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Abstract: In this paper, we review the approach presented by An and Heo on the study of Weyl-type theorems for
self-adjoint operators on Krein spaces and show that this approach is not appropriate due to a fallacy. Motivated by this
fact, we define a new modification of the kernel of a bounded linear operator on a Krein space, namely J -kernel, which
allows us to successfully introduce a Fredholm theory in this context and study some variations of Weyl-type theorems
for bounded linear operators defined on these spaces. In addition, we will describe the J -index in terms of solution sets
of homogeneous equations.
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1. Introduction
During the first decade of the 20th century, Weyl [26] studied the spectra of all compact perturbations of
self-adjoint operators on Hilbert spaces and found that their intersection consists precisely of those points of
the spectrum that are not isolated eigenvalues with finite multiplicity. This property is now known as Weyl’s
theorem and versions of it have been extended to hyponormal operators [9, 10], seminormal operators [6],
Toeplitz operators [10] and to operators on Banach spaces [10, 18]; as well as some variants have been discussed
by Harte and Lee [16], and Rakocevic [23].

In 2018, An and Heo [3] introduced a modification of the kernel of bounded linear operators on Krein
spaces, namely J -kernel, to study Fredholm theory and some versions of Weyl-type theorems on these spaces.
However, this idea has a flaw, because in general, the J -kernel they defined is not linear, so the notion of
dimension of the J -kernel does not make sense and this prevents the successful development of the Fredholm
theory and hence establish Weyl-type theorems in this context.

In order to satisfactorily study some Weyl-type theorems for bounded linear operators on Krein spaces,
we will define a new modification of the kernel of a linear operator, called J -kernel, which is linear (because we
build it from the classical kernel of a given operator) and that also allows recovering the classical theory when
the fundamental symmetry is the identity. From this new definition, we introduce Fredholm, Weyl and Browder
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operators on Krein spaces, and we also give some conditions to guarantee that Weyl’s and Browder’s theorems
hold for certain classes of operators. It is important to point out that the J -kernel of an operator T is built from
all the vectors that T transforms into negative vectors, thus in a certain way its dimension measures how much
the operator is “affected” by the indefinite inner product. This paper is organized as follows. In Section 1, we
briefly review some notions of bounded operators on a Krein space and review local spectral theory of bounded
operators. In Section 2, we introduce the definition of J -kernel of a operator and the notions of J -Fredholm,
J -Weyl and J -Browder operators. We finish Section 2 with the study of J -Weyl’s theorem and J -Browder’s
theorem for J -self-adjoint operators and J -unitary operators. In Section 3, we present an application that
relates the J -kernel of an operator with the solutions of a certain homogeneous equation.

2. Fredhom theory on Krein spaces
2.1. Krein spaces

Spaces with indefinite inner product arise naturally in physics, for instance in special relativistic [20], quantum
field theory [12, 13, 21] and quantum mechanics [17]. Krein spaces, i.e. complete indefinite inner product spaces,
were formally defined by L. Pontrjagin [22] and Ju. Ginzburg [15] and their properties have been investigated
by several mathematicians [4, 5, 7, 8, 25]. We briefly review some notions of Krein spaces, which are used in this
paper and refer [5, 7, 8] for more detailed information. We write (K, [·, ·], J) for a Krein space with fundamental
decomposition K+ ⊕K− and fundamental symmetry J that fulfills

J(x+ + x−) = x+ − x−, x+ + x− ∈ K+ ⊕K−. (2.1)

Therefore, the J -inner product

〈x+ + x−, y+ + y−〉J := [x+ + x−, J(y+ + y−)] = [x+, y+]− [x−, y−], x±, y± ∈ K±, (2.2)

makes (K, 〈·, ·〉J) turn out to be a Hilbert space. Topological notions in K are determined from the topology
induced by the J -norm, which is defined as

‖x‖J :=
√
〈x, x〉J =

√
[x, Jx], x ∈ K.

Thus, K+ ⊕ K− becomes the orthogonal sum of Hilbert spaces. For sake of notational simplicity, in some
situations we write shortly K for a Krein space (K, [·, ·], J) , and H for a Hilbert space (H, 〈·, ·〉) . The set of all
bounded linear operators on a Krein space K is denoted by L(K) . The unique J -adjoint operator T [∗] : K → K
of a bounded linear operator T : K → K is given by

[Tx, y] = [x, T [∗]y] for all x, y ∈ K.

In this way, the notions of J -self-adjoint, J -unitary and J -normal operators are taken with respect to the
indefinite inner product, and the definition of self-adjoint, unitary and normal operators are taken with respect
to the J -inner product associated. Furthermore, we have the following relation

T [∗] = JT ∗J, T ∈ L(K),

where T ∗ denotes the adjoint of T with respect to the J -inner product. The fundamental projections

P+ := 1
2 (I + J), P− := 1

2 (I− J) (2.3)
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acting on K = K+ ⊕K− are defined by P+(x
+ + x−) = x+ and P−(x

+ + x−) = x− . In light of the equations
(2.3), we immediately have that P± and J commute. Moreover, P+ and P− are orthogonal projections, i.e.
P 2
± = P± = P ∗

± , regardless of whether we consider [·, ·] or 〈·, ·〉J on K . We will denote by EndJ(K) ⊂ L(K) the
set of all bounded linear operators on K which commute with J . Fuglede’s theorem [14] implies that EndJ(K)

is a ∗ -algebra, that is, an algebra closed under the involution ∗ given by the adjoint operator.

2.2. Local spectral theory

In this section, we recall some concepts of local spectral theory based in [1, 2, 9, 10, 16, 18, 23, 24]. Let H be a
complex Hilbert space. For an operator T ∈ L(H) we will denote by α(T ) the dimension of the kernel Ker(T )

of T , and by β(T ) the codimension of the range R(T ) of T . An operator T ∈ L(H) is lower semi-Fredholm
if it has range with finite codimension and upper semi-Fredholm if it has closed range and finite-dimensional
kernel. If T is either upper or lower semi-Fredholm, then T is called a semi-Fredholm operator, and the index
of T is defined by

Ind(T ) := α(T )− α(T ∗).

If the quantities α(T ) and α(T ∗) are finite, then T is called a Fredholm operator. The essential spectrum σe(T )

is the set of all complex numbers λ such that T − λ is not Fredholm. We say that T is a Weyl operator if it is
Fredholm of index zero. The Weyl spectrum of T is the intersection of the spectra of its compact perturbations:

σw(T ) := {λ ∈ C : T − λ is not Weyl} =
∩

{σ(T + S) : S ∈ K(H)} ,

where K(H) is the set of all compact operators acting on H .

Recall that the family {Ker(T k)} forms an ascending sequence of subspaces of H . The ascent of T ,
denoted by p(T ) , is the smallest nonnegative integer k for which Ker(T k) = Ker(T k+1) holds. Similarly, we
have that the family {R(T k)} forms a descending sequence and the smallest nonnegative integer k for which
R(T k) = R(T k+1) is called the descent of T and is denoted by q(T ) . An operator T is Browder if it is
Fredholm with finite ascent and finite descent. The Browder spectrum of T is the intersection of the spectra of
its commuting compact perturbations:

σb(T ) := {λ ∈ C : T − λ is not Browder} =
∩

{σ(T + S) : S ∈ K(H) ∩ comm(T )} ,

where comm(T ) is the set of all operators in L(H) that commute with T . Weyl’s theorem holds for T if and
only if

σ(T ) \ σw(T ) = E0(T ),

where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λ) < ∞} , that is, the set of all isolated points of the spectrum of T

which are eigenvalues of finite multiplicity. Browder’s theorem holds for T if and only if

σb(T ) = σw(T ) .

For T ∈ L(H) , we write σp(T ) , σa(T ) , σs(T ) and σcom(T ) for the point spectrum, the approximate point
spectrum, the surjective spectrum and the compression spectrum of T , respectively.
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2.3. A counterexample

In 2018, An and Heo [3] presented a modification of the kernel of a linear operator on a Krein space in order
to study the Fredholm theory on this type of space. They defined the J -kernel of an operator T ∈ L(K) as
follows:

J -ker(T ) := {x ∈ K : [Tx, Tx] = 0} .

However, this set is not a linear subspace of K in general, and thus the definition of the dimension of J -ker(T )
is meaningless. Therefore, J -Fredholm operators introduced by An and Heo are not well defined. To see the
previous statement we will present the following example.

Example 2.1 Let K = C2 = C⊕ C and let J : K → K be given by J(e1) = e2 and J(e2) = e1 , where e1, e2

are the elements of the canonical basis of C2 . According to the above, J is unitary and J2 = I (where I is
the identity on K), which implies that J defines a Krein space on K . Now, e1 and e2 belongs to J -ker(I) ,
because

[e1 , e1] = 〈Je1 , e1〉 = 〈e2 , e1〉 = 〈(0, 1) , (1, 0)〉 = 0 + 0 = 0.

Thus, e1 ∈ J -ker(I) . Similarly, [e2 , e2] = 〈e1 , e2〉 = 0 and so e2 ∈ J -ker(I) . On the other hand,

[e1 + e2 , e1 + e2] = 〈J(e1 + e2) , e1 + e2〉 = 〈(1, 1) , (1, 1)〉 = 1 + 1 = 2.

Therefore, e1 + e2 /∈ J -ker(I) , thus we conclude that J -ker(I) is not linear.

3. Fredholm theory on Krein spaces
3.1. J-Fredholm operators

Throughout this section, we denote by K a Krein space (K, [·, ·], J) . For the sake of introducing a consistent
definition which describes the behavior of the indefinite inner product and also generalizes the notion of the
classical kernel, for an operator T ∈ L(K) we define its J -kernel by

KerJ(T ) := Ker(P+T ).

We can easily see that Ker(T ) is a closed subspace of KerJ(T ) and that if J = IK , then we obtain the equality
Ker(T ) = KerJ(T ) . Now let us consider the difference rJ(T ) = αJ(T )−α(T ) , where αJ(T ) := dimKerJ(T ) .
We claim that rJ(T ) = dim [R(T ) ∩ K−]. Indeed, there is a closed subspace W of K such that KerJ(T ) =

Ker(T )⊕W and, since R(T ) ∩ K− = T (KerJ(T )) , then we obtain that T is bijective on W . Hence,

dim [R(T ) ∩ K−] = dimW = dimKerJ(T )− dimKer(T ) = rJ(T ).

From the above, it follows that the J -kernel of T is built from all the vectors that T transforms into negative
vectors.
The following result shows how to characterize the kernel of an operator in terms of the indefinite inner product
of a Krein space.

Proposition 3.1 Let (K, [·, ·], J) be a Krein space and T ∈ EndJ(K) . If rJ(T ) = 0 , then Ker(T ) = {x ∈ K :

[Tx, Tx] = 0} .
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Proof It is easy to check that Ker(T ) ⊂ {x ∈ K : [Tx, Tx] = 0} . Now, if [Tx, Tx] = 0 then we have
‖Tx+‖J = ‖Tx−‖J . Since rJ(T ) = 0 and T commutes with J , we obtain that Tx− ∈ R(T ) ∩ K− = {0} .
Therefore, x ∈ Ker(T ) . 2

It is important to highlight that KerJ(T ) is a closed subspace of K . Thus, we can define the J -index
of T ∈ L(K) by

IndJ(T ) := αJ(T )− αJ(T
∗),

where αJ(T ) = dimKerJ(T ) and αJ(T
∗) = dimKerJ(T

∗) . It is worth recalling that the J -index restricted
to the ∗ -algebra EndJ(K) is a classical index, i.e. if T ∈ EndJ(K) then IndJ(T ) = Ind(P+T ) . In fact, a
simple calculation yields that

IndJ(T ) = αJ(T )− αJ(T
∗) = α(P+T )− α(P+T

∗) = α(P+T )− α(T ∗P+) = Ind(P+T ).

The above implies that the map IndJ(·) : EndJ(K) → Z define a surjective group homomorphism, because it
is the Fredholm index (see [1, 11]).

In order to introduce J -Fredholm, J -Weyl and J -Browder operators, we need to define the notion of
ascent and descent of an operator in the context of Krein spaces. For this, we will denote by pJ(T ) the J -ascent
of an operator T ∈ L(K) , which is defined as

pJ(T ) := p(P+T ),

and in a similar way, the J -descent of T , denoted by qJ(T ) , is defined as

qJ(T ) = q(P+T ).

Definition 3.2 Let (K, J, [·, ·]) be a Krein space and T ∈ L(K) . We say that:

1. T is a J -Fredholm operator, if αJ(T ) , αJ(T
∗) are finite and the range of T is closed.

2. T is a J -Weyl operator, if it is J -Fredholm and IndJ(T ) = 0.

3. T is a J -Browder operator, if it is J -Fredholm and both pJ(T ) , qJ(T ) are finite.

Example 3.3 Every J -Fredholm self-adjoint operator is J -Weyl. In particular, let us consider K = ℓ2(N)
with the inner product [(

an
)
n∈N,

(
bn
)
n∈N

]
:=

5∑
n=1

(−1)nanbn +

∞∑
n=6

anbn.

If we take J : K → K as

Jen :=

{
−en, for n = 1, 3, 5;
en, for n 6= 1, 3, 5,

then extending J linearly on all K , where the en are the canonical basis of ℓ2(N) , we can conclude that
(K, [·, ·], J) is a Krein space. Now, let us define the operator T ∈ L(K) by

Ta = P+a+ 〈a, e1〉ℓ2(N)e1, a :=
(
an

)
n∈N.

Observe that T is self-adjoint and J -Fredholm, because Ker(T ) = span{e3, e5} and rJ(T ) = 1 (the intersection
of its range with K− is the subspace spanned by e1 ). Hence T is J -Weyl.
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Example 3.4 If dimK− < ∞ , then every invertible operator is J -Fredholm, by Proposition 3.7. Additionally,
since KerJ(P+) = K− , we conclude that P+ is J -Fredholm under these conditions.

Example 3.5 If (K, [·, ·], J) is a Krein space and dimK− < ∞ , then every invertible operator T such that
T ∈ EndJ(K) , is J -Browder.

We define the J -essential spectrum, J -Browder spectrum and J -Weyl spectrum, as follows:

J-σe(T ) = {λ ∈ C : T − λ is not J-Fredholm},

J-σb(T ) = {λ ∈ C : T − λ is not J-Browder},

J-σw(T ) = {λ ∈ C : T − λ is not J-Weyl}.

Observe that the following implications hold.

T is J -Browder =⇒ T is J -Fredholm =⇒ T is Fredholm.

The converses of the above implications are not true in general, for example, if we consider the identity operator
K , then I is Fredholm because it is invertible, but if dimK− = ∞ we conclude that

αJ(I) = α(I) + rJ(I) = 0 + dimK− = ∞.

Therefore, under these conditions I is not J -Fredholm, in particular I is Browder but is not J -Browder.

Proposition 3.6 Let T be a J -Browder operator. If T ∈ EndJ(K) , then T is J -Weyl.

Proof Since pJ(T ) and qJ(T ) are finite by definition and T is J -Fredholm, we only need to prove that the
J -index of T is zero. From the definition of pJ(T ) and qJ(T ) together with [1, Theorem 3.4], we get that
α(P+T ) = α(T ∗P+) . Furthermore, as T ∈ EndJ(K) we obtain that

IndJ(T ) = αJ(T )− αJ(T
∗) = α(P+T )− α(P+T

∗) = α(P+T )− α(T ∗P+) = 0.

Thus, T is J -Weyl. 2

Proposition 3.7 Let (K, J, [·, ·]) be a Krein space and T ∈ L(K) . If dimK− < ∞ , then J -σe(T ) ⊂ σ(T ) .

Proof Let λ /∈ σ(T ) . Without loss of generality, let us assume that λ = 0 . Then, T is invertible and hence,
we have

αJ(T ) = rJ(T ) + α(T ) = rJ(T ) + 0 = dimK− < ∞,

αJ(T
∗) = rJ(T

∗) + α(T ∗) = rJ(T
∗) + 0 = dimK− < ∞.

Since T has a closed range, T is J -Fredholm and hence, λ /∈ J -σe(T ) . 2

Corollary 3.8 Let (K, J, [·, ·]) be a Krein space and T ∈ EndJ(K) . If dimK− < ∞ , then J -σw(T ) ⊂ J -
σb(T ) ⊂ σ(T ) .
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Proof We know that T is Fredholm by Proposition 3.7. Now it only remains to prove that under these
conditions, if T is invertible, then it has finite J -ascent and J -descent. Indeed, since T commutes with J and
is invertible it follows that

Ker
(
(P+T )

n
)
= Ker(P+T

n) = K−, R
(
(P+T )

n
)
= R(P+T

n) = K−, ∀n ∈ N.

Therefore, T has finite J -ascent and J -descent, this is, J -σb(T ) ⊂ σ(T ) . The inclusion J -σw(T ) ⊂ J -σb(T )

is an immediate consequence of Proposition 3.6. 2

Proposition 3.9 Let (K, J, [·, ·]) be a Krein space and T ∈ EndJ(K) . Then, T is J -Fredholm if and only if
T is Fredholm and dimK− < ∞ .

Proof ⇒) Notice that if T is J -Fredholm, then T is Fredholm. Now, as T commutes with J and
K− = Ker(P+) , we get that

K− ⊂ Ker(TP+) = Ker(P+T ) = KerJ(T ).

Thus, αJ(T ) is finite whenever dimK− < ∞ .

⇐) If T is Fredholm, then α(T ) and α(T ∗) are finite. Also, if dimK− < ∞ then rJ(T ) and rJ(T
∗)

are finite. In this way, we have
αJ(T ) = α(T ) + rJ(T ) < ∞,

αJ(T
∗) = α(T ∗) + rJ(T

∗) < ∞.

Thus, we obtain that T is J -Fredholm. 2

Corollary 3.10 Let (K, J, [·, ·]) be a Krein space and T ∈ EndJ(K) . Then, T is J -Fredholm if and only if T

restricted to K+ is Fredholm and dimK− < ∞ .

Next, we show the relationship between the spectrum and the J -Weyl spectrum for self-adjoint operators.

Proposition 3.11 If T and S are J -Fredholm operators in (K, J, [·, ·]) , then ST and TS are J -Fredholm
operators.

Proof By hypothesis, the following quantities are finite: α(T ) , α(S) , rJ(T ) and rJ(S) . Therefore,

αJ(ST ) ≤ αJ(S) + α(T ) = α(S) + α(T ) + rJ(S) < ∞,

αJ(TS) ≤ αJ(T ) + α(S) = α(S) + α(T ) + rJ(T ) < ∞.

Using the same argument we show that αJ(T
∗S∗) and αJ(S

∗T ∗) are finite and this completes the proof. 2

3.2. J -Weyl’s theorems

Analogous to the spectral subsets E0(T ) and Π0(T ) introduced in [24], we define the following sets:

J-E0(T ) = {λ ∈ isoσ(T ) : 0 < αJ(T − λ) < ∞} and J-Π0(T ) = σ(T ) \ J-σb(T ).

Definition 3.12 Let (K, J, [·, ·]) be a Krein space and T ∈ L(K) . We say that:
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1. J -Weyl’s theorems holds for T , if σ(T ) \ J-σw(T ) = J-E0(T ) .

2. J -Browder’s theorems holds for T if σ(T ) \ J-σw(T ) = J-Π0(T ) .

Proposition 3.13 Let T and S be two operators in L(K) . If T = JSJ , then αJ(T − λ) = αJ(S − λ) for
each λ ∈ C .

Proof We affirm that KerJ(T − λ) = J(KerJ(S − λ)) . Indeed, if x ∈ KerJ(T − λ) , then

(S − λ)P+Jx = (S − λ)JP+x = J(T − λ)P+x = J(0) = 0,

which implies that Jx ∈ KerJ(S−λ) and equality holds for each λ ∈ C because J is unitary, which guarantees
what we affirm. Then, as J is unitary, we conclude that αJ(T − λ) = αJ(S − λ) . 2

Lemma 3.14 Let T and S be two operators in L(K) such that T = JSJ and λ ∈ C .

1. T − λ has finite ascent if and only if S − λ has finite ascent.

2. T − λ has finite descent if and only if S − λ has finite descent.

3. T − λ has finite J -ascent if and only if S − λ has finite J -ascent.

4. T − λ has finite J -descent if and only if S − λ has finite J -descent.

Proof 1. Assume that T − λ has finite ascent, i.e. Ker(T − λ)p = Ker(T − λ)p+1 for some positive integer
p . We will prove that Ker(S − λ)p+1 ⊂ Ker(S − λ)p . If x ∈ Ker(S − λ)p+1 , then

(T − λ)p+1Jx = J(S − λ)p+1x = 0.

Hence, Jx ∈ Ker(T − λ)p+1 = Ker(T − λ)p , so we have

(S − λ)px = (S − λ)pJ2x = J(T − λ)pJx = 0.

Therefore, x ∈ Ker(S − λ)p , which implies that Ker(S − λ)p+1 ⊂ Ker(S − λ)p . Since in general, the reverse
inclusion is true, we have S − λ has finite ascent. The reverse implication is also valid.
2. Suppose that T − λ has finite descent, i.e. R(T − λ)q = R(T − λ)q+1 for some positive integer q . For each
y ∈ R(S − λ)q , there is x ∈ K such that (S − λ)qx = y . Then,

Jy = J(S − λ)qx = (T − λ)qJx ∈ R(T − λ)q = R(T − λ)q+1.

Hence, there exists a vector z ∈ K such that Jy = (T − λ)q+1z , which implies that

y = J(T − λ)q+1z = (S − λ)q+1Jz ∈ R(S − λ)q+1.

Thus, we obtain the inclusion R(T ∗ − λ)q ⊂ R(T ∗ − λ)q+1 . On the other hand, the reverse inclusion is trivial.
Therefore, T ∗ − λ has finite descent. A similar argument shows that the reverse implication is also valid.
3. Let us note that

JP+(T − λ)J = P+(JTJ − λJ2) = P+(S − λ).
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Thus, from part 1, we get

qJ(T − λ) = q
(
P+(T − λ)

)
= q

(
P+(S − λ)

)
= qJ(S − λ).

4. It is obtained using the same argument of part 3 together with the result of part 2 . 2

Theorem 3.15 Let T and S be two operators in L(K) such that T = JSJ . Then:

1. J -Weyl’s theorem holds for T if and only if J -Weyl’s theorem holds for S .

2. J -Browder’s theorem holds for T if and only if J -Browder’s theorem holds for S .

Proof 1. By virtue of Proposition 3.13, we see that

IndJ(S − λ) = αJ(S − λ)− αJ(S
∗ − λ) = αJ(T − λ)− αJ(T

∗ − λ)

= IndJ(T − λ).

This shows that J -σw(T ) = J -σw(S) . The fact that σ(T ) = σ(JTJ) = σ(S) , followed by equality J -
E0(T ) = J -E0(S) obtained of Proposition 3.13, completes the proof.
2. By Lemma 3.14, J -σb(T ) = J -σb(S) . Thus, from part 1 , J -σb(T ) = J -σw(T ) if and only if J -σb(S) = J -
σw(S) . 2

Since a J -self-adjoint operator T satisfies that T = JT ∗J and a J -unitary operator T satisfies that
T−1 = JT ∗J , then as an immediate application of Theorem 3.15, we obtain the following corollaries.

Corollary 3.16 Let T ∈ L(K) . If T is J -self-adjoint, then the following statements hold:

1. J -Weyl’s theorem holds for T if and only if J -Weyl’s theorem holds for T ∗ .

2. J -Browder’s theorem holds for T if and only if J -Browder’s theorem holds for T ∗ .

Corollary 3.17 Let T ∈ L(K) . If T is J -unitary, then the following statements hold:

1. J -Weyl’s theorem holds for T−1 if and only if J -Weyl’s theorem holds for T ∗.

2. J -Browder’s theorem holds for T−1 if and only if J -Browder’s theorem holds for T ∗.

Theorem 3.18 Suppose that dimK− < ∞ . If J -Weyl’s theorem holds for T ∈ EndJ(K) , then J -E0(T ) = J -
Π0(T ) .

Proof By Corollary 3.8, the condition dimK− < ∞ guarantees that J -σw(T ) ⊂ J -σb(T ) ⊂ σ(T ) . If λ ∈ J -
Π0(T ) , then T − λ is J -Browder. The latter, together with the fact that T ∈ EndJ(K) imply that T − λ is
J -Weyl, by Proposition 3.6. Since J -Weyl’s theorem holds for T , it follows that λ ∈ J -E0(T ) .
Conversely, let λ any point of J -E0(T ) . To simplify the notation, let us call Tλ := T − λ and we claim
that Ker

(
(P+Tλ)

n+1
)
⊂ Ker

(
(P+Tλ)

n
)

for all n ∈ N . Indeed, if x ∈ Ker
(
(P+Tλ)

n+1
)
, then P+T

n+1
λ x =

(P+Tλ)
n+1x = 0, because T commutes with P+ . Therefore, T (Tnx) = Tn+1x ∈ K− and as T ∈ EndJ(K) , we

get that Tnx ∈ K− . From the above, we conclude that (P+Tλ)
nx = P+T

nx = 0 and hence x ∈ Ker
(
(P+Tλ)

n
)
.
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Thus, the claim follows and by induction, p(P+Tλ) = pJ(Tλ) = 1 . Since the J -Weyl’s theorem holds for T , we
have that Tλ is J -Weyl and hence

α(P+Tλ) = αJ(Tλ) = αJ(T
∗
λ ) = α(P+T

∗
λ ) = α(T ∗

λP+) = β(P+Tλ) < ∞.

Finally, by [1, Theorem 3.4], qJ(Tλ) = q(P+Tλ) = 1 and we obtain that Tλ is J -Browder, which shows that
λ ∈ J -Π0(T ) . 2

The following result is an immediate consequence of the previous theorem.

Corollary 3.19 Let T ∈ EndJ(K) . The following statements are equivalent:

1. J -Weyl’s theorem holds for T .

2. J -Browder’s theorem holds for T and J -E0(T ) = J -Π0(T ) .

4. Application of the J -Kernel to homogeneous equations

We know that α(T −λ) is exactly the number of linearly independent solutions x of the homogeneous equation:

Tx− λx = 0, λ ∈ C. (4.1)

Also, x is a solution of Equation (4.1) if and only if for each y that is a solution of the equation

T ∗z − λz = y, λ ∈ C,

we study similar arguments, i.e. the relationship of αJ(T −λ) with respect to an equation of the form (4.1), as
well as characterize the J -index in terms of solutions of equations.

We start with the following proposition that characterizes the points of the J -kernel of an operator,
whose proof is an immediate consequence of the definition of the J -kernel and the fact that T commutes with
J .

Proposition 4.1 Let T be a bounded linear operator on a Krein space (K, [·, ·], J) . The following statements
hold:

1. x ∈ KerJ(T − λ) for every λ ∈ C if and only if P+Tx− λP+x = 0.

2. x ∈ KerJ(T−λ) for every λ ∈ C if and only if P+x is a solution of the homogeneous equation Tx−λx = 0 ,
provided that T ∈ EndJ(T ) .

The following theorem guarantees the conditions for the equation P+Tx− λP+x = 0 to have a solution.

Theorem 4.2 Let T be a bounded linear operator on a Krein space (K, [·, ·], J) . The equation

P+Tx− λP+x = 0, (4.2)

has a solution x ∈ K if and only if 〈x, y〉J = 0 for each y such that the equation

T ∗P+z − λP+z = y, (4.3)

has a solution z ∈ K .
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Proof ⇒) If x is a solution of Equation (4.2) and y is as in the statement, then⟨
x, y

⟩
J
=

⟨
x, T ∗P+z − λP+z

⟩
J
=

⟨
x, (T ∗P+ − λP+)z

⟩
J

=
⟨
(P+T − λP+)x, z

⟩
J
=

⟨
P+Tx− λP+x, z

⟩
J
= 〈0, z〉J = 0.

⇐) If x ∈ K is such that 〈x, y〉J = 0 for each solution y of Equation (4.3) , then for each z ∈ K it is satisfied
that

0 =
⟨
x, T ∗P+z − λP+z

⟩
J
=

⟨
x, (T ∗P+ − λP+)z

⟩
J
=

⟨
(P+T − λP+)x, z

⟩
J
.

Since the above is true for each z , we conclude that P+Tx − λP+x = 0 ; that is, x is a solution of Equation
(4.2). 2

Proposition 4.3 Assuming the same conditions of Theorem 4.2, we have that if λ /∈ J -σe(T ) then Equation
(4.2) has a finite number of linearly independent solutions.

Proof By hypothesis, T −λ is J -Fredholm, so in particular αJ(T −λ) is finite. The above together with the
proposition 4.1 imply that αJ(T − λ) is the number of solutions of Equation (4.2), which completes the proof.

2

For each λ ∈ C , let us consider the following sets:

S(λ) = {x ∈ K : Tx− λx = 0}, S(λ)± = {x ∈ K± : Tx− λx = 0},

S(λ)∗ = {x ∈ K : T ∗x− λx = 0}, S(λ)∗± = {x ∈ K± : T ∗x− λx = 0}.
(4.4)

Each of the previous sets are vector subspaces of K and K± in the respective cases, because they are sets of
solutions of homogeneous equations. In particular, if T is a compact operator on the Hilbert space associated
with K , then by the Fredholm alternative (see [19, Chapter 8]) all the above sets have finite dimension; that is,
the number of linearly independent solutions of each of the equations involved is finite, provided that λ 6= 0 .

Theorem 4.4 Let T be a bounded linear operator on a Krein space (K, [·, ·], J) . If T ∈ EndJ(K) and
dimK− < ∞ , then for each λ ∈ C it is satisfied that

IndJ(T − λ) = dimS(λ)+ − dimS(λ)∗+.

Proof As a consequence of Proposition 4.1, we have that x ∈ KerJ(T −λ) if and only if P+x ∈ S(λ)+ . In this
way, the function KerJ(T−λ) 3 x 7→ P+x ∈ S(λ)+ is linear and surjective, whose kernel is K− by the definition
of P+ . The above together with the isomorphism theorem for vector spaces imply that KerJ(T − λ)/K− and
S(λ)+ are isomorphic as vector spaces, which implies that

αJ(T − λ) := dimKerJ(T − λ) = dimS(λ)+ + dimK−.

Therefore,

IndJ(T − λ) = αJ(T − λ)− αJ(T
∗ − λ)

= dimS(λ)+ + dimK− − (dimS(λ)∗+ + dimK−)

= dimS(λ)+ − dimS(λ)∗+.

2
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Remark 4.5 Under the same conditions of Theorem 4.4, we have that if T is J -Weyl, then the spaces S(λ)+

and S(λ)∗+ are isomorphic as vector spaces, because they have the same dimension.

5. Conclusion
In this article, the theory of Fredholm operators on Krein spaces has been presented, starting with a review of the
theory presented by An and Heo. Subsequently, the reason why the modification of the kernel of an operator
introduced by these authors is not linear has been exhibited; which made it impossible to study Fredholm
operators in Krein spaces under the approach presented by them. Then, a new modification of the kernel of
an operator has been built, which has allowed us to introduce and study the Fredholm operators in this type
of space. Finally, as an application of the approach that has been proposed, some relationships between the
J -Fredholm theory (developed in Section 2) and certain types of homogeneous equations were exhibited.
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