τ(sk), τ(τ(tk))) .

A similar proof of this Lemma can be referred to Lemma 2.3, which will be not described in detail here.

Theorem 2.5 Assume that (2.4) holds and there exists a positive continuous function p(t) such that (2.3)
holds. Further, assume that there exist two sequences {tk}, {sk} with tk, sk → ∞, k → ∞ such that tk ∈ Dτ

and sk ∈ Aτ . If

lim sup
k→∞

mα
1R

η(τ(tk))

∫ tk

τ(tk)

q(s)

[
R1−η/α(τ(tk))−R1−η/α(τ(s))

1− η/α

]α
ds > 1 (2.18)

and

lim sup
k→∞

mα
2R

−ξ(τ(sk))

∫ τ(sk)

sk

q(s)

[
R1+ξ/α(τ(s))−R1+ξ/α(τ(sk))

1 + ξ/α

]α
ds > 1, (2.19)

where η and ξ are defined by (2.16) and (2.17), m1 and m2 are constants, then all solutions of Eq.(1.1) are
oscillatory.

Proof Assume, for the sake of contradiction, that x(t) is an eventually positive solution of Eq. (1.1). Then,
we have the following cases:

3051



SHI and HAN/Turk J Math

Case 1. Assume that z(t) ∈ N1 . In view of Lemma 2.3, −Rη(t)r(t)(z′(t))α is decreasing on
(τ(τ(tk)), τ(tk)) . Thus, for x ∈ (τ(tk), tk) , we have

z(τ(s)) ≥
∫ τ(tk)

τ(s)

−r1/α(u)Rη/α(u)z′(u)

r1/α(u)Rη/α(u)
du

≥ −r1/α(τ(tk))R
η/α(τ(tk))z

′(τ(tk))

∫ τ(tk)

τ(s)

1

r1/α(u)Rη/α(u)
du

= −r1/α(τ(tk))R
η/α(τ(tk))z

′(τ(tk))

[
R1−η/α(τ(tk))−R1−η/α(τ(s))

1− η/α

]
.

Using the last inequality in (2.10), we conclude that

− r(τ(tk))(z
′(τ(tk)))

α

≥mα
1 (−r1/α(τ(tk))R

η/α(τ(tk))z
′(τ(tk)))

∫ tk

τ(tk)

q(s)

[
R1−η/α(τ(tk))−R1−η/α(τ(s))

1− η/α

]α
ds,

or

1 ≥ mα
1R

η(τ(tk))

∫ tk

τ(tk)

q(s)

[
R1−η/α(τ(tk))−R1−η/α(τ(s))

1− η/α

]α
ds,

which contradicts (2.18). Hence, N1 = ∅ .
Case 2. Assume that z(t) ∈ N2 . Using the monotonicity of R−ξ(t)r(t)(z′(t))α in Lemma 2.4, we find

z(τ(s)) ≥
∫ τ(s)

τ(sk)

r1/α(u)R−ξ/α(u)z′(u)

r1/α(u)R−ξ/α(u)
du

≥ r1/α(τ(sk))R
−ξ/α(τ(sk))z

′(τ(sk))

∫ τ(s)

τ(sk)

1

r1/α(u)R−ξ/α(u)
du

= r1/α(τ(sk))R
−ξ/α(τ(sk))z

′(τ(sk))

[
R1+ξ/α(τ(s))−R1+ξ/α(τ(sk))

1 + ξ/α

]
.

It follows from (2.13) that

r(τ(sk))(z
′(τ(sk)))

α

≥mα
2 (r

1/α(τ(sk))R
−ξ/α(τ(sk))z

′(τ(sk)))

∫ τ(sk)

sk

q(s)

[
R1+ξ/α(τ(s))−R1+ξ/α(τ(sk))

1 + ξ/α

]α
ds,

that is,

1 ≥ mα
2R

−ξ(τ(sk))

∫ τ(sk)

sk

q(s)

[
R1+ξ/α(τ(s))−R1+ξ/α(τ(sk))

1 + ξ/α

]α
ds,

which contradicts (2.19) and then N2 = ∅ .
The remaining parts (Cases 3 and 4) are the same as in Theorem 2.2. This completes the proof. 2
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3. Examples
In this section, we will illustrate the applicability of our main result via some examples.

Example 3.1 Consider the second order mixed differential equation with sublinear and superlinear neutral
terms

z′′(t) =
q0
t2
x

(
t

(
1− 2 cos(ln t)

3

))
, t > 0, (3.1)

where z(t) = x(t) +
√
tx

1
2 ( t3 ) − 1

tx
2( t3 ) . It is a special form of Eq. (1.1) when r(t) = 1, p1(t) =

√
t, p2(t) = 1

t , q(t) = q0
t2 (q0 > 0), σ(t) = t

3 , τ(t) = t
(
1− 2 cos(ln t)

3

)
. Clearly, the deviating argument

τ(t) = t
(
1− 2 cos(ln t)

3

)
is of mixed type.

If we take tk = e2kπ, k = 1, 2, ... , then τ(tk) =
1
3e

2kπ ∈ Dτ . Thus

lim sup
k→∞

m1

∫ tk

τ(tk)

q0
s2

[
1

3
e2kπ − s(1− 2 cos(ln s)

3
)

]
ds

= lim sup
k→∞

q0m1

∫ tk

τ(tk)

[
1

3
e2kπ

1

s2
− 1

s
+

2

3

cos(ln s)

s

]
ds

= lim sup
k→∞

q0m1

[
−1

3
e2kπ

1

s

∣∣∣∣tk
τ(tk)

− ln s

∣∣∣∣tk
τ(tk)

+
2

3
cos(ln s)

∣∣∣∣tk
τ(tk)

]

= q0m1

[
2

3
− ln 3 +

2

3
sin(ln 3)

]
> 1 ,

which by Theorem 2.2 implies that N1 = ∅ for q0 > 1
m1

6.1805 .

Moreover, if we take sk = eπ+2kπ , then τ(sk) =
5
3e

π+2kπ ∈ Aτ . Condition (2.6) becomes

lim sup
k→∞

∫ τ(sk)

sk

m2
q0
s2

[
s(1− 2 cos(ln s)

3
− 5

3
eπ+2kπ)

]
ds

= lim sup
k→∞

q0m2

∫ τ(sk)

sk

[
1

s
− 2

3

cos(ln s)

s
− 5

3
eπ+2kπ 1

s2

]
ds

= lim sup
k→∞

q0m2

∫ τ(sk)

sk

[
ln s

∣∣∣∣τ(sk)
sk

− 2

3
sin(ln s)

∣∣∣∣τ(sk)
sk

+
5

3
eπ+2kπ 1

s

∣∣∣∣τ(sk)
sk

]
ds

= q0m2

[
ln

5

3
+

2

3
sin

(
ln

5

3

)
− 2

3

]
> 1,

which ensures that N2 = ∅ for q0 > 1
m2

6.7476 .

Further, we can verify that ∫ ∞

0

∫ ∞

u

q0
s2

dsdu = ∞,

that is, (2.4) is also satisfied. Hence, we see that q0 > 1
m2

6.7476 implies the oscillation of (3.1).

3053



SHI and HAN/Turk J Math

Example 3.2 We also consider the differential equation (3.1).

Firstly, we will show that N1 = ∅ for q0 ≥ 1
m1

5.8067637 . We set q0 = 1
m1

5.8067637 . Let tk = e2kπ, k =

1, 2, ... , then τ(tk) =
1
3e

2kπ and τ(τ(tk)) = ( 13 − 2
9 cos(ln 3))e

2kπ . In view of Lemma 2.3, we have

2

3
m1q0 cos(ln t) ≥ η on each (τ(τ(tk)), τ(tk)), k = 1, 2, ....

Note that 2
3m1q0 cos(ln t) is increasing on (τ(τ(tk)), τ(tk)) , so we have

η =
2

3
m1q0 cos(ln(τ(τ(tk)))) = 0.428419.

Now, we verify the condition (2.18).

lim sup
k→∞

m1τ
η(tk)

∫ tk

τ(tk)

q(s)

[
τ1−η(tk)− τ1−η(s)

1− η

]
ds

= lim sup
k→∞

m1q0
1− η

(
1

3
e2kπ

)η ∫ tk

τ(tk)

[
( 13e

2kπ)1−η

s2
−

s1−η(1− 2 cos(ln s)
3 )1−η

s2

]
ds

= lim sup
k→∞

m1q0
1− η

[
2

3
−
(
1

3
e2kπ

)η ∫ tk

τ(tk)

s1−η(1− 2 cos(ln s)
3 )1−η

s2
ds

]
.

Let s = e2kπt , the above formula becomes

m1q0
1− η

[
2

3
− (

1

3
)η

∫ 1

1
3

t1−η(1− 2 cos(ln e2kπt)
3 )1−η

t2
dt

]

=
m1q0
1− η

[
2

3
− (

1

3
)η

∫ 1

1
3

t−1−η

(
1− 2 cos(ln t)

3

)1−η

dt

]
.

Using Matlab, we get

m1q0
1− η

[
2

3
− (

1

3
)η

∫ 1

1
3

t−1−η

(
1− 2 cos(ln t)

3

)1−η

dt

]
= 1.0000000049 > 1

with η = 0.428419 , which by Theorem 2.5 implies N1 = ∅ .
Secondly, we will show that N2 = ∅ for q0 ≥ 1

m2
4.4183548 . We set q0 = 1

m2
4.4183548 . Take

sk = eπ+2kπ , then τ(sk) = 5
3e

π+2kπ and τ(τ(sk)) = ( 53 + 10
9 cos(ln 5

3 ))e
π+2kπ . From Lemma 2.4, we see

that

−2

3
m2q0 cos(ln t) ≥ ξ on each (τ(sk), τ(τ(sk))), k = 1, 2, ....

Since − 2
3m2q0 cos(ln t) is decreasing on (τ(sk), τ(τ(sk))) , we have

ξ = −2

3
m2q0 cos(ln(τ(τ(sk)))) = 1.6669803.
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Condition (2.19) becomes

lim sup
k→∞

m2τ
−ξ(sk)

∫ τ(sk)

sk

q(s)

[
τ1+ξ(s)− τ1+ξ(sk)

1 + ξ

]
ds

= lim sup
k→∞

m2q0
1 + ξ

(
5

3
eπ+2kπ

)−ξ ∫ τ(sk)

sk

[
s1+ξ(1− 2 cos(ln s)

3 )1+ξ

s2
−

(
5
3e

π+2kπ
)1+ξ

s2

]
ds

= lim sup
k→∞

m2q0
1 + ξ

[(
5

3
eπ+2kπ

)−ξ ∫ τ(sk)

sk

s1+ξ(1− 2 cos(ln s)
3 )1+ξ

s2
ds− 2

3

]
.

Taking s = eπ+2kπt , we obtain that

lim sup
k→∞

m2τ
−ξ(sk)

∫ τ(sk)

sk

q(s)

[
τ1+ξ(s)− τ1+ξ(sk)

1 + ξ

]
ds

=
m2q0
1 + ξ

[(
5

3

)−ξ ∫ 5
3

1

tξ−1

(
1− 2 cos(ln eπ+2kπt)

3

)1+ξ

dt− 2

3

]

=
m2q0
1 + ξ

[
−2

3
+

(
5

3

)−ξ ∫ 5
3

1

tξ−1

(
1 +

2 cos(ln t)

3

)1+ξ

dt

]
.

By Matlab, we can conclude that

m2q0
1 + ξ

[
−2

3
+

(
5

3

)−ξ ∫ 5
3

1

tξ−1

(
1 +

2 cos(ln t)

3

)1+ξ

dt

]
= 1.000000027 > 1

with ξ = 1.6669803 , which implies that N2 = ∅ .
Hence, (3.1) is oscillatory for q0 > 1

m2
4.4183548 . This also shows that Theorem 2.5 is an improvement

over Theorem 2.1.
The results of Examples 3.1 and 3.2 are graphically represented as shown in Figure. We can see

intuitively that the condition corresponding to Example 3.2 is weaker, that is, the condition of Theorem 2.2 is
an improvement of Theorem 2.1.

Figure. Comparison between Example 3.1 and Example 3.2.
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4. Conclusion
In this paper, a class of second-order mixed functional differential equations with superlinear and sublinear
neutral terms is studied and some oscillation criteria are established. The innovation of this paper is that
the functional differential equation has both superlinear and sublinear terms, and it is a mixed type equation.
Because the neutral term is indefinite, it is full of many uncertainties. In addition, we could consider whether the
results presented in this paper apply to n order differential equations or to more general differential equations
in the future work.
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