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Abstract: This paper studies the convergence of the so-called sampling Kantorovich operators for functions belonging
to weighted spaces of continuous functions. This setting allows us to establish uniform convergence results for functions
that are not necessarily uniformly continuous and bounded on R . In that context we also prove quantitative estimates
for the rate of convergence of the family of the above operators in terms of weighted modulus of continuity. Finally,
pointwise convergence results in quantitative form by means of Voronovskaja type theorems have been also established.
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1. Introduction
The sampling type operators are very useful tools in order to provide an approximate version of the classical
Whittaker–Kotel’nikov–Shannon (WKS) sampling theorem [23, 25], and it has been widely studied since 1980s.
An approximate version of WKS sampling theorem was developed at RWTH Aachen by P. L. Butzer and his
school in the late 1970s. This has been made by the introduction of the generalized sampling series defined by

(Gχ
wf) (x) =

∑
k∈Z

f

(
k

w

)
χ (wx− k) , x ∈ R, w > 0, (1.1)

where f : R → R is any function for which the series (1.1) is convergent for every x ∈ R , and χ : R → R
(called the kernel of the operator) denotes a continuous, discrete approximate identity which satisfies suitable
assumptions (see [11] and see [12, 28] for their main properties). The main advantage of the operators Gχ

w is to
reconstruct a given continuous signal f by its sample values in the form f (k/w) , k ∈ Z , w > 0. For a more
comprehensive studies, we refer the readers to, among the others, [6, 8, 14–16, 26, 29, 30].

In order to approximate not necessarily continuous function, an L1 -version of the above operators was

first introduced in [7], by replacing the sample values in Gχ
w with the mean values w

∫ (k+1)/w

k/w
f (u) du . The
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so-called sampling Kantorovich operators are of the form

(Kχ
wf) (x) :=

∑
k∈Z

w (k+1)/w∫
k/w

f (u) du

χ (wx− k) , x ∈ R, (1.2)

where f is a locally integrable function and χ is a kernel function.
The construction of the operators in (1.2) is the most natural way to obtain operators which can be

well-defined also for general measurable, locally integrable functions, hence not necessarily continuous. One can
face such a situation, especially, in all concrete applications in which a sample of a given signal f at the point
k/w can not be matched exactly. This situation produces a kind of error in the reconstruction of a given signal
which is called ”time-jitter” error. It is clear that, the operator of type (1.2) allows us to reduce the time-jitter
error by using the data taken in a neighborhood of the samples k/w in place of the exact pointwise values at
the nodes k/w . Also in practice, in the process of acquiring an image, the sensor that measures the signal
always averages the signal at the sensor (pixel) rather than measuring the signal at a point, and therefore the
Kantorovich sampling model seems to be the one that appropriately describes what happens in reality. The
sampling Kantorovich operators have been studied with respect to many aspects, see [4, 9, 10, 13, 17, 19, 27].

It is well-known that, there exist a natural relation between the generalized sampling series (1.1) and
their Kantorovich forms (1.2). To show this relation, let us consider the functions

F (x) =

∫ x

0

f(y)dy

and

(σwF )(x) = F

(
x+

1

w

)
− F (x). (1.3)

In this case, it is easy to see the connection

(Kχ
wf) (x) = w

∑
k∈Z

χ (wx− k)

[
F

(
k + 1

w

)
− F

(
k

w

)]
= w (Gχ

w(σwF )) (x) . (1.4)

The studies for the above operators in the continuous setting are generally for functions f belonging
to CU

B (R) (the space of uniformly continuous and bounded functions). Since the sampling series and their
forms aim to reconstruct (in some sense) a given continuous signal f by a sequence of their sample values,
assuming uniform continuity and boundedness of target function is very restrictive. In order to enlarge the class
of functions for which we consider the approximation problems, generalized sampling operators Gχ

w have been
studied in weighted spaces of functions in [1].

In the present paper, we investigate the approximation behaviors of generalized sampling Kantorovich
operators Kχ

w for functions belonging to weighted space of functions. More precisely, for the above operators
the pointwise and uniform convergence are established together with the rate of convergence by involving the
weighted modulus of continuity. Finally, we prove quantitative Voronovskaja type theorem for the operators
(1.2).
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The paper is organized as follows. The first and second sections are devoted to fundamentals of generalized
sampling and sampling Kantorovich series, as well as to some auxiliary results. The third section is devoted
to well-definiteness of the operators between weighted spaces of functions, together with pointwise and uniform
convergence. In Section 4, we present rate of convergence of the family of operators in terms of weighted
modulus of continuity. The last section contains a pointwise convergence result in quantitative form by means
of a Voronovskaja type theorem.

2. Preliminaries and auxiliary results
A function χ : R → R is called a kernel function if it satisfies the following assumptions:

(χ1) χ is continuous on R.

(χ2) the discrete algebraic moment of order 0 :

m0 (χ, u) =
∑
k∈Z

χ (u− k) = 1,

for every u ∈ R .

(χ3) there exists β > 0 , such that the discrete absolute moment of order β is finite, i.e.:

Mβ (χ) = sup
u∈R

∑
k∈Z

|χ (u− k)| |u− k|β < +∞.

The above assumptions are quite natural when sampling type series are studied. Several examples of kernels
known in the literature can be found, e.g., in [20].

The following lemma holds (see [7]).

Lemma 2.1 Let χ be a function satisfying (χ1) and (χ3) . For every δ > 0 there holds:

lim
w→+∞

∑
|k−wx|>wδ

|χ (wx− k)| = 0,

uniformly with respect to x ∈ R .

From [18, Lemma 2.1. (i)], if χ satisfies the assumptions (χ1) and (χ3) , it follows that

Mγ (χ) = sup
u∈R

∑
k∈Z

|χ (u− k)| |u− k|γ < +∞,

for every 0 ≤ γ ≤ β .
Now, we introduce the weighted function spaces.
A function w̃ is said to be a weight function if it is a positive continuous function on the whole real axis

R . Here, we consider the weight function

w̃ (x) =
1

1 + x2
, x ∈ R.
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By Bw̃ (R) , we denote the space

Bw̃ (R) =
{
f : R → R : sup

x∈R
w̃ (x) |f (x)| ∈ R

}
.

Denoting by C0(R) the space of continuous functions on the whole R , the following natural subspaces of Bw̃ (R)
will be used in the rest of the paper:

Cw̃ (R) := C0 (R) ∩Bw̃ (R) ,

C∗
w̃ (R) :=

{
f ∈ Cw̃ (R) : lim

x→∓+∞
w̃ (x) f (x) ∈ R

}
,

Uw̃ (R) := {f ∈ Cw̃ (R) : w̃f is uniformly continuous} .

The linear space of functions Bw̃ (R) , and its above subspaces are normed spaces with the norm

∥f∥w̃ := sup
x∈R

w̃ (x) |f (x)|

see [3, 5, 21, 22].
The weighted modulus of continuity, considered in [24] and denoted by Ω(f ; ·) , is defined for f ∈ Cw̃ (R)

by

Ω(f ; δ)= sup
|h|<δ, x∈R

|f (x+ h)− f (x)|
(1 + h2) (1 + x2)

, for δ > 0. (2.1)

Some elementary properties of Ω(f ; δ) are collected in the following lemma.

Lemma 2.2 ([24]) Let δ > 0, x ∈ R . Then,

(i) Ω(f ; δ) is an increasing function of δ ,

(ii) lim
δ→0+

Ω(f ; δ) = 0 when f ∈ C∗
w̃ (R) ,

(iii) for each λ > 0 and f ∈ Cw̃ (R) ,

Ω(f ;λδ) ≤ 2 (1 + λ)
(
1 + δ2

)
Ω(f ; δ). (2.2)

Remark 2.3 ([1]) Using the inequality (2.2) with λ = |y−x|
δ , x , y ∈ R , δ > 0 , we have

|f(y)− f(x)| ≤ 2

(
1 +

|y − x|
δ

)
(1 + δ2)(1 + x2)(1 + (y − x)2)Ω(f ; δ)

≤

{
4(1 + δ2)2(1 + x2)Ω(f ; δ), |y − x| ≤ δ,

4(1 + δ2)2(1 + x2)Ω(f ; δ) |y−x|3
δ3 , |y − x| > δ.

Therefore, combining both the above cases, we obtain

|f(y)− f(x)| ≤ 4(1 + δ2)2(1 + x2)Ω(f ; δ)

(
1 +

|y − x|3

δ3

)
.
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Moreover, choosing 0 < δ ≤ 1 we get

|f(y)− f(x)| ≤ 16(1 + x2)Ω(f ; δ)

(
1 +

|y − x|3

δ3

)
, (2.3)

for every f ∈ Cw̃ (R) , x, y ∈ R .

3. Pointwise and uniform convergence of Kχ
w in weighted spaces

This section is devoted to pointwise and uniform convergence of the series Kχ
wf for functions f belonging to

Cw̃ (R) and Uw̃ (R) , respectively.
From now on, we will consider kernels χ according with the definition given in Section 2.
Let us first prove well-definiteness of sampling Kantorovich operators acting on weighted spaces of

functions.

Theorem 3.1 Let χ be a kernel satisfying (χ3) for β = 2. Then, for a fixed w > 0, the operator Kχ
w is a

linear operator from Bw̃ (R) to Bw̃ (R) and its operator norm turns out to be:

∥Kχ
w∥Bw̃(R)→Bw̃(R) ≤ M0 (χ)

(
1 +

1

3w2
+

1

w

)
+M1 (χ)

(
1

w
+

1

w2

)
+

M2 (χ)

w2
. (3.1)

Proof For a fixed w > 0 and x ∈ R , using the definition of the operators Kχ
w given in (1.2), we can write

what follows

|(Kχ
wf) (x)| ≤

∑
k∈Z

|χ (wx− k)|w
(k+1)/w∫
k/w

|f (y)|
(
1 + y2

)
1 + y2

dy

≤ ∥f∥w̃
∑
k∈Z

|χ (wx− k)|w
(k+1)/w∫
k/w

(
1 + y2

)
dy

= ∥f∥w̃
∑
k∈Z

|χ (wx− k)|w

[
1

w
+

1

3

(
k + 1

w

)3

− 1

3

(
k

w

)3
]

= ∥f∥w̃
∑
k∈Z

|χ (wx− k)|
[
1 +

1

3w2
+

k2

w2
+

k

w2

]

= ∥f∥w̃
∑
k∈Z

|χ (wx− k)|

[
1 +

1

3w2
+

(
k

w
− x

)2

+ 2x

(
k

w
− x

)
+ x2 +

1

w

(
k

w
− x

)
+

x

w

]

≤ ∥f∥w̃
∑
k∈Z

|χ (wx− k)|
(
1 + x2

) [
1 +

1

3w2
+

|k − wx|2

w2
+

|k − wx|
w

+
|k − wx|

w2
+

1

w

]

≤ ∥f∥w̃
(
1 + x2

) [
M0 (χ)

(
1 +

1

3w2
+

1

w

)
+M1 (χ)

(
1

w
+

1

w2

)
+

M2 (χ)

w2

]
which implies that

|(Kχ
wf) (x)|
1 + x2

≤ ∥f∥w̃

[
M0 (χ)

(
1 +

1

3w2
+

1

w

)
+M1 (χ)

(
1

w
+

1

w2

)
+

M2 (χ)

w2

]
(3.2)
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for every x ∈ R . According to the assumption (χ3) , since the fact that M2 (χ) < +∞ implies Mj (χ) < +∞
for j = 0, 1 we have ∥Kχ

wf∥w̃ < +∞ which means that Kχ
wf ∈ Bw̃ (R) . Further, (3.1) can be directly obtained

by taking supremum over x ∈ R and the supremum with respect to f ∈ Bw̃ (R) with ∥f∥w̃ ≤ 1 in (3.2). 2

The main theorem of this section can be stated as follows:

Theorem 3.2 Let χ be a kernel satisfying (χ3) for β = 2 and f ∈ Cw̃ (R) be fixed. Then,

lim
w→+∞

(Kχ
wf) (x) = f (x) , (3.3)

holds for every x ∈ R . Moreover, if f ∈ Uw̃ (R) , then

lim
w→+∞

∥Kχ
wf − f∥w̃ = 0. (3.4)

Proof Firstly, for all x ∈ R , and w > 0, it is easy to see that the inequality

|f (u)− f (x)| ≤ w̃ (u) |f (u)|
∣∣∣∣ 1

w̃ (u)
− 1

w̃ (x)

∣∣∣∣+ 1

w̃ (x)
|w̃ (u) f (u)− w̃ (x) f (x)|

holds. Using the above inequality and (χ2) , we can write what follows:

|(Kχ
wf) (x)− f (x)| ≤

∑
k∈Z

|χ (wx− k)|w
(k+1)/w∫
k/w

|f (u)− f (x)| du

≤
∑
k∈Z

|χ (wx− k)|w
(k+1)/w∫
k/w

[
w̃ (u) |f (u)|

∣∣∣∣ 1

w̃ (u)
− 1

w̃ (x)

∣∣∣∣
+

1

w̃ (x)
|w̃ (u) f (u)− w̃ (x) f (x)|

]
du

≤ ∥f∥w̃
∑
k∈Z

|χ (wx− k)|w
(k+1)/w∫
k/w

∣∣u2 − x2
∣∣ du

+
1

w̃ (x)

∑
k∈Z

|χ (wx− k)|w
(k+1)/w∫
k/w

|w̃ (u) f (u)− w̃ (x) f (x)| du

:= I1 + I2.
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Let us first estimate I1. By a straightforward computation, we get

I1 ≤ ∥f∥w̃
∑
k∈Z

|χ (wx− k)|w
(k+1)/w∫
k/w

[
(u− x)

2
+ 2 |x| |u− x|

]
du

≤ ∥f∥w̃
∑
k∈Z

|χ (wx− k)|w

1

3

[∣∣∣∣k + 1

w
− x

∣∣∣∣3 − ∣∣∣∣ kw − x

∣∣∣∣3
]
+ 2 |x|

(k+1)/w∫
k/w

|u− x| du


≤ ∥f∥w̃

∑
k∈Z

|χ (wx− k)|w

{
1

3

[
3

w

∣∣∣∣ kw − x

∣∣∣∣2 + 3

w2

∣∣∣∣ kw − x

∣∣∣∣+ 1

w3

]

+ 2 |x|

 (k+1)/w∫
k/w

(
u− k

w

)
du+

(k+1)/w∫
k/w

∣∣∣∣ kw − x

∣∣∣∣ du



= ∥f∥w̃
∑
k∈Z

|χ (wx− k)|

{
|k − wx|2

w2
+

|k − wx|
w2

+
1

3w2
+ 2 |x|

[
1

2w
+

|k − wx|
w

]}

≤ ∥f∥w̃

[
M2 (χ)

w2
+

M1 (χ)

w

(
1

w
+ 2 |x|

)
+

M0 (χ)

w

(
1

3w
+ |x|

)]
. (3.5)

Now let us consider I2. Let x ∈ R and ε > 0 be fixed. Since f is continuous at x, w̃f is also continuous at x,

hence there exists δ > 0 such that |w̃ (u) f (u)− w̃ (x) f (x)| < ε whenever |u− x| < δ , u ∈ R . Hence we can
write

I2 =
1

w̃ (x)

∑
k∈Z

|χ (wx− k)|w
(k+1)/w∫
k/w

|w̃ (u) f (u)− w̃ (x) f (x)| du

=
1

w̃ (x)

 ∑
|k−wx|≤wδ

2

+
∑

|k−wx|>wδ
2

 |χ (wx− k)|w
(k+1)/w∫
k/w

|w̃ (u) f (u)− w̃ (x) f (x)| du

=: I2,1 + I2,2.

Let w′ be fixed in a such way that 1
w < δ

2 for every w > w′ . For u ∈
[
k
w , k+1

w

]
, if |k − wx| ≤ wδ

2 , we have

|u− x| ≤ |u− k/w|+ |k/w − x| ≤ 1

w
+

δ

2
< δ, for w > w′.

Thus we obtain

I2,1 ≤ ε

w̃ (x)

∑
|k−wx|≤wδ

2

|χ (wx− k)| < εM0 (χ)

w̃ (x)
. (3.6)

On the other hand, by using Lemma 2.1 we have for sufficiently large w > 0 that

I2,2 ≤
2 ∥f∥w̃
w̃ (x)

∑
|k−wx|>wδ

2

|χ (wx− k)| ≤
2 ∥f∥w̃
w̃ (x)

ε. (3.7)
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Combining the inequalities (3.5), (3.6), and (3.7) we have

|(Kχ
wf) (x)− f (x)| ≤ ∥f∥w̃

[
M2 (χ)

w2
+

M1 (χ)

w

(
1

w
+ 2 |x|

)
+

M0 (χ)

w

(
1

3w
+ |x|

)]
+

ε

w̃ (x)
(M0 (χ) + 2∥f∥w̃) (3.8)

Finally, taking the limit of both sides as w → +∞ , the assertion (3.3) follows.
Now let us prove the assertion (3.4). For functions f ∈ Uw̃ (R) , let us follow the steps of above proof

and replace δ with the corresponding parameter of the uniform continuity of w̃f. Also considering inequality
(3.8) we can write

w̃ (x) |(Kχ
wf) (x)− f (x)| ≤

w̃ (x) ∥f∥w̃
w2

M2 (χ) +
∥f∥w̃
w

M1 (χ) w̃ (x)

(
1

w
+ 2 |x|

)
+

∥f∥w̃ M0(χ)

w
w̃(x)

(
1

3w
+ |x|

)
+ ε (M0 (χ) + 2 ∥f∥w̃)

≤
∥f∥w̃
w2

M2 (χ) +
∥f∥w̃
w

M1 (χ)

(
1 + 2w

w

)
+

∥f∥w̃
w

M0 (χ)

(
1 + 3w

3w

)
+ ε (M0 (χ) + 2 ∥f∥w̃) , (3.9)

and passing to the supremum in (3.9) over x ∈ R we have (3.4) for w → +∞ . This completes the proof. 2

4. Rate of convergence for Kχ
w

In this section, we propose to obtain the rate of convergence for the family of generalized sampling Kantorovich
operators via weighted modulus of continuity (2.1).

Theorem 4.1 Let χ be a kernel satisfying (χ3) with β = 3. For f ∈ C∗
w̃ (R) , we have

∥Kχ
wf − f∥w̃ ≤ 32Ω(f ;w−1) [M0(χ) + 2M3(χ)] ,

for every w ≥ 1.

Proof For every x ∈ R , using (χ2) and (2.3), we can write what follows:

|(Kχ
wf)(x)− f(x)| ≤

∑
k∈Z

|χ(wx− k)|w
∫ (k+1)/w

k/w

|f(u)− f(x)| du

≤ 16(1 + x2)Ω(f ; δ)
∑
k∈Z

|χ(wx− k)|w
∫ (k+1)/w

k/w

(
1 +

|u− x|3

δ3

)
du,

for every δ ≤ 1 . Now, by standard computations we immediately get:

|(Kχ
wf)(x)− f(x)| ≤ 16(1 + x2)Ω(f ; δ)

∑
k∈Z

|χ(wx− k)|×
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w

[
1

w
+

4

δ3

∫ (k+1)/w

k/w

(∣∣∣∣u− k

w

∣∣∣∣3 + ∣∣∣∣ kw − x

∣∣∣∣3
)
du

]

≤ 16(1 + x2)Ω(f ; δ)
∑
k∈Z

|χ(wx− k)|
[
1 +

1

(wδ)3
+

4

(wδ)3
|wx− k|3

]

≤ 16(1 + x2)Ω(f ; δ)

[
M0(χ)

(
1 +

1

(wδ)3

)
+M3(χ)

4

(wδ)3

]
.

Now, setting δ = w−1 , w ≥ 1 , and taking the supremum for x ∈ R we immediately obtain:

∥Kχ
wf − f∥w̃ ≤ 32Ω(f ;w−1) [M0(χ) + 2M3(χ)] ,

for every w ≥ 1 . 2

5. Voronovskaja type formulae

Let j ∈ N , then the algebraic moment of order j of a kernel χ is defined by

mj (χ, u) =
∑
k∈Z

χ (u− k) (k − u)
j
.

In order to present Voronovskaja theorem in quantitative form, we need of a further assumption on kernel
function χ , i.e. there exists r ∈ N such that for every j ∈ N0, j ≤ r, there holds:

(χ4) mj (χ, u) =: mj (χ) ∈ R, is independent of u .

Now, we recall the estimation for the Peano’s remainder in the Taylor expansion of the corresponding
function.

Remark 5.1 ([1]) Let f ∈ Cr (R) , r ∈ N , the space of r -times continuously differentiable functions. The
remainder in Taylor’s formula at the point x ∈ R is given by

Rr (f ; t, x) = f (t)−
r∑

k=0

f (k) (x)

k!
(t− x)

k

which can be written in the form

Rr (f ; t, x) =
(t− x)

r

r!

(
f (r) (ξ)− f (r) (x)

)
, (5.1)

where ξ is a number lying between t and x.

According to inequality (2.3), with similar method presented in [2], we can easily have the estimate

|Rr (f ; t, x)| ≤
16

r!
(1 + x2)Ω(f (r); δ)

(
|t− x|r + |t− x|r+3

δ3

)
. (5.2)
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Theorem 5.2 Let χ be a kernel satisfying the assumptions (χ1) , (χ2) and (χ3) for β = r + 3, r ∈ N, where
r is the parameter of condition (χ4). Then, for f ∈ Cr(R) such that f (r) ∈ C∗

w̃ (R) , there holds

∣∣∣∣∣∣w [(Kχ
wf) (x)− f (x)]−

r∑
j=1

f (j) (x)

j!wj−1

j∑
l=0

(
j

l

)
ml (χ)

(j − l + 1)

∣∣∣∣∣∣
≤2r+3

wrr!

(
1 + x2

)
Ω
(
f (r), w−1

)[
Mr (χ) +

(
M0 (χ)

r + 1

)
+ 8Mr+3 (χ) +

8M0 (χ)

r + 4

]
.

Proof Since f (r) ∈ C∗
w̃ (R) , using Taylor expansion of f at a point x ∈ R and by the definition of Kχ

wf , we
immediately write

(Kχ
wf) (x) =

∑
k∈Z

χ (wx− k)w

(k+1)/w∫
k/w

r∑
j=0

f (j) (x)

j!
(t− x)

j
dt

+
∑
k∈Z

χ (wx− k)w

(k+1)/w∫
k/w

Rr (f ; t, x) dt

:= I1 + I2.

Let us first consider I1. In view of Binomial expansion, we obtain

I1 =

r∑
j=0

f (j) (x)

j!

∑
k∈Z

χ (wx− k)w

(k+1)/w∫
k/w

j∑
l=0

(
j

l

)(
k

w
− x

)l(
t− k

w

)j−l

dt

=

r∑
j=0

f (j) (x)

j!

j∑
l=0

(
j

l

)
1

wl−1

∑
k∈Z

χ (wx− k) (k − wx)
l

(k+1)/w∫
k/w

(
t− k

w

)j−l

dt

=

r∑
j=0

f (j) (x)

j!wj

j∑
l=0

(
j

l

)
1

(j − l + 1)
ml (χ,wx)

= f (x) +
1

w

r∑
j=1

f (j) (x)

j!wj−1

j∑
l=0

(
j

l

)
1

(j − l + 1)
ml (χ,wx) . (5.3)
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On the other hand, concerning I2 by the inequality (5.2), we have

|I2| ≤
16w

r!

(
1 + x2

)
Ω
(
f (r), δ

)∑
k∈Z

|χ (wx− k)|
(k+1)/w∫
k/w

[
|t− x|r + |t− x|r+3

δ3

]
dt

≤ 16w

r!

(
1 + x2

)
Ω
(
f (r), δ

)
∑
k∈Z

|χ (wx− k)|
(k+1)/w∫
k/w

[
2r−1

(∣∣∣∣t− k

w

∣∣∣∣r + ∣∣∣∣ kw − x

∣∣∣∣r)] dt

+
1

δ3

∑
k∈Z

|χ (wx− k)|
(k+1)/w∫
k/w

[
2r+2

(∣∣∣∣t− k

w

∣∣∣∣r+3

+

∣∣∣∣ kw − x

∣∣∣∣r+3
)]

dt


=

2r+3

wrr!

(
1 + x2

)
Ω
(
f (r), δ

){ 1

(r + 1)

∑
k∈Z

|χ (wx− k)|+
∑
k∈Z

|χ (wx− k)| |k − wx|r

+
8

δ3w3(r + 4)

∑
k∈Z

|χ (wx− k)|+ 8

w3δ3

∑
k∈Z

|χ (wx− k)| |k − wx|r+3

}

Now, choosing δ = w−1, we have

|I2| ≤
2r+3

wrr!

(
1 + x2

)
Ω
(
f (r), w−1

)[M0 (χ)

r + 1
+Mr (χ) +

8M0 (χ)

r + 4
+ 8Mr+3 (χ)

]
.

Hence, by substituting I1 and I2 in (5.3) and by using (χ4), we conclude∣∣∣∣∣∣w [(Kχ
wf) (x)− f (x)]−

r∑
j=1

f (j) (x)

j!wj−1

j∑
l=0

(
j

l

)
ml (χ)

(j − l + 1)

∣∣∣∣∣∣
≤ 2r+3

wr−1r!

(
1 + x2

)
Ω
(
f (r), w−1

)[M0 (χ)

r + 1
+Mr (χ) +

8M0 (χ)

r + 4
+ 8Mr+3 (χ)

]
which is the desired. 2

Corollary 5.3 Under the assumption of Theorem 5.2, in view of Lemma 2.2 (ii) , we have a qualitative form
of the asymptotic formula for Kχ

w by f ′, i.e. for r = 1

i)

lim
w→+∞

w [(Kχ
wf) (x)− f (x)] = f ′ (x)m1 (χ) +

f ′ (x)

2
.

ii) In addition to the assumptions of Theorem 5.2, if we also assume

j∑
l=0

(
j

l

)
ml (χ)

(j − l + 1)
= 0, j = 1, ..., r − 1, (5.4)
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then we have ∣∣∣∣∣wr [(Kχ
wf) (x)− f (x)]− f (r) (x)

r!

r∑
l=0

(
r

l

)
ml (χ)

(r − l + 1)

∣∣∣∣∣
≤2r+3

r!

(
1 + x2

)
Ω
(
f (r), w−1

)[
Mr (χ) +

(
M0 (χ)

r + 1

)
+ 8Mr+3 (χ) +

8M0 (χ)

r + 4

]
and

lim
w→+∞

wr [(Kχ
wf) (x)− f (x)] =

f (r) (x)

r!

r∑
l=0

(
r

l

)
ml (χ)

(r − l + 1)
.

Examples of kernels satisfying (5.4) can be easily constructed following a strategy similar to that consid-
ered in [12].
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