
Turk J Math
(2022) 46: 2645 – 2662
© TÜBİTAK
doi:10.55730/1300-0098.3292

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On a certain type of warped-twisted product submanifolds

Sibel GERDAN AYDIN∗, Hakan Mete TAŞTAN†

Department of Mathematics, Faculty of Science, İstanbul University, İstanbul, Turkey

Received: 24.12.2021 • Accepted/Published Online: 13.06.2022 • Final Version: 05.09.2022

Abstract: We introduce a certain type of warped-twisted product submanifolds which is called warped-twisted product
hemislant submanifolds of the form f2M

⊥×f1 M
θ with warping function f2 on Mθ and twisting function f1 , where M⊥

is a totally real and Mθ is a slant submanifold of a globally conformal Kaehler manifold. We prove that a warped-twisted
product hemislant submanifold of a globally conformal Kaehler manifold is a locally doubly warped product. Then we
establish a general inequality for doubly warped product mixed geodesic hemislant submanifolds and get some results
for such submanifolds by using the equality sign of the general inequality.

Key words: Twisted product, warped product, totally real distribution, slant distribution, hemislant submanifold,
globally conformal Kaehler manifold

1. Introduction
One of the ways to get a new Riemannian manifold (or, more generally, pseudo-Riemannian manifold) is to
product two pseudo-Riemannian manifolds in the usual sense. The most general manifolds obtained in this way
are the doubly twisted product manifolds [16]. In fact, this notion appeared in the literature a long time ago,
under the name of conformally seperable spaces [23]. It is well known that the notion of doubly twisted product
is a natural generalization of the notion of doubly warped product [11], twisted product [8], warped product [3]
and direct product.

In [18], we defined two classes of doubly twisted products under the names of nearly doubly twisted
products of type 1 and type 2. In this article, we rename the nearly doubly twisted products of type 1 as
warped-twisted products.

One of the popular research areas in differential geometry is the theory of submanifolds. Actually, there
are well known classes of submanifolds such as holomorphic (invariant), totally real (antiinvariant) [22], CR-
(semiinvariant)[1, 2], slant [5], semislant [15], hemislant or antislant [4, 17]. All classes are determined by the
behavior of the almost complex or almost product structure of the ambient manifold. On the other hand, the
theory of warped product submanifolds has become a popular resarch area since Chen [6] studied the warped
product CR-submanifolds in Kaehler structures. Afterwards, several classes of warped product submanifolds
appeared in the literature. Also, the warped product submanifolds have been studied in different kind of
structures. Most of the studies related to this theory can be found in the book [7] and its list of references.

∗Correspondence: sibel.gerdan@istanbul.edu.tr
†hakmete@istanbul.edu.tr
2010 AMS Mathematics Subject Classification: Primary 53C15, 53B20

This work is licensed under a Creative Commons Attribution 4.0 International License.
2645

https://orcid.org/0000-0001-5278-6066
https://orcid.org/0000-0002-0773-9305


GERDAN AYDIN and TAŞTAN/Turk J Math

In this paper, we consider and study a certain type of warped-twisted products which is warped-twisted
product hemislant submanifolds in globally conformal Kaehler manifolds. More precisely, we study warped-
twisted product submanifolds which have the form f2M

⊥×f1 M
θ with warping function f2 on Mθ and twisting

function f1 , where M⊥ is a totally real and Mθ is a slant submanifold of the globally conformal Kaehler
manifold. We obtain necessary and sufficient conditions for such submanifolds to be twisted product, base
conformal warped product and direct product submanifolds. In the main theorem, we prove that a warped-
twisted product hemislant submanifold of a globally conformal Kaehler manifold is locally a doubly warped
product. After the main theorem mentioned, we focus on the study of doubly warped product hemislant
submanifolds and we get some results for doubly warped product mixed geodesic hemislant submanifolds when
the Lee vector field of the globally conformal Kaehler manifold is tangent to them. We say that a warped-twisted
product is nontrivial if it is neither twisted nor base conformal warped or direct product.

2. Preliminiaries
In this section, we recall the fundamental definitions and notions needed for the further study. Actually, in
subsection 2.1, we give the definition of doubly twisted and warped-twisted products and in subsection 2.2,
we will recall the definitions of locally and globally conformal Kaehler manifolds. The basic background for
submanifolds of Riemannian manifolds will be presented in subsection 2.3.

2.1. Warped-twisted products
Let M1 and M2 be Riemannian manifolds endowed with metric tensors g1 and g2 , respectively and let f1

and f2 be positive smooth functions defined on M1 × M2 . Then the doubly twisted product manifold [16]
f2M1 ×f1 M2 is the product manifold M̄ = M1 ×M2 equipped with metric g given by

g = f2
2π∗

1g1 + f1
2π∗

2g2,

where πi : M1×M2 → Mi is the canonical projection, for i = 1, 2. Each function fi is called a twisting function
of the doubly twisted product f2M1 ×f1 M2 . If the twisting functions f1 and f2 depend only on the points of
M1 and M2 respectively, then f2M1 ×f1 M2 becomes a doubly warped product manifold [11] and each function
fi is called a warping function of the doubly warped product manifold. In this case, if f1 ≡ 1 or f2 ≡ 1 , then
we get a warped product [3].

Let f2M1×f1 M2 be doubly twisted product manifold. If f1 ≡ 1 or f2 ≡ 1 , then we get a twisted product
[8] with the twisting function f1 or a twisted product with the twisting function f2 . In a warped or twisted
product case, the notation f2M1 ×f1 M2 is simplified to f2M1 ×M2 or M1 ×f1 M2. In addition, if both f1 and
f2 are constant, then we get a usual or direct product manifold [7].

Let us recall the definition of a warped-twisted product manifold. Let (M1, g1) and (M2, g2) be Rieman-
nian manifolds and let f2 : M2 → (0,∞) and f1 : M1×M2 → (0,∞) be smooth functions. The warped-twisted
product f2M1 ×f1 M2 [18] is the product manifold M1 ×M2 equipped with the metric tensor g defined by

g = (f2 ◦ π2)
2π∗

1(g1) + f2
1π

∗
2(g2). (2.1)

The function f2 ∈ C∞(M2) is called a warping function and the function f1 ∈ C∞(M1×M2) is called a twisting
function of f2M1 ×f1 M2 . In this case, if the function f1 depends only on the points of M2 , then the warped-
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twisted product f2M1 ×f1 M2 becomes a base conformal warped product [9]. We say that a warped-twisted
product is nontrivial if it is neither doubly warped product nor warped product or base conformal warped
product.

Let f2M1×f1 M2 be a warped-twisted product manifold with the Levi-Civita connection ∇̄ of g , given in
(2.1). Also, ∇i denote by the Levi-Civita connection of gi , for i ∈ {1, 2} , respectively. By usual convenience,
we denote the set of lifts of vector fields on Mi by L(Mi) and we use the same notation for a vector field and
for its lift. On the other hand, each πi is a positive homothety, so it preserves the Levi-Civita connection.
Thus, there is no confusion using the same notation for a connection on Mi and for its pullback via πi. Then,
the covariant derivative formulas of the warped-twisted product manifold f2M1 ×f1 M2 with warping function
f2 ∈ C∞(M2) and twisting function f1 are given by

∇̄XY = ∇1
XY − g(X,Y )∇̄ ln(f2 ◦ π2), (2.2)

∇̄V X = ∇̄XV = V (ln(f2 ◦ π2))X +X(ln f1)V, (2.3)

∇̄UV = ∇2
UV + U(ln f1)V + V (ln f1)U − g(U, V )∇̄ ln f1, (2.4)

for any X,Y ∈ L(M1) and U, V ∈ L(M2) . These formulas immediately come from Lemma 2.1 of [12] with
X(ln(f2 ◦ π2)) = Y (ln(f2 ◦ π2)) = 0.

Remark 2.1 Until Section 5, we will use the same symbol for the warping function f2 and its pullback f2 ◦π2 ,
i.e. we will put f2 = f2 ◦ π2 .

2.2. Locally and globally conformal Kaehler manifolds

Let (M̄, J, g) be a Hermitian manifold of dimension 2m . Then it is called a locally conformal Kaehler manifold
(briefly l.c.K. manifold) [10], if each point of p ∈ M̄ has an open neighborhood U with smooth function
σ : U → R such that g̃ = e−σg |U is a Kaehler metric on U . If one choose U = M̄ , then (M̄, J, g) is called a
globally conformal Kaehler manifold (briefly g.c.K. manifold).

Theorem 2.2 ([10]) Let (M̄, J, g) be a Hermitian manifold and let Ω be a 2− form defined by Ω(X̄, Ȳ ) =

g(X̄, JȲ ) for all vector fields X̄ and Ȳ in M̄. Then (M̄, J, g) is a l.c.K. manifold if and only if there exists a
globally defined 1− form ω such that

dΩ = ω ∧ Ω and dω = 0. (2.5)

The closed 1− form ω is called the Lee form of the l.c.K. manifold (M̄, J, g) . In addition, the manifold (M̄, J, g)

is g.c.K., if its Lee form ω is also exact. In this case, we have ω = dσ [21]. The Lee vector field B is defined
by

ω(X̄) = g(B, X̄), (2.6)

for any vector fields X̄ on M̄. One can see that, the globally conformal Kaehler case is a special case of the
locally conformal Kaehler case. We denote by ∇̃ (resp. ∇̄) the Levi-Civita connection on a g.c.K. manifold M̄
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with respect to g̃ = e−σg (resp. g ). Then we have [10]

∇̃X̄ Ȳ = ∇̄X̄ Ȳ − 1
2

{
ω(X̄)Ȳ + ω(Ȳ )X̄ − g(X̄, Ȳ )B

}
, (2.7)

for any vector fields X̄ and Ȳ on M̄ . The connection ∇̃ is a torsionless linear connection on M̄ which is called
the Weyl connection of g. It is easy to see that the Weyl connection ∇̃ satisfies the condition

∇̃J = 0. (2.8)

Remark 2.3 Throughout this paper, we denote by (M̄, J, ω, g) the g.c.K. manifold with the Lee form ω .

2.3. Submanifolds of Riemannian manifolds
Let M be an isometrically immersed submanifold in a Riemannian manifold (M̄, g) . Let ∇̄ is the Levi-Civita
connection on M̄ with respect to the metric g and let ∇ and ∇⊥ be the induced, and induced normal connection
on M , respectively. Then, for all X,Y ∈ TM and Z ∈ T⊥M , the Gauss and Weingarten formulas are given
respectively by

∇̄XY = ∇XY + h(X,Y ), (2.9)

∇̄XZ = −AZX +∇⊥
XZ, (2.10)

where TM is the tangent bundle and T⊥M is the normal bundle of M in M̄ . Additionally, h is the second
fundamental form of M and AZ is the Weingarten endomorphism associated with Z . The second fundamental
form h and the shape operator A are related by

g(h(X,Y ), Z) = g(AZX,Y ). (2.11)

The mean curvature vector field H of M is given by H = 1
m (trace h), where dim(M) = m. We say that the

submanifold M is totally geodesic in M̄ if h = 0 , and minimal if H = 0. The submanifold M is called totally
umbilical if h(X,Y ) = g(X,Y )H for all X,Y ∈ TM .

Let M be any submanifold of a g.c.K. manifold (M̄, J, ω, g) . Then the Gauss and Weingarten formulas
with respect to ∇̃ are given by

∇̃XY = ∇̂XY + h̃(X,Y ), (2.12)

∇̃XZ = −ÃZX + ∇̃⊥
XZ, (2.13)

for X,Y ∈ TM and Z ∈ T⊥M . Thus, using (2.7), (2.9)–(2.13), we have the following relations

∇̂XY = ∇XY − 1

2

{
ω(X)Y + ω(Y )X − g(X,Y )BT

}
, (2.14)

ÃZX = AZX +
1

2
ω(Z)X, (2.15)
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h̃(X,Y ) = h(X,Y ) +
1

2
g(X,Y )BN , (2.16)

where X,Y ∈ TM and Z ∈ T⊥M , where BT and BN are the tangential and the normal part to M of B ,
respectively.

3. Hemislant submanifolds of a g.c.K. manifold
In this section, we recall some fundamental properties of hemislant submanifolds of a g.c.K. manifold given in
[19] and we give some auxiliary results to prove our main theorem.

Let (M̄, J, g) be an almost Hermitian manifold and let M be a Riemannian manifold isometrically im-
mersed in M̄ . A distribution D on M is called a slant distribution if for V ∈ Dp, the angle θ between JV

and Dp is constant, i.e. independent of p ∈ M and V ∈ Dp. The constant angle θ is called the slant angle of
the slant distribution D. We know that holomorphic and totally real distributions on M are slant distributions
with θ = 0 and θ = π

2 , respectively. A slant distribution is called proper if it is neither holomorphic nor totally
real. A submanifold M of M̄ is said to be a slant submanifold [5] if the tangent bundle TM of M is slant.
For examples and more details, (see [5]).

A hemislant submanifold M [15] of an almost Hermitian manifold (M̄, J, g) is a submanifold such that
its tangent bundle TM admits two orthogonal complementary totally real distribution D⊥ (∀X ∈ D⊥, JX ∈
T⊥M ) and slant distribution Dθ , i.e. we have

TM = D⊥ ⊕Dθ. (3.1)

We say that a hemislant submanifold M is proper if dim(D⊥) ̸= 0 and θ ̸= 0, π
2 .

For any X ∈ TM we write
JX = PX + FX, (3.2)

where PX is the tangential part of JX, and FX is the normal part of JX. Similarly, for any Z ∈ T⊥M , we
put

JZ = tZ + nZ, (3.3)

where tZ is the tangential part of JZ, and nZ is the normal part of JZ. Then the normal bundle T⊥M of
M is decomposed as

T⊥M = JD⊥ ⊕ FDθ ⊕D, (3.4)

where D is the orthogonal complementary distribution of JD⊥⊕FDθ in T⊥M and it is an invariant subbundle
of T⊥M with respect to J. For a hemislant submanifold, we have

P 2V = − cos2θV, (3.5)

g(PU,PV ) = cos2θg(U, V ) and g(FU,FV ) = sin2θg(U, V ), (3.6)

for U, V ∈ Γ(Dθ).

2649



GERDAN AYDIN and TAŞTAN/Turk J Math

Lemma 3.1 Let M be a hemislant submanifold of a g.c.K. manifold (M̄, J, ω, g) . Then we have

g(∇XY, V ) = − sec2θg

(
AJY PV −AFPV Y − 1

2ω(FPV )Y, X

)
− 1

2ω(V )g(X,Y ), (3.7)

and

g(∇UV,X) = sec2θg

(
AJXPV −AFPV X + 1

2ω(JX)PV, U

)
− 1

2ω(X)g(U, V ), (3.8)

for X,Y ∈ Γ(D⊥) and U, V ∈ Γ(Dθ).

Proof Let M be a hemislant submanifold of a g.c.K. manifold (M̄, J, ω, g) and X,Y ∈ Γ(D⊥) and V ∈ Γ(Dθ) .
Since (M̄, J, g̃ = e−σg) is a Kaehler manifold, by using (2.8), (2.13), (3.2) and (3.3), we have

g̃(∇̂XY, V ) = g̃(∇̃XY, V ) = g̃(∇̃XJY, JV )

= g̃(∇̃XJY, PV ) + g̃(∇̃XJY, FV )

= −g̃(ÃJY PV,X)− g̃(∇̃XY, tFV )− g̃(∇̃XY, nFV ).

Here, using the fact that tF = −I − P 2 and nF = −FP (see, the equation (2.16) of [19]), we obtain

g̃(∇̂XY, V ) = −g̃(ÃJY PV,X) + sin2 θg̃(∇̂XY, V ) + g̃(∇̃XY, FPV )

= −g̃(ÃJY X,PV ) + g̃(ÃFPV Y,X) + sin2 θg̃(∇̂XY, V ).

Hence, we get
g̃(∇̂XY, V ) = − sec2θ{g̃(ÃJY PV − ÃFPV Y,X)}.

Now, by using (2.6), (2.14) and (2.15), we derive the conclusion (3.7). The other assertion (3.8) can be obtained
by a similar method. 2

By using (3.8), we can prove the following result.

Theorem 3.2 Let M be a hemislant submanifold of a g.c.K. manifold (M̄, J, ω, g) . Then the slant distribution
Dθ on M is integrable if and only if

g(AJXPV −AFPV X,U) = g(AJXPU −AFPUX,V )− ω(JX)g(PV,U), (3.9)

for X ∈ Γ(D⊥) and U, V ∈ Γ(Dθ) .

Remark 3.3 The integrability condition of the distribution Dθ was given in Proposition 3.2 of [19] in a different
way.

Theorem 3.4 Let M be a proper hemislant submanifold of a g.c.K. manifold (M̄, J, ω, g) . Then the totally
real distribution D⊥ is always integrable.

Proof The proof is very similar to the proof of Theorem 3.1 of [19]. So, we omit it. 2

Remark 3.5 Throughout this paper, for a hemislant submanifold M of a g.c.K. manifold (M̄, J, ω, g) , we write
BM = B⊥ +Bθ , where BT (resp. Bθ ) is tangential part of BM to D⊥ (resp. Dθ ).
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4. Warped-twisted product hemislant submanifolds of a g.c.K. manifold
In this section, we give a characterization for a warped-twisted product hemislant submanifold in the form
f2M

⊥ ×f1 M
θ with warping function f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) .

We first give an (nontrivial) example of such a submanifold.

Example 4.1 Let (z1, ..., z6) be natural coordinates of the six-dimensional Euclidean space R6 and let R̄6 =

{(z1, ..., z6) ∈ R6 : z1 ̸= ∓z2 and z5 ̸= 0} . Then (R̄6, J, g0) is a Kaehler manifold with usual Kaehler structure
(J, g0) . Now, we consider the Riemannian metric g = eσg0 conformal to Kaehler metric g0 on R̄6 , where

eσ =
(z22 − z21)

2

16
(z5)

2 . So, (R̄6, J, g) is a g.c.K. manifold. Let M be a submanifold given by

z1 = u− v , z2 = u+ v , z3 = v , z4 = 0 , z5 = x , z6 = 0 ,

where x, u, v ̸= 0 . Then, the local frame field of the tangent bundle TM of M is given by

X = ∂5 , U =
1√
2
(∂1 + ∂2) , V =

1√
3
(−∂1 + ∂2 + ∂3),

where ∂i =
∂
∂zi

for i ∈ {1, 2, ..., 6} . Then D⊥ = span{X} is a totally real and Dθ = span{U, V } is a (proper)

slant distribution with the slant angle θ = cos−1( 2√
6
). Thus, M is a proper hemislant submanifold with the

slant angle θ = cos−1( 2√
6
).

By direct calculations, we see the distributions D⊥ and Dθ are integrable. Let us denote the integral
submanifolds of D⊥ and Dθ by M⊥ and Mθ , respectively. Let g⊥ and gθ be the induced metrics from the
Kaehler metric g0 on M⊥ and Mθ , respectively. We choose the conformal Riemann metric ḡ⊥ = x2g⊥ and
ḡθ = u2gθ on M⊥ and Mθ , respectively.

Since x = z5 and uv =
(z22 − z21)

4
on M , the induced metric of M from the conformal Kaehler metric g

is
ds2 = (uv)2x2dx2 + (uv)2x2(du2 + dv2)

= (uv)2x2g⊥ + (uv)2x2gθ
= (uv)2ḡ⊥ + (xv)2ḡθ.

Thus, M is a warped-twisted product of (M⊥, ḡ⊥) and (Mθ, ḡθ) . So, f2M
⊥ ×f1 M

θ is a (nontrivial) warped-
twisted product proper hemislant submanifold of the g.c.K. manifold (R̄6, J, g) with warping function f2 = uv

and twisting function f1 = vx . Moreover, the Lee form of (R̄6, J, g) is

ω = 2

(
1

x
dx+

1

u
du+

1

v
dv

)
.

Consequently, the Lee vector field is

B =
2

(uv)2x2

(
1

x

∂

∂x
+

1

u

∂

∂u
+

1

v

∂

∂u

)
which is tangent to M .
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Lemma 4.2 Let M = f2M
⊥×f1 M

θ be a warped-twisted product hemislant submanifold with warping function
f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) . Then, for all X ∈ L(M⊥) , we have

ω(X) = 2
3X(ln f1). (4.1)

Proof Let M = f2M
⊥ ×f1 Mθ be a warped-twisted product hemislant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) and U, V ∈ L(Mθ) and X ∈ L(M⊥) .
Then, we have

3dΩ(X,U, V ) = XΩ(U, V ) + UΩ(V,X) + V Ω(X,U)
−Ω([X,U ], V )− Ω([U, V ], X)− Ω([V,X], U)

= Xg(U,PV ),

since [X,V ] = [X,U ] = 0 from (2.3) and [U, V ] = ∇θ
UV −∇θ

V U ∈ Γ(TMθ) from (2.4). After some calculation
in view of (2.3), we obtain

3dΩ(X,U, V ) = 2X(ln f1)g(U,PV ), (4.2)

since PV ∈ L(Mθ) . On the other hand, we have

dΩ(X,U, V ) = ω ∧ Ω(X,U, V )
= ω(X)Ω(U, V ) + ω(U)Ω(V,X) + ω(V )Ω(X,U)
= ω(X)g(U,PV ) ,

from (2.5). Namely,
dΩ(X,U, V ) = ω(X)g(U,PV ). (4.3)

Thus, the assertion follows from (4.2) and (4.3). 2

By Lemma 4.2, we immediately have the following result.

Theorem 4.3 Let M =f2 M⊥×f1M
θ be a warped-twisted product hemislant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) . Then M is a base conformal warped
product submanifold in the form f2M

⊥ ×f1 M
θ if and only if the Lee vector field B is normal to M⊥ .

Proof Let M =f2 M⊥ ×f1 Mθ be a warped-twisted product hemislant submanifold with warping function
f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) . If M is a base conformal warped
product submanifold in the form f2M

⊥ ×f1 M
θ , then for any X ∈ L(M⊥) , X(ln f1)=0, since f1 depends only

on the points of Mθ . From (4.1), we find g(B,X) = 0 . So, the Lee vector field B is normal to M⊥ .

Conversely, if the Lee vector field B is normal to M⊥ , we have g(B,X) = 0 . Then, we get X(ln f1) = 0

for any X ∈ L(M⊥) from (4.1). So f1 depends only on the points of Mθ . Then the induced metric tensor gM

of M has the form gM = f2
2g⊥ ⊕ g̃θ , where f2 is warping function and g̃θ = f1

2gθ . Thus, M =f2 M⊥ ×f1 M
θ

is a base conformal warped product. 2

Lemma 4.4 Let M = f2M
⊥×f1 M

θ be a warped-twisted product hemislant submanifold with warping function
f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) . Then, for all V ∈ L(Mθ) , we have

ω(V ) = 2
3V (ln f2). (4.4)
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Proof Let M =f2 M⊥×f1 M
θ be a warped-twisted product hemislant submanifold with the warping function

f2 ∈ C∞(Mθ) and the twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) . Then we have dω = 0 , since ω =

dσ . Hence, using the exterior differentiation formula, we obtain 0 = dω(V,X) = V ω(X)−Xω(V )− ω([V,X])

for V ∈ L(Mθ) and X ∈ L(M⊥) . Hence, it follows that

V ω(X) = Xω(V ), (4.5)

since [V,X] = 0. Here, using (4.1), (2.3) and (2.6), we have

3
2V ω(X) = V [X(ln f1)] = V [g(X,∇ ln f1)]

= g(∇V X,∇ ln f1) + g(X,∇V ∇ ln f1)

= g

(
V (ln f2)X +X(ln f1)V,∇ ln f1

)
+g

(
X,V (ln f2)∇ ln f1 +∇ ln f1(ln f1)V

)
= 2V (ln f2)X(ln f1) .

(4.6)

Hence, we obtain
V ω(X) = 4

3V (ln f2)X(ln f1). (4.7)

On the other hand, using (2.3) and (2.6), we have

Xω(V ) = Xg(B, V ) = Xg(Bθ, V )
= g(∇XBθ, V ) + g(Bθ,∇XV )

= g

(
Bθ(ln f2)X +X(ln f1)B

θ, V

)
+ g

(
Bθ, V (ln f2)X +X(ln f1)V

)
= 2ω(V )X(ln f1) .

(4.8)

Namely, we have
Xω(V ) = 2ω(V )X(ln f1). (4.9)

Now, using (4.5)∼(4.9), we get (4.4). 2

By Lemma 4.8, we immediately have the following result.

Theorem 4.5 Let M =f2 M⊥×f1M
θ be a warped-twisted product hemislant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) . Then M is a twisted product
submanifold in the form M⊥ ×f1 M

θ if and only if the Lee vector field B is normal to Mθ .

Proof Let M is a twisted product submanifold in the form M⊥ ×f1 Mθ , where f1 is a twisting function.
Then, for any V ∈ L(Mθ) , V (ln f2)=0, since f2 is a constant. From (4.4), we find g(B, V ) = 0 , for any
V ∈ L(Mθ) . So, the Lee vector field B is normal to Mθ .

Conversely, if the Lee vector field B is normal to Mθ , we have g(B, V ) = 0 , for any V ∈ L(Mθ) . Then,
we get V (ln f2) = 0 from (4.4). So, f2 is a constant, say f2 = c . Then the induced metric tensor gM of M

has the form gM = c2g⊥ ⊕ f1
2gθ , where c is constant and f1 is the twisting function. Thus, M = M⊥ ×f1 M

θ

is a twisted product. 2

By Theorems 4.3 and 4.5, we get the following result.
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Theorem 4.6 Let M = f2M
⊥×f1M

θ be a warped-twisted product hemislant submanifold with warping function
f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g). Then M is a locally direct product
manifold if and only if the Lee vector field B is normal to M .

Proof Let M = f2M
⊥ ×f1 Mθ be a warped-twisted product hemislant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g). If M is a locally direct product,
then the functions f1 and f2 are constants. In that case, for any X ∈ L(M⊥) and V ∈ L(Mθ) , we have
g(B,X) = g(B, V ) = 0 from (4.1) and (4.4), respectively. It follows that B is normal to M .

Conversely, let B is normal to M . Then, for any X ∈ L(M⊥) and V ∈ L(Mθ) , we have X(ln f1) =

V (ln f2) = 0 . It follows that f2 is a constant, say f2 = c and f1 depends only on the points of Mθ . Then
the induced metric tensor gM of M has the form gM = c2g⊥ ⊕ f1

2gθ . Hence, we conclude that M is a locally
direct product of (M⊥, g̃⊥) and (Mθ, g̃θ) , where g̃⊥ = c2g⊥ and g̃θ = f1

2gθ . 2

By using (3.7) and (4.4), we deduce the following result.

Lemma 4.7 Let M =f2 M⊥×f1 M
θ be a warped-twisted product hemislant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) . Then we have

g(AJXPV −AFPV X,Y ) =

{
cos2θ ω(V ) + 1

2ω(FPV )

}
g(X,Y ) (4.10)

for any X,Y ∈ L(M⊥) and V ∈ L(Mθ).

By using (3.8) and (4.1), we deduce the following result.

Lemma 4.8 Let M =f2 M⊥×f1 M
θ be a warped-twisted product hemislant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, g) . Then we have

g(AJXPV −AFPV X,U) = − cos2θ ω(X)g(V,U)− 1
2ω(JX)g(PV,U), (4.11)

for any X ∈ L(M⊥) and U, V ∈ L(Mθ).

Now, we recall the following two facts to prove the main theorem.

Lemma 4.9 (Proposition 3-a [16]) Let g be a pseudo-Riemannian metric on the manifold M = M1 × M2

and (D1,D2) are called the canonical foliations. Suppose that D1 and D2 intersect perpendicularly everywhere.
Then (M, g) is a doubly twisted product f2M1 ×f1 M2 if and only if D1 and D2 are totally umbilic foliations.

Lemma 4.10 (Lemma 3.1.1 [13]) Let f2M1 ×f1 M2 be a doubly twisted product. It is a doubly warped product
if and only if the mean curvature vector fields of the canonical foliations are closed.

Motivated by Lemma 4.9 and Lemma 4.10, we can obtain the following result.

Lemma 4.11 Let f2M1×f1M2 be a doubly twisted product. It is a warped-twisted product with warping function
f2 ∈ C∞(M2) and twisting function f1 if and only if the mean curvature vector field of canonical foliation D1

is closed.
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Proof The proof is very similar to the proof of Lemma 2.3 [12], so we omit it. 2

We now are ready to prove the main theorem.

Theorem 4.12 Let M be a hemislant submanifold of a g.c.K. manifold (M̄, J, ω, g). Then M is a locally
warped-twisted product submanifold if and only if its shape operator A satisfies the following equation

AJXPV −AFPV X =

{
cos2θ ω(V ) +

1

2
ω(FPV )

}
X − cos2θ ω(X)V − 1

2
ω(JX)PV, (4.12)

for X ∈ Γ(D⊥) and V ∈ Γ(Dθ) . Moreover, M is also a locally doubly warped product submanifold.

Proof Let M be a warped-twisted product submanifold of a g.c.K. manifold (M̄, J, ω, g) of type f2M
⊥×f1M

θ .
For any X ∈ L(M⊥) and V ∈ L(Mθ) , we write

AJXPV −AFPV X =

(
AJXPV −AFPV X

)⊥

+

(
AJXPV −AFPV X

)θ

, (4.13)

where
(
AJXPV −AFPV X

)⊥

is the tangent part of AJXPV −AFPV X to M⊥ and
(
AJXPV −AFPV X

)θ

is the tangent part of AJXPV −AFPV X to Mθ . Hence, for any Y ∈ L(M⊥) , using (4.10), we have

g(AJXPV −AFPV X, Y ) = g

({
cos2θ ω(V ) +

1

2
ω(FPV )

}
X, Y

)
.

Since Y ∈ L(M⊥) is arbitrary and the metric g is Riemannian, it follows that

(
AJXPV −AFPV X

)⊥

=

{
cos2θ ω(V ) + 1

2ω(FPV )

}
X. (4.14)

Similarly, for any U ∈ L(Mθ) , using (4.11), we have

g(AJXPV −AFPV X, U) = g

(
− cos2θ ω(X)V − 1

2
ω(JX)PV, U

)
.

Since U ∈ L(Mθ) is arbitrary and the metric g is Riemannian, it follows that

(
AJXPV −AFPV X

)θ

= − cos2θ ω(X)V − 1
2ω(JX)PV. (4.15)

Thus, by (4.13)–(4.15), we get (4.12).

Conversely, suppose that M is a hemislant submanifold of a g.c.K. manifold (M̄, J, ω, g) such that (4.12)
holds. Then, for any X ∈ Γ(D⊥) and U, V ∈ Γ(Dθ) , using (4.12), we deduce that (3.9). Thus, by Theorem 3.2,
the slant distribution Dθ is integrable. On the other hand, from Theorem 3.4, we already know that the totally
real distribution D⊥ is integrable. Let M⊥ and Mθ be the integral manifolds of D⊥ and Dθ , respectively and
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let denote by h⊥ and hθ the second fundamental forms of M⊥ and Mθ in M , respectively. Then, for any
X,Y ∈ Γ(D⊥) and V ∈ Γ(Dθ) , using (2.9), we have

g(h⊥(X,Y ), V ) = g(∇XY, V ).

Here, if we use (3.7) and (4.12), we find

g(h⊥(X,Y ), V ) = − 3
2ω(V )g(X,Y ).

Using (2.6), we obtain
g(h⊥(X,Y ), V ) = g(−g(X,Y ) 32B

θ, V ).

Hence, we conclude that
h⊥(X,Y ) = −g(X,Y ) 32B

θ.

This equation says that M⊥ is totally umbilic with the mean curvature vector field − 3
2B

θ . On the other hand,
for any X ∈ Γ(D⊥) and U, V ∈ Γ(Dθ) , using (2.9), we have

g(hθ(U, V ), X) = g(∇UV,X).

Here, if we use (3.8) and (4.12), we find

g(hθ(U, V ), X) = − 3
2ω(X)g(U, V ).

Using (2.6), we obtain
g(hθ(U, V ), X) = g(−g(U, V ) 32B

⊥, X).

Hence, we conclude that
hθ(U, V ) = −g(U, V ) 32B

⊥.

It means that Mθ is totally umbilic in M with the mean curvature vector field − 3
2B

⊥.

Next, we prove B⊥ and Bθ are closed. Let denote by ω⊥ (resp. ωθ ) the dual 1-form of B⊥ (resp. Bθ ).
For any X ∈ Γ(D⊥) , we have ω⊥(X) = ω(X) . Thus, for X,Y ∈ Γ(D⊥) , we obtain

dω⊥(X,Y ) = Xω⊥(Y )− Y ω⊥(X)− ω⊥([X,Y ]) = Xω(Y )− Y ω(X)− ω([X,Y ]) = dω(X,Y ).

It follows that dω⊥ = 0 , since dω = 0 . Namely, ω⊥ is closed. Hence, B⊥ is closed, since its dual 1-form is
closed. Thus, by Lemma 4.11, M is a locally warped-twisted product submanifold. Moreover, we can prove
that Bθ is closed in a similar way. Thereby, by Lemma 4.10, M is also a locally doubly warped product
submanifold. 2

Remark 4.13 We have just proved that a warped-twisted product hemislant submanifold of a g.c.K. manifold
(M̄, J, ω, g) is also a doubly warped product submanifold in Theorem 4.12. Therefore, from now on we will focus
on doubly warped product submanifolds of a g.c.K. manifold.
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5. An inequality for doubly warped product mixed geodesic hemislant submanifolds

In this section, we shall establish an inequality for the squared norm of the second fundamental form of a
doubly warped product mixed geodesic hemislant submanifold in the form f2M

⊥ ×f1 Mθ , where M⊥ is a
totally real and Mθ is a slant submanifold of a g.c.K. manifold (M̄, J, ω, g) . Note that a general inequality for
any doubly warped product submanifold in arbitrary Riemannian manifolds was established in Theorem 3 of [14].

Let f2M1 ×f1 M2 be a doubly warped product manifold equipped with the metric g defined by

g = (f2 ◦ π2)
2π∗

1(g1) + (f1 ◦ π1)
2π∗

2(g2). (5.1)

Then the covariant derivative formulas (2.2)–(2.4) become

∇̄XY = ∇1
XY − g(X,Y )∇̄(ln f2 ◦ π2), (5.2)

∇̄V X = ∇̄XV = V (ln f2 ◦ π2)X +X(ln f1 ◦ π1)V, (5.3)

∇̄UV = ∇2
UV − g(U, V )∇̄(ln f1 ◦ π1), (5.4)

for X,Y ∈ L(M1) and U, V ∈ L(M2) . It follows that M1 × {p2} and {p1} × M2 are totally umbilical
submanifolds with closed mean curvature vector fields in f2M1 ×f1 M2 [13], where p1 ∈ M1 and p2 ∈ M2. We
say that a doubly warped product is nontrivial if it is neither warped nor a direct product.

Remark 5.1 [11] For a doubly warped product manifold f2M1 ×f1 M2 , we have

∇̄(ln f1 ◦ π1) =
1

(f2 ◦ π2)2
∇1(ln f1 ◦ π1),

∇̄(ln f2 ◦ π2) =
1

(f1 ◦ π1)2
∇2(ln f2 ◦ π2).

(5.5)

In view of the above convenience together with (5.1) and (5.5), the covariant derivative formulas (5.2) and (5.4)
become

∇̄XY = ∇1
XY − (f2 ◦ π2)

2

(f1 ◦ π1)2
g1(X,Y )∇2(ln f2 ◦ π2), (5.6)

∇̄UV = ∇2
UV − (f1 ◦ π1)

2

(f2 ◦ π2)2
g2(U, V )∇1(ln f1 ◦ π1), (5.7)

for X,Y ∈ L(M1) and U, V ∈ L(M2) .
For more details on doubly warped products, we refer to the papers [11], [12], [13] and [20].

Remark 5.2 From now on, we will use the same symbol for a warping function fi and its pullback fi ◦ πi for
i = 1, 2 , i.e. we will put fi = fi ◦ πi .
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Lemma 5.3 Let M be a doubly warped product hemislant submanifold in the form f2M
⊥ ×f1 M

θ , where M⊥

is a totally real and Mθ is a slant submanifold of a g.c.K. manifold (M̄, J, ω, g) . Then, we have

g(h(X,Y ), FV ) = g(h(V, Y ), JX) +

{
2
3PV (ln f2)− 1

2ω(FV )

}
g(X,Y ), (5.8)

g(h(U, V ), JX) = g(h(U,X), FV ) + 2
3X(ln f1)g(PV,U)− 1

2ω(JX)g(U, V ), (5.9)

for X,Y ∈ L(M⊥) and U, V ∈ L(Mθ) .

Proof Let X,Y ∈ L(M⊥) and U, V ∈ L(Mθ) , by interchanging V with PV in (4.10) and (4.11), respectively,
and using (2.11) and (3.5), we get (5.8) and (5.9) respectively. 2

Remark 5.4 We say that a hemislant submanifold M is mixed geodesic, if h(X,V ) = 0 for X ∈ Γ(D⊥) and
V ∈ Γ(Dθ).

By Remark 5.4 together with (2.6), we have that:

Corollary 5.5 Let M =f2 M⊥ ×f1 M
θ be a doubly warped product mixed geodesic hemislant submanifold of a

g.c.K. manifold (M̄, J, ω, g) . If the Lee vector field B is tangent to M , then Equations (5.8) and (5.9) become

g(h(X,Y ), FV ) = 2
3PV (ln f2)g(X,Y ), (5.10)

g(h(U, V ), JX) = 2
3X(ln f1)g(PV,U), (5.11)

respectively, where X,Y ∈ L(M⊥) and U, V ∈ L(Mθ).

Let M =f2 M⊥×f1 M
θ be a (m1+m2) -dimensional doubly warped product hemislant submanifold of a g.c.K.

manifold (M̄, J, ω, g) . We choose a canonical orthonormal basis {e1, ..., em1
, ē1, ..., ēm2

, Je1, ..., Jem1
, e∗1, ..., e

∗
m2

, ê1, ..., êl}

of M̄ such that {e1, ..., em1
} is an orthonormal basis of D⊥ , {ē1, ..., ēm2

} is an orthonormal basis of Dθ ,
{Je1, ..., Jem1

} is an orthonormal basis of JD⊥ , {e∗1, ..., e∗m2
} is an orthonormal basis of FDθ and {ê1, ..., êl}

is an orthonormal basis of D. Here, m1 = dim(D⊥) , m2 = dim(Dθ) and l = dim(D).

Remark 5.6 In view of (3.6), we can observe that {secθP ē1, ..., secθP ēm2
} is also an orthonormal basis of Dθ

and {cscθF ē1, ..., cscθF ēm2} is also an orthonormal basis of FDθ , where θ is the slant angle of Dθ .

Theorem 5.7 Let M =f2 M⊥ ×f1 M
θ be a doubly warped product mixed geodesic hemislant submanifold of a

g.c.K. manifold (M̄, J, ω, g) such that the Lee vector field B is tangent to M . Then the squared norm of the
second fundamental form h of M satisfies

∥h∥2 ≥ m1 cot
2θ∥Bθ∥2θ +m2(m2 − 1) cos2θ∥B⊥∥2⊥, (5.12)

where m1 = dim(M⊥) and m2 = dim(Mθ) and ∥.∥⊥ (resp. ∥.∥θ ) is calculated with respect to the metric g⊥

(resp. gθ ).
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Proof By the hypothesis, the squared norm of the second fundamental form h can be written as

∥h∥2 = ∥h(D⊥,D⊥)∥2 + ∥h(Dθ,Dθ)∥2.

In view of the decomposition (3.4), which can be explicitly written as follows:

∥h∥2 =

m1∑
i,j,k=1

g(h(ei, ej), Jek)
2 +

m1∑
i,j=1

m2∑
a=1

g(h(ei, ej), e
∗
a)

2

+

m2∑
a,b=1

m1∑
i=1

g(h(ēa, ēb), Jei)
2 +

m1∑
a,b,c=1

g(h(ēa, ēb), e
∗
c)

2

+

m1+m2∑
r,s=1

l∑
t=1

g(h(ẽr, ẽs), êt)
2,

(5.13)

where the set {ẽr}1≤r≤(m1+m2) is an orthonormal basis of M. Hence, we get

∥h∥2 ≥
m1∑

i,j=1

m2∑
a=1

g(h(ei, ej), e
∗
a)

2 +

m2∑
a,b=1

m1∑
i=1

g(h(ēa, ēb), Jei)
2.

By Remark 5.6, we arrive at

∥h∥2 ≥
m1∑

i,j=1

m2∑
a=1

g(h(ei, ej), cscθF ēa)
2 +

m2∑
a,b=1

m1∑
i=1

g(h(ēa, ēb), Jei)
2.

Now, using (5.10) and (5.11), we obtain

∥h∥2 ≥ 4
9 csc

2θ

m1∑
i,j=1

m2∑
a=1

(P ēa(ln f2))
2g2(ei, ej)

+ 4
9

m2∑
a,b=1

m1∑
i=1

(ei(ln f1))
2g2(P ēa, ēb).

Again, by Remark 5.6, we can put P ēa = cosθéc , where {éc}1≤c≤m2 is an orthonormal basis of Dθ , so the last
equation becomes

∥h∥2 ≥ 4
9 cot

2θ

m1∑
i,j=1

m2∑
c=1

(éc(ln f2))
2g2(ei, ej)

+ 4
9

m2∑
a,b=1

m1∑
i=1

(ei(ln f1))
2g2(P ēa, ēb).

Here, for a, b ∈ {1, 2, ...,m2}, we have

g(P ēa, ēb) = { cosθ if a ̸= b,
0 if a = b,

since Dθ is a slant distribution with slant angle θ . Thus, by a direct calculation, we obtain the following
inequality.

∥h∥2 ≥ 4

9

{
m1 cot

2θ∥∇ ln f2∥2 +m2(m2 − 1) cos2θ∥∇ ln f1∥2
}
. (5.14)
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On the other hand, by (2.6) and (5.5), we conclude that

B⊥ =
2

3f2
2∇

⊥(ln f1) and Bθ =
2

3f1
2∇

θ(ln f2) (5.15)

from (4.1) and (4.4), respectively. Hence, using (5.5) and (5.15) in (5.14), we get the inequality (5.12). 2

Theorem 5.8 Let M =f2 M⊥ ×f1 Mθ be a doubly warped product mixed geodesic hemislant submanifold of
a g.c.K. manifold (M̄, J, ω, g) such that the Lee vector field B is tangent to M . If the invariant subnormal
bundle D = {0} , then the equality sign of (5.12) holds if and only if AJXY ∈ L(Mθ) and AFUV ∈ L(M⊥) ,
where X,Y ∈ L(M⊥) and U, V ∈ L(Mθ) .

Proof Under the given hypothesis, we see that the equality sign of (5.12) holds if and only if

g(h(D⊥,D⊥), JD⊥) = 0 and g(h(Dθ,Dθ), FDθ) = 0

from (5.13). These are equivalent to

g(h(Y, Z), JX) = 0 and g(h(V,W ), FU) = 0

for X,Y, Z ∈ L(M⊥) and U, V,W ∈ L(Mθ). But, with the help of (2.11), we know these conditions hold if and
only if

AJXY ∈ L(Mθ) and AFUV ∈ L(M⊥) .

2

Theorem 5.9 Let M =f2 M⊥ ×f1 Mθ be a nontrivial doubly warped product mixed geodesic hemislant
submanifold of a g.c.K. manifold (M̄, J, ω, g) such that the Lee vector field B is tangent to M and the invariant
subnormal bundle D = {0} . If the equality sign of (5.12) holds, then Mθ is also totally umbilic in the ambient
manifold M̄ .

Proof Let h̄θ denote the second fundamental form of Mθ in M̄ . Then, for a ∈ {1, ...,m2} , we have

h̄θ(ēa, ēa) = hθ(ēa, ēa) + h(ēa, ēa), (5.16)

where {ē1, ..., ēm2} is an orthonormal basis of Mθ and hθ is the second fundamental form of Mθ in M , and h

is the second fundamental form of M in M̄ . Since M =f2 M⊥ ×f1 M
θ is a nontrivial doubly warped product,

we see that
hθ(ēa, ēa) = −

2

f22∇⊥(ln f1) ̸= 0,

from (5.7). On the other hand, we know h(Dθ,Dθ) ⊆ JD⊥ from Theorem 5.8. Thus, we have

h(ēa, ēa) =

m1∑
i=1

g(h(ēa, ēa), Jei)Jei,
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where {e1, ..., em1} is an orthonormal basis of M⊥ . Here, for each a ∈ {1, ...,m2} and i ∈ {1, ...,m1} , using
(5.11), we find

g(h(ēa, ēa), Jei) =
2
3ei(ln f1)g(P ēa, ēa) = 0,

since g(P ēa, ēa) = 0 . Which means that
h(ēa, ēa) = 0,

for each a ∈ {1, ...,m2}. It follows that

h̄θ(ēa, ēa) = hθ(ēa, ēa),

from (5.16). Thus, Mθ is totally umbilic in M̄ , since it is totally umbilic in M . 2

Remark 5.10 Whether the Lee form ω is exact or not does not change all the results in this paper. Thus,
these results also hold for locally conformal Kaehler case.
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