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Abstract: The plastic ratio is a fascinating topic that continually generates new ideas. The purpose of this paper
is to point out and find some applications of the plastic ratio in the differential manifold. Precisely, we say that an
(1, 1) -tensor field P on a m -dimensional Riemannian manifold (M, g) is a plastic structure if it satisfies the equation
P 3 = P + I , where I is the identity. We establish several properties of the plastic structure. Then we show that a
plastic structure induces on every invariant submanifold a plastic structure, too.
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1. Introduction and preliminaries
In 1928 , shortly after abandoning his architectural studies and becoming a novice monk, Hans van der Laan
discovered a new, unique system of architectural proportions. Its construction is completely based on a single
irrational value which he called the plastic number (also known as the plastic constant)

ρ ≈ 1.324718... ≈ 4

3
. (1.1)

This number was originally studied by G. Cordonnier in 1924. Gérard Cordonnier (1907− 1977) , was a French
engineer. He studied the plastic number (which he called the radiant number) when he was just 17 years old.
The word plastic was not intended to refer to a specific substance, but rather in its adjectival sense, meaning
something that can be given a three-dimensional shape (see [10]). However, Hans van der Laan was the first
who explained how it relates to the human perception of differences in size between three-dimensional objects
and demonstrated his discovery in (architectural) design. His main premise was that the plastic number ratio is
truly aesthetic in the original Greek sense, i.e. that its concern is not beauty but the clarity of perception [10].
Special number sequences have played an important role in mathematics and applied sciences. Moreover, some
special number sequences such as Fibonacci, Lucas, Pell, Jacobsthal, Padovan, and Perrin sequences have many
applications in art, music, photography, architecture, painting, engineering, geometry, and others. It is well-
known that the term golden ratio is defined as a ratio of two consecutive Fibonacci numbers converging to

1 +
√
5

2
≈ 1.618034. (1.2)
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In a similar way, the ratio of two consecutive Padovan or Perrin numbers converges to

3

√
1

2
+

1

6

√
23

3
+

3

√
1

2
− 1

6

√
23

3
≈ 1.324718 (1.3)

that is called as plastic ratio. Gerard Cordonnier described applications to architecture and illustrated the use
of the plastic number in many buildings. The plastic number ρ (also known as the plastic constant, the plastic
ratio, the minimal Pisot number, the Platinum number, Siegel’s number (or, in French, le nombre radiant) is a
mathematical constant which is the unique real solution of the cubic equation

x3 = x+ 1 (1.4)

it has the exact value

ρ =
3

√
9 +

√
69

18
+

3

√
9−

√
69

18
. (1.5)

Its decimal expansion begins with 1.32471795724474602596090885... .
The idea of constructing a structure on a Riemannian manifold, called by us a plastic structure, is based

on several results from geometrical structures constructed on Riemannian manifolds. Kentaro Yano introduced
the notion of an f -structure [11]. Extending this structure, Goldberg and Yano [6] introduced the notion of the
polynomial structure on a manifold, as a C∞ tensor field F of type (1, 1) defined on a differentiable manifold
M , such that the algebraic equation is satisfied:

Q(F ) = F d + a1F
d−1 + ...+ ad−1F + adI = 0 (1.6)

where a1, a2, ..., ad are real numbers and I is the identity tensor of type (1, 1) .

Definition 1.1 A nylons structure is a polynomial structure with the structural polynomial

Q(J) = J3 − sJ − tI (1.7)

where s and t are positive integers and I is the identity operator on the Lie algebra Γ(M) of the vector fields
on M . The positive solution of the equation x3 − sx − t = 0 is named a member of the nylon family. All the
members of the nylon family are positive cube root irrational numbers

i) ρ =
3

√
t

2
+

√
t2

4
− s3

27
+

3

√
t

2
−
√

t2

4
− s3

27
if 27t2 − 4s3 > 0 ,

ii) ρ1 = −2 3

√
−t

2
and ρ2 = 3

√
−t

2
, if 27t2 − 4s3 = 0 ,

iii) ρ1 =
2√
3

√
s sin(

1

3
sin−1(

−3
√
3t

2 3
√
s

)) , ρ2 =
−2√
3

√
s sin(

1

3
sin−1(

−3
√
3t

2 3
√
s

) +
π

3
) and

ρ3 =
2√
3

√
s cos(

1

3
sin−1(

−3
√
3t

2 3
√
s

) +
π

6
) if 27t2 − 4s3 < 0 .

Remark 1.2 Let s = t = 1 in the definition (1.1). Then we obtain plastic polynomial Q(J) = J3 − J − 1 .
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The aim of the present paper is to investigate the geometry of the plastic structure on a Riemannian manifold
and we give some examples of plastic structure on quaternion structure and on Euclidean manifold. In section
3, we give some properties of the induced structure on a submanifold in a plastic Riemannian manifold and we
find a necessary and sufficient condition for this kind of submanifold to be a plastic Riemannian manifold.

2. Main results
Construction of the plastic number. First, we construct the number φ , called the golden ratio or divine
proportion, an ancient aesthetic axiom, then we explain about plastic ratio. The latter works well in-plane
(its simplest representation being the golden rectangle) but fails to generate harmonious relations within and
between three-dimensional objects. Van der Laan, therefore, elevates the definition of the golden rectangle in
terms of spatial dimension. The golden ratio can be calculated by sectioning the segment AB into two parts
AC and BC such that

φ =
AB

BC
=

BC

AC
. (2.1)

Segments AB and BC are sides of the golden rectangle. Letting AB = 1 it follows

φ =
1

BC
=

BC

1−BC
=⇒ BC2 = 1−BC =⇒ φ2 = φ+ 1 (2.2)

Golden ratio is obtained by solving last equation in (2.2):

φ = 1.618034... (2.3)

Van der Laan breaks segment AB in the similar manner, but in three parts. If C and D are points of
subdivision, plastic number ρ is defined with

ρ =
AB

AD
=

AD

BC
=

BC

AC
=

AC

CD
=

CD

BD
(2.4)

as illustrated on the Figure (2). The plastic constant P = 1.32471795..., is also called the plastic number, the
plastic ratio, the minimal Pisot number, le nombre radiant (in French).
Letting AB = 1 , from AC = 1−BC,BD = 1−AD and (2.4) follows

ρ3 = ρ+ 1. (2.5)

Using Cardano’s formula, the number (1.3) is obtained from (2.5) as the only real solution. Segments AC , CD ,
and BD can be interpreted as sides of a cuboid analogous to the golden rectangle.

Theorem 2.1 Let Pn(x) = xn − x − 1 , for given natural number n > 1 . Then there exists real number
xn ∈ (1, 2) such that Pn(xn) = 0 and xn+1 < xn .

Proof For n > 1 , we have pn(1) < 0 and Pn(2) > 0 . Therefore existence of number xn ∈ (1, 2) follows from
the intermediate value theorem. For part two, assume the contrary, i.e. that there exists natural number n > 1

such that xn+1 ≥ xn . Then Pn(x) = xn − x − 1 , implies xn
n+1 ≥ xn

n . Thus 1

xn+1
+ 1 ≥ xn + 1 . Therefore

xn · xn+1 ≤ 1 which is impossible. Hence xn+1 < xn for all n > 1 . 2
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Figure. Breaking the segment AB in 3 parts. The first picture shows an application of it for an ant.

2.1. Plastic Riemannian structure
In this section, we define a polynomial structure on an m-dimensional Riemannian manifold (M, g) , called by
us a plastic structure, determined by a (1,1)-tensor field P which satisfies the equation:

P 3 = P + I (2.6)

where I is the identity operator on the Lie algebra Γ(M) of vector fields on M .

Definition 2.2 Let (M, g) be a Riemannian manifold. A plastic structure on (M, g) is a non-null tensor field
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P of type (1, 1) which satisfies the equation
P 3 = P + I (2.7)

where I is the identity transformation on the Lie algebra Γ(M) of vector fields on M .

We say that the matrix g is P -compatible if the equality

g(P (X), Y ) = g(X,P (Y )). (2.8)

is satisfied for every tangent vector fields X,Y ∈ Γ(M) .

Theorem 2.3 If ρ satisfies in P 3 = P + 1 (ρ is the plastic ratio), then ρ−1 = ρ2 − 1 .

Proof The plastic number is the real solution of the equation P 3 − P − 1 = 0

P 5 − P 4 − 1 = (P 3 − P − 1)(P 2 − P + 1). (2.9)

So
P 4(P − 1) = 1, (2.10)

it follows that the plastic number also satisfies P − 1 = P−4 .
2

Definition 2.4 A Riemannian manifold (M, g) , endowed with a plastic structure P that the Riemannian
metric g is P -compatible (or, a plastic Riemannian manifold) and (g, P ) is named a plastic Riemannian
structure on M .

In a plastic Riemannian manifold (M, g, P ) , the equality (2.8) satisfied the equation

g(P 2(X), P (Y )) = g(P (X), Y ) + g(X,Y ) (2.11)

for every tangent vector fields X,Y ∈ Γ(M) .
For n ≥ 2 , let Xn denotes the n-times Cartesian product X × . . .×X︸ ︷︷ ︸

n−times

. To simplify, we let (xi)
n
i=1 and

(x)n1 stand for (x1, ..., xn) and (x)ni=1 , respectively.

Example 2.5 We consider that the ambient space m-dimension Euclidean space Em , (m ∈ N) . Let P :

Em −→ Em be an (1, 1) tensor field defined by

P ((x)mi=1) = ((ρx)mi=1) (2.12)

for every point ((x)mi=1) ∈ Em , where ρ is the roots of the equation x3 = x+ 1 .
On the other hand, for ((x)mi=1) , ((z)mi=1) ∈ Em , we have

P 3((x)mi=1) = ((ρ3x)mi=1) = ((ρ1x)mi=1) + ((x)mi=1).

Thus, we obtain P 3 = P + I and we have

< P ((x)mi=1), ((z)
m
i=1) >=< ((x)mi=1), P ((z)mi=1) >

for every ((x)mi=1), ((z)
m
i=1) ∈ Em . Hence, the scalar product <> on Em is P -compatible. Therefore, P is a

plastic structure defined on (Em, <>) . Consequently (Em, <>, P ) is a plastic Riemannian manifold.
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Example 2.6 (plastic matrices) Suppose Mn
n be the set of all real square. The matrix, ϖ ∈ Mn

n is called a
plastic matrix if ϖ satisfies in the equation

ϖ3 = ϖ + I, (2.13)

where I is the identity matrix on Mn
n . For the two-dimensional case, we obtain a three-parametric family of

plastic structures by solving (2.13)

a a3 − a− 1

−c(2a+ d)
c (a+ d)3 − a+ 1

 (2.14)

where a, d ∈ R and c ∈ R− {0} . For example a plastic matrix in M2
2 is given by

ϖ =

[
ρ 0
0 ρ

]
(2.15)

where ρ is the plastic ratio.

Plastic quaternion. We write any quaternion in the form Q = q0 + q1e1 + q2e2 + q3e3 or Q = SQ + V⃗Q ,

where the symbols SQ = q0 and V⃗Q = q1e1 + q2e2 + q3e3 denote the scalar and vector parts of Q .

Definition 2.7 Let Q be a quaternion, if Q satisfies the equation

Q3 = Q+ 1. (2.16)

Then, we say that Q is a plastic quaternion.

Example 2.8 Let Q = SQ + V⃗Q . Then we obtain

Q3 = S3
Q + 3S2

QVQ − 3SQ < V⃗Q, V⃗Q > −V⃗Q < V⃗Q, V⃗Q > . (2.17)

In this case, the equation Q3 −Q = 1 is equivalent to

S3
Q + 3S2

QVQ − 3SQ < V⃗Q, V⃗Q > −V⃗Q < V⃗Q, V⃗Q > −SQ − V⃗Q = 1 (2.18)

and we get {
S3
Q − 3SQ < V⃗Q, V⃗Q > −SQ = 1

3S2
Q− < V⃗Q, V⃗Q > −1 = 0.

(2.19)

Hence we obtain

SQ =
3

√
− 1

16
+

1

48

√
23

3
+

3

√
− 1

16
− 1

48

√
23

3
or V⃗Q = 0. (2.20)

Then there are two cases for plastic quaternions
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i) V⃗Q = 0 =⇒ SQ =
3

√
1

2
+

1

6

√
23

3
+

3

√
1

2
− 1

6

√
23

3
(plastic ratio)

ii) V⃗Q ̸= 0 =⇒ SQ =
3

√
− 1

16
+

1

48

√
23

3
+

3

√
− 1

16
− 1

48

√
23

3
and | V⃗Q |2= 3S2

Q − 1 .

The Padovan sequence {φn}n≥0 is defined by the initial values P0 = P1 = P2 = 1 and the recurrence relation

Pn+3 = Pn+1 + Pn n ≥ 0. (2.21)

First few terms of this sequence are 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28 [1].

Proposition 2.9 A plastic Riemannian structure (M, g, P ) has the property

Pn = φn−4P
2 + φn−3P + φn−5I (2.22)

for every integer number n > 4 , where {φn}n≥0 , is the Padovan sequence.

Proof As P 3 = P + I , we obtain P 4 = P 2 + P , P 5 = P 2 + P + I and P 6 = P 2 + 2P + I . Suppose that
Pn = φn−4P

2 + φn−3P + φn−5I . Then we have

Pn+1 = φn−4P
3 + φn−3P

2 + φn−5P. (2.23)

So by ( 2.7) we obtain (2.22). 2

Theorem 2.10 Let (1, 1) tensor fields L and K defined by

L = P 2 + (2λ2 + λ)P (2.24)

K = P 2 + λP + 2λI (2.25)

where

λ =
3

√
25

54
+

1

6

√
23

3
+

3

√
25

54
− 1

6

√
23

3
− 1

3
. (2.26)

We have
L2 = K2. (2.27)

Let (1, 1) tensor fields T and Z defined by

T = P 2 + 8P + 11I (2.28)

Z = P 2 + 6P + 9I. (2.29)

Then we have
1

2
(T − Z) = P 3, (2.30)

where P is a plastic structure.
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Proof The proof is straightforward by direct calculation. 2

Theorem 2.11 Suppose P is a plastic structure on a differentiable manifold M . We define two (1, 1) tensor
fields H and Q by

H = P 2 + (1 +
2

η
)P + ηI, (2.31)

Q = P 2 − 2

η
P, (2.32)

where

η =
3

√
−44

27
+

√
59

27
+

3

√
−44

27
−

√
59

27
− 1

3
. (2.33)

Then we have
HQ = QH = 1. (2.34)

Proposition 2.12 The plastic structure P , defined on a m-dimensional Riemannian manifold (M, g) , is an
isomorphism on the tangent space of the manifold M , TpM , for every p ∈ M .

Proof Since kerP = {X ∈ TpM |PX = 0,∀p ∈ M} and P 3 = PX +X . Thus kerP = {0} . We remark that
P is an isomorphism on TpM for all p ∈ M . 2

Proposition 2.13 The trace of the plastic structure P defined on a m-dimensional Riemannian manifold
(M, g) has the property

trace(P 3) = trace(P ) +m. (2.35)

Proof Denoting a local orthonormal basis of the tangent space TpM in a point p ∈ M by {e1, e2, ..., em} .
From (2.7), we have

g(P 3ei, ei) = g(Pei, ei) + g(ei, ei).

The proof is straightforward (the summing by i). 2

Proposition 2.14 If P is a plastic structure of rank d on m-dimensional Riemannian manifold (M, g) and
d < m . Then transpose of P is a plastic structure on (M, g) with the same rank.

Proof (P 3)t = (P t)3 . 2

2.2. Submanifolds of plastic Riemannian manifold
Let S be an n -dimensional submanifold of codimension r , isometrically immersed in an m -dimensional plastic
Riemannian manifold (M, g, P ) (where m,n, r ∈ N, n + r = m ≥ 2). We denote the tangent space of S in a
point p ∈ S by TpS . The normal space of S in p , for all p ∈ S by Tp(S)

⊥ . Let i∗ be the differential of the
immersion i : S −→ M . The induced Riemannian metric g̃ of S is given by

g̃(X,Y ) = g(i∗X, i∗Y ) (2.36)
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for every X,Y ∈ Γ(M) . We consider a local orthonormal basis{N1, ..., Nr} of the normal space Tp(S)
⊥ in a

point p ∈ S . We suppose that the indices verify that α, β, γ, ... ∈ {1, ..., r} and i, j, k, ... ∈ {1, ..., n} .
For every X ∈ Tp(S) , the tensor fields P (i∗X) and P (Nα) can be decomposed in tangential and normal
components at S . Therefore

P (i∗X) = i∗(P̃ (X)) +

r∑
α=1

uα(X)Nα, ∀X ∈ Γ(S), (2.37)

P (Nα) = ϵi∗(ξα) +

r∑
β=1

aαβNβ , (ϵ = ±1) (2.38)

where P̃ is an (1, 1)−tensor field on S . The ξα are tangent vector fields on S . The vectors uα are 1-forms on
S and the matrix (aαβ)r is a matrix of real functions of order r × r on S [2].

Theorem 2.15 If S is an n-dimensional submanifold of codimension r and isometrically immersed in a plastic
Riemannian manifold (M, g, P ) . Then the structure (P̃ , g̃, uα, ϵξα) , induced on S by the plastic structure P ,
verifies these equalities.



(i) uγ(X) = uγ(P̃
2(X)) +

∑
α
uα(P̃ (X))aαγ + ϵ

∑
α
uαuα(ξα) +

∑
α

∑
β

uα(X)aαβaβγ

(ii) P̃ 3(X) = P̃ (X)−X − ϵ
∑
α
uα(P̃ (X))(ξα)− ϵ

∑
α
uα(X)[P̃ (ξα) +

∑
β

aαβ(ξβ)]

(iii) P̃ 2(ξα) = ξα −
∑
β

aαβP̃ (ξβ)− (ϵ
∑
γ
uγ(X) +

∑
β

∑
γ
aαβaβγ)ξγ

(iv)
∑
γ
aαγNγ = ϵ

∑
γ
uγ(P̃ (ξα))Nγ + ϵ

∑
β

∑
γ
aαβuγ(ξβ)Nr

+(ϵ
∑
γ
uγ(X) +

∑
β

∑
γ
aαβaβγ)

∑
θ

aγθNθ −Nγ

(v) aαβ = aβα

(vi) uα(X) = ϵg̃(X, ξα)

(2.39)

Proof Using two times the operator P in (2.37), we obtain

i∗(P̃
3(X)) +

∑
γ

uγ(P̃
2(X))Nγ + ϵ

∑
α

uα(P̃ (X))i∗(ξα) +
∑
α

∑
γ

uα(P̃ (X))aαγNγ (2.40)

+ϵ
∑
α

uα(X)i∗P̃ (ξα) + ϵ
∑
α

∑
γ

uα(X)uγ(ξα)Nγ + ϵ
∑
α

∑
β

uα(X)aαβ(i∗(ξβ))

+
∑
α

∑
β

∑
γ

uα(X)aαβaβγNγ = i∗(P̃ (X)) +
∑
γ

uγ(X)Nγ + i∗(X)

for X ∈ Γ(S) . Equalizing the tangential and normal parts, respectively, and from the last equality, we conclude
the relations (i) and (ii) from (2.39). Applying the compatibility relation (2.8) for the normal vector fields Nα
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and Nβ gives g(ϵi∗(ξα)+
∑
γ=1

aαγNγ , Nβ) = g(Nα, ϵi∗(ξβ)+
∑
γ=1

aβγNγ) . We obtain the relation (v) from (2.39).

Applying (2.7) to the normal vector field Nα , we obtain P 3(Nα) = P (Nα)+Nα and from (2.38). We conclude
that

ϵi∗(p̃
2(ξα)) + ϵ

∑
γ

uγ(P̃ (ξα))Nγ + ϵ
∑
β

aαβ(i∗P̃ (ξβ) +
∑
γ

uγ(ξβ)Nγ) (2.41)

+(ϵ
∑
γ

uγ(X) +
∑
β

∑
γ

aαβaβγ)(ϵi∗(ξγ) +
∑
θ

aγθNθ) = ϵi∗(ξα) +
∑
γ

aαγNγ +Nα

We obtain the relations (iii) and (iv) from (2.39) (equalizing the tangential and normal parts respectively from
the last equality). From (2.8), we have g(P (X), Nα) = g(X,P (Nα)) which follows that

g(i∗P̃ (X) +
∑
β

uβ(X)Nβ , Nα) = g(X, ϵi∗ξα +
∑
β

aαβNβ) (2.42)

for every X ∈ Γ(S) and Nα ∈ Tp(S)
⊥ (for all p ∈ S ). It is possible to conclude that the relationship (vi) from

(2.39) and the last equality. 2

Proposition 2.16 If S is an n-dimensional submanifold of codimension r and isometrically immersed in a
plastic Riemannian manifold (M, g, P ) , then

g̃(P̃ (X), Y ) = g̃(X, P̃ (Y )). (2.43)

Proof According to (2.37) and (2.38), we have

g̃(P̃ (X), Y )− g̃(X, P̃ (Y )) = g(i∗P̃ (X), i∗Y )− g(i∗X, i∗P̃ (Y )) (2.44)

= g(P (i∗X)−
∑
α

uα(X)Nα, i∗Y )− g(i∗X,P (i∗Y )−
∑
β

uβ(Y )Nβ)

= g(P (i∗X), i∗Y )− g(i∗X,P (i∗Y )) = 0

and this completes the proof. 2

Proposition 2.17 If we suppose that (ξi)
r
i=1 are linearly independent tangent vector fields on M , then the

1-forms (ui)
r
i=1 are also linearly independent.

Proof The equality
r∑

α=1
µαuα(X) = 0 is equivalent with

0 =
∑
α

µαg(X, ξα) = g(X,
∑
α

µαξα) ∀X ∈ Γ(M). (2.45)

Thus, we have
r∑

α=1

µαξα = 0 ⇒ µα = 0. (2.46)
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Therefore (ui)
r
i=1 are linearly independent on M . 2

If S is a n -dimensional invariant submanifold of codimension r (i.e. P (Tp(S)) ⊆ Tp(S)), isometrically
immersed in a plastic Riemannian manifold (M, g, P ) , then ξα(α ∈ {1, 2, ..., r}) are zero vector fields and
the 1-forms uα vanishes identically on S , ( or uα(X) = g̃(X, ξα) = 0) . Consequently, (2.37) and (2.38) are
respectively written as

P (i∗X) = i∗(P̃ (X)), P (Nα) =
∑
β

aαβNβ (2.47)

for every X ∈ Γ(S) and α ∈ {1, 2, ..., r} . In this case the properties of the structure elements P̃ , g̃, uα, ϵξα, (aαβ)r ,
verify that



(i) P̃ 3(X) = P̃ (X)−X

(ii)
∑
γ
aαγNγ = (

∑
β

∑
γ
aαβaβγ)

∑
θ

aγθNθ −Nγ

(iii) aαβ = aβα

(2.48)

for every X,Y ∈ Γ(S) and α, β ∈ {1, 2, ..., r} .

Theorem 2.18 Let S be an n-dimensional submanifold of codimension r , isometrically immersed in a plastic
Riemannian manifold (M, g, P ) . Let (P̃ , g, uα, ξα, (aαβ)r) be the induced structure on S by structure (g, P ) .
A necessary and sufficient condition for S to be invariant is that the induced structure (P̃ , g̃) on S is a plastic
Riemannian structure, whenever P̃ is nontrivial.

Proof If S is an invariant submanifold in a plastic Riemannian manifold (M, g, P ) , then (P̃ , g̃) is a plastic
Riemannian structure by (2.48) (i) and (2.16). Conversely, if we suppose that (S, g̃, P̃ ) is a plastic Riemannian
structure, then

∑
α
uα(X)ξα = 0 . Consequently, we obtain

∑
α

uα(X)g̃(X, ξα) =
∑
α

(uα(X))2 = 0

from which uα(X) = 0 for α ∈ {1, 2, ..., r} . Therefore submanifold S is invariant. 2
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