Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: $3201-3222$
© TÜBİTAK
doi:10.55730/1300-0098.3328

Explicit motion planning in digital projective product spaces

Seher FİŞEKCİ* ${ }^{\text {© }}$, İsmet KARACA ©
Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey

Received: 20.11.2021 • Accepted/Published Online: 16.09.2022 • Final Version: 09.11.2022

Abstract

We introduce digital projective product spaces based on Davis' projective product spaces. We determine an upper bound for the digital LS-category of digital projective product spaces. In addition, we obtain an upper bound for the digital topological complexity of these spaces through an explicit motion planning construction, which shows digital perspective validity of results given by S. Fişekci and L. Vandembroucq. We apply our outcomes on specific spaces in order to be more clear.

Key words: LS-category, topological complexity, motion planning, digital projective product spaces, digital topology

1. Introduction

Topological robotics has emerged as a new mathematical discipline, having been inspired by robotics and engineering. The discipline is devoted to study the concept of configuration spaces, motion planning, and the topological complexity with diverse algebraic material and methods. A configuration space is a given mechanical location which describes the configurations as desired. The motion planning algorithm determines the rule of a continuous motion in the system of given initial and final positions. It should have instability, which arises from topological reasons. The notion of the topological complexity is introduced by M. Farber in 2003 in order to inform topological measures of the complexity of the motion planning problem in robotics [14]. In other words, there may exist discontinuity in the motion planner on the configuration space X. The tool that measures this discontinuity is the topological complexity of the space X, denoted by $T C(X)$. This is a numerical homotopy invariant that can be difficult to determine. Particularly, computing the topological complexity of the n dimensional real projective space is shown to be linked to the classical problem of determining the Euclidian space of minimal dimension in which this projective space can be immersed [16].

In recent years, digital topology has played an active role in the field of topological robotics. Karaca and Is defined the concept of digital topological complexity in 2018 [20]. The notion of the digital higher topological complexity is added to the literature in [21]. Ege and Karaca define cohomological operations in digital setting and prove the deficiency of the Künneth formula in [12]. Based on this fact, the cohomological lower bound, particularly zero-divisor cup-length property, does not hold for the digital topological complexity as shown in [21]. Studies on digital topology in the finite digital images and given counterexamples underline the differences between digital topological complexity and Farber's topological complexity [22, 23]. The study in [24] shows that there exists another way to state the digital topological complexity by using digital functions.

[^0]Since topological complexity and its related invariants are homotopy invariants, the definition and properties of digital homotopy have gained importance and some features of digital homotopy have been generalized in [26]. For the Lusternik-Schnirelmann category, one of the most important related invariants of the topological complexity, the digital LS-category is defined in [2] and the study is expanded by applying it to digital functions [27]. We refer to studies in [7, 11, 12] for more knowledge about digital topological groundwork.

Projective product space has been introduced by Davis [10] in 2010. This space can be considered a generalization of real projective space, but it is not in general the product of projective spaces. Some bounds of the topological complexity of these spaces have been initiated in [18]. The improvement of this study to finalize t he estimating p roblem a bout t he t opological complexity a nd t he $L S$-category of p rojective product spaces is included in [17]. Fişekci and Vandembroucq compute the LS-category of projective product space and determine an exact value of the topological complexity for some cases. This leads us to build the digital structure of projective product space and deal with the digital topological complexity and the digital LS-category of these spaces.

This paper is related to topological robotics, more precisely the topological complexity and its related invariant LS-category, and is organized by starting with primary notions and basic facts of digital topology. The digital projective product spaces based on Davis' projective product space is introduced by applying digital topological tools and using digital spheres in [13]. In order to compute the digital topological complexity and the digital LS-category of digital projective product space, we first n eed tos pecify t hese digital homotopy invariants for digital spheres. Besides, these calculations can be used for the digital topological complexity and the digital LS-category of configuration s paces based on s pheres. In the process, we p resent digital projective spaces. Moreover, we define the digital nonsingular map and we calculate the digital topological complexity of digital projective spaces with the digital nonsingular map characterization inspired by the work in [16]. We get new results on digital topological complexity and digital LS-category of digital PPS through an explicit motion planning in digital spheres. In this way, we derive the digital topological complexity and the digital LS-category invariants of special spaces. We determine an upper bound for the digital LS-category and consequently an upper bound for the digital topological complexity of digital projective product space. We also obtain an upper bound for the digital topological complexity of digital projective product space. We give examples for our main results to exhibit the application on specific spaces.

2. Preliminaries

In this section, we give basic definitions, e ssential facts, u seful n otations for digital topology a nd topological robotics.

Given any finite s ubset $X \subset \mathbb{Z}^{n}$, which consists of integer points of n-dimensional Euclidean s pace \mathbb{R}^{n}, (X, κ) is called a digital image, where κ is an adjacency relation on elements of X [3]. Distinct points x and y in \mathbb{Z}^{n} are c_{k}-adjacent with the properties that there exist at most k indices i such that $\left|x_{i}-y_{i}\right|=1$ and for all remaining indices i such that $\left|x_{i}-y_{i}\right| \neq 1, x_{i}=y_{i}$, where $0 \leq k \leq n$ [3]. This provides us $c_{1}=2$-adjacency in $\mathbb{Z}, c_{1}=4-$ and $c_{2}=8$-adjacencies in \mathbb{Z}^{2}, and $c_{1}=6-, c_{2}=18-$ and $c_{3}=26$-adjacencies in \mathbb{Z}^{3}. Let $\left(X_{1}, \kappa_{1}\right)$ and $\left(X_{2}, \kappa_{2}\right)$ be two digital images. The normal product adjacency and product adjacency on $X_{1} \times X_{2}$ are defined in the following w ay. The p oints $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$ are normal product adjacent if one of a), b), or c) holds [1], and are product adjacent if one of a), b), c), or d) holds [7]:
a) $x_{1}=x_{2}$ and y_{1}, y_{2} are κ_{2}-adjacent.

FİŞEKCİ and KARACA/Turk J Math

b) x_{1}, x_{2} are κ_{1}-adjacent and $y_{1}=y_{2}$.
c) x_{1}, x_{2} are κ_{1}-adjacent and y_{1}, y_{2} are κ_{2}-adjacent.
d) $x_{1}=x_{2}$ and $y_{1}=y_{2}$.

If (X, κ) is a digital image in \mathbb{Z}^{n}, then X is called κ-connected if for every pair of points $x, y \in X$ with $x \neq y$, there exists $\left\{x_{0}, x_{1}, \ldots, x_{l}\right\} \subset X$ such that $x=x_{0}, y=x_{l}, x_{i}$ and x_{i+1} are κ-adjacent, where $i=0,1, \ldots, l-1$ [19]. Given subsets $X_{1} \subset \mathbb{Z}^{n_{1}}$ and $X_{2} \subset \mathbb{Z}^{n_{2}}$, a map $f:\left(X_{1}, \kappa_{1}\right) \rightarrow\left(X_{2}, \kappa_{2}\right)$ is $\left(\kappa_{1}, \kappa_{2}\right)$-continuous if for any κ_{1} - connected subset $U_{1} \subset X_{1}, f\left(U_{1}\right)$ is κ_{2}-connected [3]. Furthermore, f is called a $\left(\kappa_{1}, \kappa_{2}\right)$-isomorphism if f is $\left(\kappa_{1}, \kappa_{2}\right)$-continuous, bijective, and the inverse f^{-1} is $\left(\kappa_{2}, \kappa_{1}\right)$ continuous [6].

A digital interval is defined as a set $[a, b]_{\mathbb{Z}}=\{z \in \mathbb{Z}: a \leq z \leq b\}[5]$. Since $[a, b]_{\mathbb{Z}} \subset \mathbb{Z}$, it has 2-adjacency. We use the notation I_{m} instead of $[0, m]_{\mathbb{Z}}$ as in [26]. Let (X, κ) be a digital image, then a digital path (κ-path) f in X from x to y is defined by a map $f: I_{m} \rightarrow X$ that is $(2, \kappa)$-continuous with $f(0)=x$ and $f(m)=y[5]$. The digital path f is called a κ-loop when $f(0)=f(m)$ [5]. Let $f: I_{m} \rightarrow X$ and $g: I_{n} \rightarrow X$ be κ-paths with $f(m)=g(0)$. The product of these two digital paths is defined in [25] as the map $(f * g): I_{m+n} \rightarrow X$ by

$$
(f * g)(t)= \begin{cases}f(t), & 0 \leq t \leq m \\ g(t-m), & m \leq t \leq m+n\end{cases}
$$

Let $\left(X, \kappa_{1}\right)$ and $\left(Y, \kappa_{2}\right)$ be two digital images. The (κ_{1}, κ_{2}) - continuous maps $f, g: X \rightarrow Y$ are called digitally $\left(\kappa_{1}, \kappa_{2}\right)$ - homotopic in Y if there exists $m \in \mathbb{Z}^{+}$and a map $H: X \times I_{m} \rightarrow Y$ that satisfies the following features [3]:

- for all $x \in X, H(x, 0)=f(x)$ and $H(x, m)=g(x)$,
- for all $x \in X, H_{x}: I_{m} \rightarrow Y$, defined by $H_{x}(t)=H(x, t)$, is $\left(2, \kappa_{2}\right)$-continuous,
- for all $t \in I_{m}, H_{t}: X \rightarrow Y$, defined by $H_{t}(x)=H(x, t)$, is $\left(\kappa_{1}, \kappa_{2}\right)$-continuous.

The function H is said to be a digital $\left(\kappa_{1}, \kappa_{2}\right)$ - homotopy between f and g.
A digitally continuous map $f: X \rightarrow Y$ is digitally nullhomotopic in Y if f is digitally homotopic to a constant map in Y [3]. A $\left(\kappa_{1}, \kappa_{2}\right)$-continuous map $f: X \rightarrow Y$ is a $\left(\kappa_{1}, \kappa_{2}\right)$-homotopy equivalence if there exists a $\left(2, \kappa_{1}\right)$-continuous map $g: Y \rightarrow X$ such that $g \circ f$ is $\left(\kappa_{1}, \kappa_{1}\right)$-homotopic to the identity map on X and $f \circ g$ is $\left(\kappa_{2}, \kappa_{2}\right)$-homotopic to the identity map on Y [4]. A digital image (X, κ) is called κ-contractible if the identity map in X is (κ, κ)-homotopic to a constant map in X [3].

Let $X^{I_{m}}$ represent the set of all digitally continuous paths $\alpha: I_{m} \rightarrow X$ in X.
We define the digital connectedness on $X^{I_{m}}$ by using the digital continuity to build a digitally continuous digital motion planning algorithm $s: X \times X \rightarrow X^{I_{m}}$. In order to ensure the continuity of s, an adjacency relation between two digital paths is given: Let $\alpha_{1}: I_{m_{1}} \rightarrow X$ and $\alpha_{2}: I_{m_{2}} \rightarrow X$ be any two digitally continuous path in X. Then α_{1} and α_{2} are λ-adjacent on $X^{I_{m_{1}+m_{2}}}$, if for all t times, $\alpha_{1}(t)$ and $\alpha_{2}(t)$ are λ adjacent. There is no loss of generality in assuming $m_{1}=m_{2}$, for if, $m_{1}<m_{2}$ then we can extend α_{1} by letting $\alpha_{1}(t)=\alpha_{1}\left(m_{1}\right)$ for $m_{1}<t \leq m_{2}$. Furthermore, the map $\pi: X^{I_{m}} \rightarrow X \times X$ is a digitally continuous map that

FİŞEKCİ and KARACA/Turk J Math

assigns any digitally continuous path α in X to the pair of its initial and final p oints $(\alpha(0), \alpha(m)) \in X \times X$ where $\alpha(m)$ is the final step of α [20].

Theorem 2.1 ([21]) If (X, κ) is a digital image, the map $\pi: X^{I_{m}} \rightarrow X \times X$ which is defined $b y(\alpha)=$ $(\alpha(0), \alpha(m))$ is a fibration.

We say that a digital motion planning algorithm is a section $s: X \times X \rightarrow X^{I_{m}}$ of fibration π, namely $\pi \circ s=i d_{X \times X}$.

Theorem 2.2 ([20]) Let (X, κ) be a digital image. A digital motion planning algorithm s exists if and only if the space X is κ-contractible.

The definition of the digital topological complexity in [20] is revised a nd the normalized version of that is defined in the following way.

Definition 2.3 Given a digital i mage (X, κ), the digital topological complexity number $d-T C_{\kappa}(X)$ is the least integer l such that $l+1$ subsets $U_{0}, U_{1}, \ldots, U_{l} \subset$ is a cover of $X \times X$ and the map $\pi: X^{I_{m}} \rightarrow X \times X$ admits a digitally continuous map $s_{i}: U_{i} \rightarrow X^{I_{m}}$ such that $\pi \circ s_{i}=i d_{U_{i}}$ with the normal product adjacency on $X \times X$.

Theorem 2.4 ([20]) The digital topological complexity number is a homotopy invariant of X.
We normalize the notion of the digital LS-category in [2] as follows.
Definition 2.5 The digital LS-category d-cat $\cos _{\kappa}(X)$ of a space (X, κ) is the least integerl such that there exists a cover of X by $l+1$ subsets $U_{0}, U_{1}, \ldots, U_{l} \subset X$ where each inclusion map $i_{i}: U_{i} \hookrightarrow X$ for $i=0, \ldots, l$ is κ-nullhomotopic.

Theorem 2.6 ([2]) The digital LS-category is a homotopy invariant of X as well.
We prove the following Lemma 2.7 and Theorem 2.8 inspired by [9].
Lemma 2.7 Let (X, κ) be a path-connected digital image. We have $\operatorname{cat}_{\kappa}(X) \leq k$ if and only if there exists an increasing sequence of sets

$$
\emptyset=U_{-1} \subset U_{0} \subset \ldots \subset U_{k}=X
$$

such that each of the differences $U_{i}-U_{i-1} i s \kappa$-contractible in X where $i \in\{0,1, \ldots, k\}$.
Proof Assume that $\operatorname{cat}_{\kappa}(X) \leq k$, then there is a cover of X consisting of $k+1$ subsets V_{0}, \ldots, V_{k} with each V_{i} is κ-contractible in X. For $i \in\{0,1, \ldots, k\}$, we define the sets $U_{i}=V_{0} \cup \ldots \cup V_{i}$ and clearly we have $U_{i}-U_{i-1}=V_{i}$ that are κ-contractible in X. Hence, the sets U_{i} form an increasing sequence as above.

Conversely, assume that there is an increasing sequence of sets

$$
\emptyset=U_{-1} \subset U_{0} \subset \ldots \subset U_{k}=X
$$

such that each of the difference $U_{i}-U_{i-1}$ is κ-contractible in X where $i \in\{0,1, \ldots, k\}$. In this case, the corresponding differences provide us a cover of X by $k+1 \kappa$-contractible subsets in X, and thus cat ${ }_{\kappa}(X) \leq k$.

Theorem 2.8 If $\left(X_{1}, \kappa_{1}\right)$ and $\left(X_{2}, \kappa_{2}\right)$ are path-connected digital image, then

$$
\operatorname{cat}_{\lambda}\left(X_{1} \times X_{2}\right) \leq \operatorname{cat}_{\kappa_{1}}\left(X_{1}\right)+\operatorname{cat}_{\kappa_{2}}\left(X_{2}\right)
$$

where λ is the normal product adjacency on the product space $X_{1} \times X_{2}$.
Proof Suppose that $\operatorname{cat}_{\kappa_{1}}\left(X_{1}\right)=m$ and $\operatorname{cat}_{\kappa_{2}}\left(X_{2}\right)=n$. Then there exist increasing sequences of sets

$$
\begin{aligned}
& \emptyset=U_{-1} \subset U_{0} \subset \ldots \subset U_{m}=X_{1} \\
& \emptyset=V_{-1} \subset V_{0} \subset \ldots \subset V_{n}=X_{2}
\end{aligned}
$$

such that $\tilde{U}_{i}=U_{i}-U_{i-1}$ is κ_{1}-contractible in X_{1} for $i \in\{0, \ldots, m\}$ and $\tilde{V}_{j}=V_{j}-V_{j-1}$ is κ_{2}-contractible in X_{2} for $j \in\{0, \ldots, n\}$. Namely, inclusion maps $\tilde{U}_{i} \hookrightarrow X_{1}$ and $\tilde{V}_{j} \hookrightarrow X_{2}$ are κ_{1} - and κ_{2}-nullhomotopic, respectively.

We define an increasing sequence

$$
\emptyset=W_{-1} \subset W_{0} \subset \ldots \subset W_{m+n}=X_{1} \times X_{2}
$$

by building subsets of the product $X_{1} \times X_{2}$ as

$$
W_{r}=\bigcup_{i=0}^{r} U_{i} \times V_{r-i}
$$

for $r \geq 0$. Here, $U_{i}=X_{1}$ if $i>m$ and $V_{j}=X_{2}$ if $j>n$. In addition, we show that

$$
\begin{aligned}
W_{s}-W_{s-1} & =\bigcup_{k=0}^{s}\left(U_{k} \times V_{s-k}\right)-\bigcup_{k=0}^{s-1}\left(U_{k} \times V_{s-1-k}\right) \\
& =\bigcup_{k=0}^{s} \bigcap_{l=0}^{s}\left(U_{k} \times V_{s-k}\right) \cap\left(U_{l} \times V_{s-1-l}\right)^{\complement}, \quad k-1=l \\
& =\bigcup_{k=0}^{s} \bigcap_{l=0}^{s}\left(\left(U_{k}-U_{l}\right) \times V_{s-k}\right) \cup\left(U_{k} \times\left(V_{s-k}-V_{s-1-l}\right)\right) \\
& =\bigcup_{k=0}^{s}\left(U_{k}-U_{k-1}\right) \times\left(V_{s-k}-V_{s-1-k}\right) \\
& =\bigcup_{k=0}^{s} \tilde{U}_{k} \times \tilde{V}_{s-k}
\end{aligned}
$$

Furthermore, the subset $\tilde{W}_{s}=W_{s}-W_{s-1} \subset X_{1} \times X_{2}$ is λ-contractible in $X_{1} \times X_{2}$. In other words, the inclusion map $\tilde{W}_{s} \hookrightarrow X_{1} \times X_{2}$ is λ-nullhomotopic.

The normal product adjacency on $X_{1} \times X_{2}$ ensures that

$$
\begin{aligned}
& \left(\overline{\tilde{U}_{k} \times \tilde{V}_{s-k}}\right) \cap\left(\tilde{U}_{l} \times \tilde{V}_{s-l}\right)=\emptyset \\
& \left(\tilde{U}_{k} \times \tilde{V}_{s-k}\right) \cap\left(\overline{\tilde{U}_{l} \times \tilde{V}_{s-l}}\right)=\emptyset
\end{aligned}
$$

for $k \neq l$. Therefore, the subsets \tilde{W} are disjoint and λ-contractible in $X_{1} \times X_{2}$. Since these λ-contractible subsets are disjoint and the space $X_{1} \times X_{2}$ is digitally path-connected, their union is also λ-contractible. Hence, the union

$$
\left(\tilde{U}_{k} \times \tilde{V}_{s-k}\right) \cup\left(\tilde{U}_{l} \times \tilde{V}_{s-l}\right)
$$

is λ-contractible. We iterate this process one more step and get

$$
\begin{aligned}
\overline{\left(\left(\tilde{U}_{k} \times \tilde{V}_{s-k}\right) \cup\left(\left(\tilde{U}_{l} \times \tilde{V}_{s-l}\right)\right)\right.} \cap\left(\tilde{U}_{t} \times \tilde{V}_{s-t}\right)= & \left(\left(\overline{\tilde{U}_{k} \times \tilde{V}_{s-k}}\right) \cap\left(\tilde{U}_{t} \times \tilde{V}_{s-t}\right)\right) \cup \\
& \left.\left(\overline{\left(\tilde{U}_{l} \times \tilde{V}_{s-l}\right.}\right) \cap\left(\tilde{U}_{t} \times \tilde{V}_{s-t}\right)\right) \\
= & \emptyset
\end{aligned}
$$

and

$$
\left(\left(\tilde{U}_{k} \times \tilde{V}_{s-k}\right) \cup\left(\tilde{U}_{l} \times \tilde{V}_{s-l}\right)\right) \cap \overline{\left(\tilde{U}_{t} \times \tilde{V}_{s-t}\right)}=\emptyset
$$

for $k \neq l \neq t$. Therefore, the sets $\left(\tilde{U}_{k} \times \tilde{V}_{s-k}\right) \cup\left(\tilde{U}_{l} \times \tilde{V}_{s-l}\right)$ and $\tilde{U}_{t} \times \tilde{V}_{s-t}$ are disjoint and λ-contractible, and the union $\left(\tilde{U}_{k} \times \tilde{V}_{s-k}\right) \cup\left(\tilde{U}_{l} \times \tilde{V}_{s-l}\right) \cup\left(\tilde{U}_{t} \times \tilde{V}_{s-t}\right)$ is λ-contractible in $X_{1} \times X_{2}$. We finally obtain that the subset $W_{r}-W_{r-1}$ is λ-contractible in $X_{1} \times X_{2}$. Hence, we get the increasing sequence

$$
\emptyset=W_{-1} \subset W_{0} \subset \ldots \subset W_{m+n}=X_{1} \times X_{2}
$$

that each difference $W_{r}-W_{r-1}$ is λ-contractible in $X_{1} \times X_{2}$. In conclusion, by Lemma 2.7 , we have $\operatorname{cat}_{\lambda}\left(X_{1} \times X_{2}\right) \leq m+n=\operatorname{cat}_{\kappa_{1}}\left(X_{1}\right)+\operatorname{cat}_{\kappa_{2}}\left(X_{2}\right)$.

The theorem in [20] is rewritten with the normal product adjacency as follows and the inequality still holds, since the normalized version of the digital topological complexity does not affect the idea of the proof in this case.

Theorem 2.9 If (X, κ) is a digitally path-connected space, then

$$
\operatorname{d-cat}_{\kappa}(X) \leq \mathrm{d}-T C_{\kappa}(X) \leq \mathrm{d}^{-\operatorname{cat}_{\lambda}}(X \times X)
$$

where λ is the normal product adjacency on the product space $X \times X$.
As a result of Theorems 2.8 and 2.9, the following corollary is presented.
Corollary 2.10 Let (X, κ) be a digitally path-connected space. We have

$$
\mathrm{d}-\mathrm{cat}_{\kappa}(X) \leq \mathrm{d}-T C_{\kappa}(X) \leq 2\left(\mathrm{~d}-\operatorname{cat}_{\kappa}(X)\right)
$$

with the normal product adjacency on the product space $X \times X$.
Throughout this work, we assume that a subset of \mathbb{Z}^{n} has c_{n}-adjacency to preserve the adjacency relation on the product of spaces and we consider the normal product adjacency on the product spaces. Additionally, we use the term "motion planning" instead of "digital motion planning". In short, we use the notation d-cat $(X)={\mathrm{d}-\operatorname{cat}_{\kappa}}^{(X)}$ and $\mathrm{d}-T C(X)=\mathrm{d}-T C_{\kappa}(X)$ and express all the digital terms without indexing adjacency.

3. Main results

Given positive integers $n_{1} \leq \ldots \leq n_{r}$, we denote the r-tuple $\left(n_{1}, \ldots, n_{r}\right)$ by \bar{n}. We use the notation $l(\bar{n})=r$ for the length of \bar{n}. The space $S_{\bar{n}}$ is defined by the p roduct $S^{n_{1}} \times \cdots \times S^{n_{r}}$ and the diagonal action of $\mathbb{Z}{ }_{2}$ on $S_{\bar{n}}$ is given as $\mathbb{Z}_{2} \times S_{\bar{n}} \rightarrow S_{\bar{n}}$,

$$
g \cdot \bar{x}=g \times\left(x_{1}, \ldots, x_{r}\right)=\left(g x_{1}, \ldots, g x_{r}\right) .
$$

Here for each $\bar{x} \in S_{\bar{n}}$, we have $\mathbb{Z}_{2} \bar{x}=\left\{g \bar{x} \mid g \in \mathbb{Z}_{2}\right\}=\{\bar{x},-\bar{x}\} \subset S_{\bar{n}}$. Viewing each of these orbits as a single point yields the quotient space

$$
P_{\bar{n}}=\frac{S_{\bar{n}}}{\bar{x} \sim-\bar{x}}=\frac{S^{n_{1}} \times \cdots \times S^{n_{r}}}{\left(x_{1}, \ldots, x_{r}\right) \sim\left(-x_{1}, \ldots,-x_{r}\right)}
$$

which is called the projective product space [10]. In the case of $\mathrm{r}=1$, the space $P_{\bar{n}}$ equals the usual real projective space $P^{n_{1}}$.

In order to define the digital projective product space, we use the concept of digital spheres. A digital 0 -dimensional sphere is a disconnected digital space $S^{0}(x, y)$ with two points x and y. The join of two digital 0-dimensional spheres $S^{0}\left(x_{0}, y_{0}\right) \oplus S^{0}\left(x_{1}, y_{1}\right)$ contains $S^{0}\left(x_{0}, y_{0}\right), S^{0}\left(x_{1}, y_{1}\right)$ and edges connecting each pair of points except those in the same digital spheres. A minimal digital n-sphere is defined by the join $S_{\text {min }}^{n}=S_{0}^{0} \oplus S_{1}^{0} \oplus \ldots \oplus S_{n}^{0}$ of $n+1$-copies of S^{0} [13]. As a result of these definitions, we set the following notations:

- $S_{\text {min }}^{n}=\left\{x_{i}=\left(x_{i_{0}}, \ldots, x_{i_{n}}\right) \in \mathbb{Z}^{n+1}\right\}$, where $\left|x_{i_{j}}\right|=1$ if $i=j$ and 0 otherwise,
- $S_{k}^{0}=\left\{x=\left(0, \ldots, 0, x_{k}, 0, \ldots, 0\right) \subset \mathbb{Z}^{n+1}:\left\|x_{k}\right\|=1\right\}$ for $k \leq n$.

Notice that an n-dimensional digital sphere in \mathbb{Z}^{n+1} has $2 n+2$ vertices.

Example 3.1 The digital spheres $S_{\min }^{1}$ and $S_{\min }^{2}$ that are modified from figures in [13, 26] are illustrated:

$$
\begin{aligned}
S_{\min }^{1} & =\{(1,0),(-1,0),(0,1),(0,-1)\} \\
S_{\min }^{2} & =\{(1,0,0),(-1,0,0),(0,1,0),(0,-1,0),(0,0,1),(0,0,-1)\}
\end{aligned}
$$

Figure 1. $S_{\text {min }}^{1}$.

Figure 2. $S_{\text {min }}^{2}$.

FİŞEKCİ and KARACA/Turk J Math

The digital projective space is defined as:

$$
\mathrm{d}-P^{n}=\frac{S_{\min }^{n}}{x \sim-x}
$$

with respect to the diagonal action of \mathbb{Z}_{2} on $S_{\min }^{n}$ where $x \in S_{\min }^{n}$.
We introduce the digital projective product space $\mathrm{d}-P_{\bar{n}}$ by the diagonal action of \mathbb{Z}_{2} on d - $S_{\bar{n}}=$ $S_{\min }^{n_{1}} \times \cdots \times S_{\min }^{n_{r}}$ as follows:

$$
\mathrm{d}-P_{\bar{n}}=\frac{\mathrm{d}-S_{\bar{n}}}{\bar{x} \sim-\bar{x}}=\frac{S_{\min }^{n_{1}} \times \cdots \times S_{\min }^{n_{r}}}{\left(x_{1}, \ldots, x_{r}\right) \sim\left(-x_{1}, \ldots,-x_{r}\right)}
$$

where $\bar{x} \in \mathrm{~d}-S_{\bar{n}}$. It is clear that the dimension $\operatorname{dim}\left(\mathrm{d}-P_{\bar{n}}\right)=\operatorname{dim}\left(\mathrm{d}-S_{\bar{n}}\right)=\sum n_{i}$. In case of $\mathrm{r}=1$, the space $\mathrm{d}-P_{\bar{n}}$ coincides with the digital projective space $\mathrm{d}-P^{n_{1}}$.

Theorem 3.2 Let d- $P_{\bar{n}}$ be the digital projective product space where $\bar{n}=\left(n_{1}, \ldots, n_{r}\right)$ with $n_{1} \leq \ldots \leq n_{r}$, then the digital $L S$-category of $\mathrm{d}-P_{\bar{n}}$ satisfies

$$
\mathrm{d}-\operatorname{cat}\left(\mathrm{d}-P_{\bar{n}}\right) \leq n_{1}+r-1
$$

Proof For $k \leq n$, we use the following notations:

- $S_{k}^{+}=\left\{x=\left(0, \ldots, 0, x_{k}, 0, \ldots, 0\right) \subset \mathbb{Z}^{n+1}: x_{k}>0\right\}$,
- $S_{k}^{-}=\left\{x=\left(0, \ldots, 0, x_{k}, 0, \ldots, 0\right) \subset \mathbb{Z}^{n+1}: x_{k}<0\right\}$,
- $S_{k}^{0}=S_{k}^{+} \cup S_{k}^{-}$,
- $A_{k}^{+}=(0, \ldots, 0, \underbrace{1}_{k . \text { entry }}, 0, \ldots, 0)$ (north pole) and
- $A_{k}^{-}=(0, \ldots, 0, \underbrace{-1}_{k . \text { entry }}, 0, \ldots, 0)$ (south pole).

We define the map $\epsilon_{k}: S_{k}^{0} \rightarrow \pm 1$ such that

$$
\epsilon_{k}\left(0, \ldots, x_{k}, \ldots, 0\right)=\left\{\begin{aligned}
1, & \text { if } x_{k}>0 \\
-1, & \text { if } x_{k}<0
\end{aligned}\right.
$$

Note that $\epsilon_{k}(-x)=-\epsilon_{k}(x)$ for any $x \in S_{k}^{0}$.
Let $\rho(A, B): I_{m_{1}} \rightarrow S_{\min }^{n}$ be the digital path from A to B for nonantipodal points of digital sphere $S_{\min }^{n}$. Notice that $\rho(-A,-B)=-\rho(A, B)$ and that $\rho(A, A)$ is the constant path. We consider the fixed digital path $\sigma_{0}\left(A_{n}^{-}, A_{n}^{+}\right): I_{m_{2}} \rightarrow S_{\min }^{n}$ such that $\sigma_{0}(0)=A_{n}^{-}$and $\sigma_{0}\left(m_{2}\right)=A_{n}^{+}$.

We define a cover $\bigcup_{i=0}^{n_{1}+r-1} U_{i}$ of $\mathrm{d}-S_{\bar{n}}$ as follows:

- For $0 \leq i \leq n_{1}-1$, we set $U_{i}=S_{i}^{0} \times \prod_{q=2}^{r} S_{\text {min }}^{n_{q}-1}$.

FİŞEKCİ and KARACA/Turk J Math

- For a subset $J \subset\{1, \ldots, r\}$, the cardinality of J is denoted by $|J|$ and

$$
Q_{J}=\left\{\bar{u} \in \mathrm{~d}-S_{\bar{n}}: u_{j} \in S_{n_{j}}^{0} \text { if } j \in J, u_{j} \in S_{\min }^{n_{j}} \text { if } j \notin J\right\}
$$

which is inspired by [8]. Realize that for $J \neq J^{\prime}$ with $|J|=\left|J^{\prime}\right|$, the sets Q_{J} and $Q_{J^{\prime}}$ are disjoint.
For $i=n_{1}-1+k$, where $k=1, \ldots, r-1$, we set $U_{i}=U_{n_{1}-1+k}=\bigcup_{|J|=k} Q_{J}$.

- For $i=n_{1}+r-1$, we set $U_{i}=U_{n_{1}+r-1}=S_{n_{1}}^{0} \times \cdots \times S_{n_{r}}^{0}=S_{\bar{n}}^{0}$.

Hence, we have a cover of $\mathrm{d}-S_{\bar{n}}=U_{0} \cup \ldots \cup U_{n_{1}+r-1}$ by subsets of d - $S_{\bar{n}}$. We now define a digital homotopy function as:

$$
h_{i}: U_{i} \rightarrow\left(\mathrm{~d}-P_{\bar{n}}\right)^{I_{m_{1}+m_{2}}}
$$

where $0 \leq i \leq n_{1}+r-1$. The class of an element $\bar{u} \in \mathrm{~d}-S_{\bar{n}}$ in $\mathrm{d}-P_{\bar{n}}$ is denoted by $[\bar{u}]$.
$\underline{\text { For } 0 \leq i \leq n_{1}-1}$: For $\bar{u}=\left(u_{1}, \ldots, u_{r}\right) \in S_{i}^{0} \times \prod_{q=2}^{r} S_{\min }^{n_{q}-1}$ and $t \in I_{m_{1}+m_{2}}$, we set:

$$
h_{i}(\bar{u}, t)=\left[\rho\left(u_{1}, A_{\epsilon_{i}\left(u_{1}\right)}^{i}\right)(t), \rho\left(u_{2}, A_{\epsilon_{i}\left(u_{1}\right)}^{n_{2}}\right)(t), \ldots, \rho\left(u_{r}, A_{\epsilon_{i}\left(u_{1}\right)}^{n_{r}}\right)(t)\right] .
$$

For $n_{1} \leq i \leq n_{1}+r-2$: Recall that we write $i=n_{1}-1+k$ with $k=1, \ldots, r-1$ and that $U_{i}=$ $U_{n_{1}-1+k}=\bigcup_{|J|=k} Q_{J}$. We construct a digital homotopy function by:

$$
h_{J}: Q_{J} \rightarrow\left(\mathrm{~d}-P_{\bar{n}}\right)^{I_{m_{1}+m_{2}}}
$$

Set $j_{0} \in J$ as the smallest element of J. If $\bar{u} \in Q_{J}$, then $u_{j_{0}} \in S_{n_{j_{0}}}^{0}$. For $\bar{u} \in Q_{J}$ and $t \in I_{m_{1}+m_{2}}, 0 \leq t \leq m_{1}$, we set:

$$
h_{J}(\bar{u}, t)=\left[\rho\left(u_{1}, B\left(u_{1}\right)\right)(t), \ldots, \rho\left(u_{q}, B\left(u_{q}\right)\right)(t), \ldots, \rho\left(u_{r}, B\left(u_{r}\right)\right)(t)\right]
$$

where, for $1 \leq q \leq r, B\left(u_{q}\right)= \begin{cases}A_{\epsilon\left(u_{q}\right)}^{n_{q}}, & \text { if } q \in J \\ A_{\epsilon\left(u_{j_{0}}\right)}^{n_{q}}, & \text { if } q \notin J .\end{cases}$
We distinguish two cases for $t \in I_{m_{1}+m_{2}}, m_{1} \leq t \leq m_{1}+m_{2}$.
If $\epsilon\left(u_{j_{0}}\right)=1$, then $h_{J}(\bar{u}, t)=\left[\omega_{1}, \ldots, \omega_{r}\right]$ where, for $1 \leq q \leq r$,

$$
\omega_{q}= \begin{cases}\sigma_{0}\left(t-m_{1}\right), & \text { if } \epsilon\left(u_{q}\right)=-1 \text { and } q \in J \\ A_{\epsilon\left(u_{j_{0}}\right)}^{n_{q}}, & \text { otherwise } .\end{cases}
$$

If $\epsilon\left(u_{j_{0}}\right)=-1$, then $h_{J}(\bar{u}, t)=\left[\omega_{1}, \ldots, \omega_{r}\right]$ where, for $1 \leq q \leq r$,

$$
\omega_{q}= \begin{cases}\sigma_{0}\left(t-m_{1}\right), & \text { if } \epsilon\left(u_{q}\right)=1 \text { and } q \in J \\ A_{-\epsilon\left(u_{j_{0}}\right)}^{n_{q}}, & \text { otherwise. }\end{cases}
$$

We obtain $\left[A_{\epsilon\left(u_{1}\right)}^{n_{1}}, \ldots, A_{\epsilon\left(u_{j}\right)}^{n_{j}}, \ldots, A_{\epsilon\left(u_{r}\right)}^{n_{r}}\right]=\left[A_{-\epsilon\left(u_{1}\right)}^{n_{1}}, \ldots, A_{-\epsilon\left(u_{j}\right)}^{n_{j}}, \ldots, A_{-\epsilon\left(u_{r}\right)}^{n_{r}}\right]$ for $t=m_{1}$. This provides us a well-defined digitally continuous map on $Q_{J} \times I_{m_{1}+m_{2}}$.

We define h_{i} on $U_{i}=U_{n_{1}-1+k}=\bigcup_{|J|=k} Q$ by setting $\left.h_{i}\right|_{Q_{J} \times I_{m_{1}+m_{2}}}=h_{J}$, for $k=n_{1}-1+k$.
For $i=n_{1}+r-1$: For $\bar{u} \in S_{n_{1}}^{0} \times \cdots \times S_{n_{r}}^{0}=S_{\bar{n}}^{0}$ and $t \in I_{m_{1}+m_{2}}$, we set:

$$
h_{i}(\bar{u}, t)=\left[\rho\left(u_{1}, A_{\epsilon\left(u_{1}\right)}^{n_{1}}\right)(t), \ldots, \rho\left(u_{r}, A_{\epsilon\left(u_{r}\right)}^{n_{r}}\right)(t)\right] .
$$

We seperate two cases for $t \in I_{m_{1}+m_{2}}$ and $m_{1} \leq t \leq m_{1}+m_{2}$.
If $\epsilon\left(u_{1}\right)=1$, then $h_{i}(\bar{u}, t)=\left[A_{\epsilon\left(u_{1}\right)}^{n_{1}}, \omega_{2}, \ldots, \omega_{r}\right]$ where, for $2 \leq q \leq r$,

$$
\omega_{q}=\left\{\begin{array}{l}
A_{\epsilon\left(u_{q}\right)}^{n_{q}}, \text { if } \epsilon\left(u_{q}\right)=1 \\
\sigma_{0}\left(t-m_{1}\right), \text { if } \epsilon\left(u_{q}\right)=-1
\end{array}\right.
$$

If $\epsilon\left(u_{1}\right)=-1$, then $h_{i}(\bar{u}, t)=\left[A_{-\epsilon\left(u_{1}\right)}^{n_{1}}, \omega_{2}, \ldots, \omega_{r}\right]$ where, for $2 \leq q \leq r$,

$$
\omega_{q}=\left\{\begin{array}{l}
A_{-\epsilon\left(u_{q}\right)}^{n_{n_{q}}}, \text { if } \epsilon\left(u_{q}\right)=-1 \\
\sigma_{0}\left(t-m_{1}\right), \text { if } \epsilon\left(u_{q}\right)=1
\end{array}\right.
$$

For $t=m_{1},\left[A_{\epsilon\left(u_{1}\right)}^{n_{1}}, \ldots, A_{\epsilon\left(u_{r}\right)}^{n_{r}}\right]=\left[A_{-\epsilon\left(u_{1}\right)}^{n_{1}}, \ldots, A_{-\epsilon\left(u_{r}\right)}^{n_{r}}\right]$. This gives a well-defined digitally continuous map on $S_{n}^{0} \times I_{m_{1}+m_{2}}$.

We have $h_{i}(\bar{u}, t)=h_{i}(-\bar{u}, t)$ for any $t \in I_{m_{1}+m_{2}}$ and $\bar{u},-\bar{u} \in U_{i}$ for any i. According to the maps, we obtain $h_{i}(\bar{u}, 0)=[\bar{u}]$ for $0 \leq i \leq n_{1}+r-1$,

$$
h_{i}\left(\bar{u}, m_{1}+m_{2}\right)= \begin{cases}{\left[A_{+}^{i}, A_{+}^{n_{2}}, \ldots, A_{+}^{n_{r}}\right],} & 0 \leq i \leq n_{1}-1 \\ {\left[A_{+}^{n_{1}}, A_{+}^{n_{2}}, \ldots, A_{+}^{n_{r}}\right],} & n_{1} \leq i \leq n_{1}+r-1 .\end{cases}
$$

For any i and $\bar{u} \in U_{i}, h_{\bar{u}_{\bar{u}}}: I_{m_{1}+m_{2}} \rightarrow \mathrm{~d}-P_{\bar{n}}$ given by $h_{i_{\bar{u}}}(t)=h_{i}(\bar{u}, t)$ is digitally continuous. Moreover, for any $t \in I_{m_{1}+m_{2}}, h_{i_{t}}: U_{i} \rightarrow \mathrm{~d}-P_{\bar{n}}$ defined by $h_{i_{t}}(\bar{u})=h_{i}(\bar{u}, t)$ is digitally continuous as well. Hence, for any $i, V_{i}=U_{i} / \sim$ is a subset of d- $P_{\bar{n}}$ and we get a digital homotopy function $\bar{h}_{i}: V_{i} \rightarrow\left(\mathrm{~d}-P_{\bar{n}}\right)^{I_{m_{1}+m_{2}}}$ such that $\bar{h}_{i}([\bar{u}], 0)=[\bar{u}]$ for $0 \leq i \leq n_{1}+r-1$ and

$$
\bar{h}_{i}\left([\bar{u}], m_{1}+m_{2}\right)= \begin{cases}{\left[A_{+}^{i}, A_{+}^{n_{2}}, \ldots, A_{+}^{n_{r}}\right],} & 0 \leq i \leq n_{1}-1 \\ {\left[A_{+}^{n_{1}}, A_{+}^{n_{2}}, \ldots, A_{+}^{n_{r}}\right],} & n_{1} \leq i \leq n_{1}+r-1 .\end{cases}
$$

Similarly, for any i and $[\bar{u}] \in V_{i}, \bar{h}_{i[\bar{u}]}: I_{m_{1}+m_{2}} \rightarrow$ d- $P_{\bar{n}}$ presented by $\bar{h}_{i_{[\bar{u}]}}(t)=\bar{h}_{i}([\bar{u}], t)$ is also digitally continuous. Furthermore, for any $t \in I_{m_{1}+m_{2}}, \bar{h}_{i_{t}}: V_{i} \rightarrow$ d $-P_{\bar{n}}$ given by $\bar{h}_{i_{t}}([\bar{u}])=\bar{h}_{i}([\bar{u}], t)$ is also digitally continuous. In addition, we obtain a cover $\bigcup_{i=0}^{n_{1}+r-1} V_{i}$ of d- $P_{\bar{n}}$ and each inclusion map $V_{i} \hookrightarrow \mathrm{~d}-P_{\bar{n}}$ is digitally nullhomotopic. Therefore, we prove that d-cat $\left(\mathrm{d}-P_{\bar{n}}\right) \leq n_{1}+r-1$.

Combining Theorem 3.2 and Corollary 2.10 leads to the following result.
Corollary $3.3 \mathrm{~d}-T C\left(\mathrm{~d}-P_{\bar{n}}\right) \leq 2\left(\mathrm{~d}-\operatorname{cat}\left(\mathrm{d}-P_{\bar{n}}\right)\right) \leq 2\left(n_{1}+r-1\right)$.
Example 3.4 The construction of Theorem 3.2 is specified for $n_{1}=1, n_{2}=2$ and $r=2$. In other words, we show that:

$$
d-c a t(d-P)=d-c a t\left(\frac{S_{\min }^{1} \times S_{\min }^{2}}{\sim}\right) \leq n_{1}+r-1=2 .
$$

FİŞEKCİ and KARACA/Turk J Math

Therefore, $d-T C(d-P) \leq 2(d-c a t(d-P)) \leq 4$ by Corollary 3.3.

Figure 3. $S_{\text {min }}^{1} \times S_{\text {min }}^{2}$.
As before, assume that $\rho(A, B): I_{m_{1}} \rightarrow S_{m i n}^{n}$ is the digital path from A to B for nonantipodal points $A, B \in S_{m i n}^{n}$ with $A \neq B$. Note that $\rho(-A,-B)=-\rho(A, B)$. Moreover, let $\sigma_{0}: I_{m_{2}} \rightarrow S_{\min }^{n}$ be the digital path from A_{-}^{n} to A_{+}^{n} with $\sigma_{0}(0)=A_{-}^{n}$ and $\sigma_{0}(1)=A_{+}^{n}$.

Fix the set U_{i} in the following notation:

$$
U_{i}= \begin{cases}S_{0}^{0} \times S_{\min }^{1}, & i=0 \\ S_{1}^{0} \times S_{\min }^{1} \cup S_{\min }^{0} \times S_{2}^{0}, & i=1 \\ S_{1}^{0} \times S_{2}^{0}, & i=2\end{cases}
$$

and here we have $S_{m i n}^{1} \times S_{m i n}^{2} \subset \bigcup_{i=0}^{2} U_{i}$.
For $i=0$, the digital homotopy function $h_{0}: U_{0} \times I_{m_{1}+m_{2}} \rightarrow d-P=\left(S_{\min }^{1} \times S_{\min }^{2}\right) / \sim$ is defined by:

$$
h_{0}\left(u_{1}, u_{2}, t\right)= \begin{cases}{\left[\rho\left(u_{1}, A_{+}^{0}\right)(t), \rho\left(u_{2}, A_{+}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{0}^{+} \times S_{m i n}^{1} \times I_{m_{1}+m_{2}} \\ {\left[\rho\left(u_{1}, A_{-}^{0}\right)(t), \rho\left(u_{2}, A_{-}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{0}^{-} \times S_{m i n}^{1} \times I_{m_{1}+m_{2}}\end{cases}
$$

For $i=1$, the digital homotopy function $h_{1}: U_{1} \times I_{m_{1}+m_{2}} \rightarrow d-P=\left(S_{\min }^{1} \times S_{m i n}^{2}\right) / \sim$ is given by:

$$
h_{1}\left(u_{1}, u_{2}, t\right)= \begin{cases}{\left[\rho\left(u_{1}, A_{+}^{1}\right)(t), \rho\left(u_{2}, A_{+}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{1}^{+} \times S_{m i n}^{1} \times I_{m_{1}+m_{2}} \\ {\left[\rho\left(u_{1}, A_{-}^{1}\right)(t), \rho\left(u_{2}, A_{-}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{1}^{-} \times S_{\min }^{1} \times I_{m_{1}+m_{2}} \\ {\left[\rho\left(u_{1}, A_{+}^{1}\right)(t), \rho\left(u_{2}, A_{+}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{\min }^{0} \times S_{2}^{+} \times I_{m_{1}+m_{2}} \\ {\left[\rho\left(u_{1}, A_{-}^{1}\right)(t), \rho\left(u_{2}, A_{-}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{\min }^{0} \times S_{2}^{-} \times I_{m_{1}+m_{2}}\end{cases}
$$

For $i=2$, the digital homotopy function $h_{2}: U_{2} \times I_{m_{1}+m_{2}} \rightarrow d-P=\left(S_{\min }^{1} \times S_{m i n}^{2}\right) / \sim$ is considered as follows:

$$
h_{1}\left(u_{1}, u_{2}, t\right)= \begin{cases}{\left[\rho\left(u_{1}, A_{+}^{1}\right)(t), \rho\left(u_{2}, A_{+}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{1}^{+} \times S_{2}^{+} \times I_{m_{1}+m_{2}} \\ {\left[\rho\left(u_{1}, A_{-}^{1}\right)(t), \rho\left(u_{2}, A_{-}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{1}^{-} \times S_{2}^{-} \times I_{m_{1}+m_{2}} \\ {\left[\rho\left(u_{1}, A_{+}^{1}\right)(t), \rho\left(u_{2}, A_{+}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{1}^{+} \times S_{2}^{-} \times I_{m_{1}+m_{2}} \\ & \text { and } 0 \leq t \leq m_{1}, \\ {\left[\rho\left(u_{1}, A_{-}^{1}\right)(t), \rho\left(u_{2}, A_{-}^{2}\right)(t)\right],} & \left(u_{1}, u_{2}, t\right) \in S_{1}^{+} \times S_{2}^{-} \times I_{m_{1}+m_{2}} \\ & \text { and } m_{1} \leq t \leq m_{1}+m_{2} .\end{cases}
$$

Notice that h_{2} is well-defined digitally continuous on $S_{1}^{+} \times S_{2}^{-} \times I_{m_{1}+m_{2}}$ since there exists $\left[A_{+}^{1}, A_{-}^{2}\right]=\left[A_{+}^{1}, A_{-}^{2}\right]$ at $t=m_{1}$.
If $\left(u_{1}, u_{2}, t\right) \in S_{1}^{-} \times S_{2}^{+} \times I_{m_{1}+m_{2}}$, then we get:

$$
h_{2}\left(u_{1}, u_{2}, t\right)= \begin{cases}{\left[\rho\left(u_{1}, A_{-}^{1}\right)(t), \rho\left(u_{2}, A_{+}^{2}\right)(t)\right],} & 0 \leq t \leq m_{1} \\ {\left[A_{+}^{1}, \sigma_{0}\left(t-m_{1}\right)\right],} & m_{1} \leq t \leq m_{1}+m_{2}\end{cases}
$$

In this case, h_{2} is well-defined digitally continuous on $S_{1}^{-} \times S_{2}^{+} \times I_{m_{1}+m_{2}}$ since we have $\left[A_{-}^{1}, A_{+}^{2}\right]=\left[A_{+}^{1}, A_{-}^{2}\right]$ at $t=m_{1}$.

Given any $\left(u_{1}, u_{2}\right) \in U_{i}$, we have $\left(-u_{1},-u_{2}\right) \in U_{i}$ and $h_{i}\left(u_{1}, u_{2}, t\right)=h_{i}\left(-u_{1},-u_{2}, t\right)$ for any $t \in I_{m_{1}+m_{2}}$ and any $0 \leq i \leq 2$. We obtain $h_{i}\left(u_{1}, u_{2}, 0\right)=\left[u_{1}, u_{2}\right]$ for $0 \leq i \leq 2$, and

$$
h_{i}\left(u_{1}, u_{2}, m_{1}+m_{2}\right)= \begin{cases}{\left[A_{+}^{0}, A_{+}^{2}\right],} & i=0 \\ {\left[A_{+}^{1}, A_{+}^{2}\right],} & i=1,2\end{cases}
$$

The map $h_{i_{\left(u_{1}, u_{2}\right)}}: I_{m_{1}+m_{2}} \rightarrow d-P$ defined by $h_{i_{\left(u_{1}, u_{2}\right)}}(t)=h_{i}\left(\left(u_{1}, u_{2}\right), t\right)$ is digitally continuous for any i and $\left(u_{1}, u_{2}\right) \in U_{i}$, and the map $h_{i_{t}}: U_{i} \rightarrow d-P$ given by $h_{i_{t}}\left(\left(u_{1}, u_{2}\right)\right)=h_{i}\left(\left(u_{1}, u_{2}\right), t\right)$ is digitally continuous for any $t \in I_{m_{1}+m_{2}}$. These yield a digital homotopy function $\bar{h}_{i}: V_{i} \times I_{m_{1}+m_{2}} \rightarrow d$ - P such that $\bar{h}_{i}\left(\left[u_{1}, u_{2}\right], 0\right)=\left[u_{1}, u_{2}\right]$ for $0 \leq i \leq 2$, and

$$
\bar{h}_{i}\left(\left[u_{1}, u_{2}\right], m_{1}+m_{2}\right)= \begin{cases}{\left[A_{+}^{0}, A_{+}^{2}\right],} & i=0 \\ {\left[A_{+}^{1}, A_{+}^{2}\right],} & i=1,2\end{cases}
$$

Thus, we obtain a cover of d-P as $\bigcup_{i=0}^{n_{1}+1} V_{i}$ where $V_{i}=U_{i} / \sim$ and the digital homotopy function \bar{h}_{i} provides that each inclusion $V_{i} \hookrightarrow d-P$ is nullhomotopic. Hence, d-cat $(d-P) \leq 2$. Consequently, $d-T C(d-P) \leq$ $2(d-c a t(d-P)) \leq 4$ by Corollary 3.3.

Definition 3.5 A digitally continuous map $f: \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{k}$ is called a digital nonsingular map, if the following conditions hold:

- $f(a x, b y)=a b \cdot f(x, y)$ for every $x, y \in \mathbb{Z}^{n}$ and $a, b \in \mathbb{Z}$.
- $f(x, y)=0$ implies that either $x=0$ or $y=0$.

Proposition 3.6 Let $f: \mathbb{Z}^{n+1} \times \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{k+1}$ be a digital nonsingular map where $n+1 \leq k$, then the digital projective space $\mathrm{d}-P^{n}$ has a motion planner with k local acts, which is:

$$
d-T C\left(\mathrm{~d}-P^{n}\right) \leq k
$$

Proof We assume that $\theta: \mathbb{Z}^{n+1} \times \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}$ is a scalar digitally continuous map with $\theta(a u, b v)=a b \cdot \theta(u, v)$ for all $(u, v) \in S_{\text {min }}^{n} \times S_{\text {min }}^{n}$ and $a, b \in \mathbb{Z}$.

Let $U_{\theta} \subset \mathrm{d}-P^{n} \times \mathrm{d}-P^{n}$ represent the set of all pairs (u, v) of points in $S_{\min }^{n}$ such that $u \neq v$ and $\theta(u, v) \neq 0$.

We assert that there is a continuous motion planning in U_{θ}. Namely, there exists a digitally continuous map s defined on U_{θ} with values in the space of digitally continuous paths in d- P^{n} such that for each pair

FİŞEKCİ and KARACA/Turk J Math

$(u, v) \in U_{\theta}$ the digital path $s(u, v)(t), t \in I_{m}$, begins at point u and finishes at p oint v. The construction of $\mathrm{d}-P^{n}$ may lead to the existence of points in $S_{\min }^{n}$ such that $\theta(u, v)>0$. In this manner, we may take $-u,-v$ instead of u, v. Notice that u, v and equivalently $-u,-v$ dictate the same orientation of the plane based on these points. The intended motion planning map s occurs in rotating u to v in the plane, in the positive direction determined by the orientation.

Furthermore, the map $\theta: \mathbb{Z}^{n+1} \times \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}$ is called positive if $\theta(u, u)>0$ for any $u \in \mathbb{Z}^{n+1}$. Consider the set $U_{\theta}^{\prime} \subset \mathrm{d}-P^{n} \times \mathrm{d}-P^{n}$ of all pairs $u, v \in S_{\min }^{n}$ with $\theta(u, v) \neq 0$. Here, U_{θ}^{\prime} contains all pairs (u, u) and so $U_{\theta} \subset U_{\theta}^{\prime}$. We describe the digital path from u to v for $u \neq v$ as rotating from u to v in the plane, based on u and v in the positive direction determined by the orientation. At point u, we fix the constant digital path. Therefore, the digital continuity is preserved.

A digital nonsingular map $f: \mathbb{Z}^{n+1} \times \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{k}$ admits k scalar maps $\theta_{1}, \ldots, \theta_{k}: \mathbb{Z}^{n+1} \times \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}$ and $U_{\theta_{i}}$ cover the product d- $P^{n} \times \mathrm{d}-P^{n}$ except the diagonal. Since $n+1<k$, we may use such an f as the initial digital nonsingular map such that for any $u \in \mathbb{Z}^{n+1}$, the first coordinate $\theta_{1}(u, u)$ is positive. The sets $U_{\theta_{1}}^{\prime}, U_{\theta_{2}}, \ldots, U_{\theta_{k}}$ form a cover of $\mathrm{d}-P^{n} \times \mathrm{d}-P^{n}$. We have described explicit motion planning instructions over each of these sets; hence, we get the inequality $\mathrm{d}-T C\left(\mathrm{~d}-P^{n}\right) \leq k$.

Theorem 3.7 If d- $P_{\bar{n}}$ is the digital projective product space where $\bar{n}=\left(n_{1}, \ldots, n_{r}\right)$ and $n_{1} \leq \ldots \leq n_{r}$, then we have:

$$
\mathrm{d}-T C\left(\mathrm{~d}-P_{\bar{n}}\right) \leq \mathrm{d}-T C\left(\mathrm{~d}-P^{n_{1}}\right)+\sum_{q=2}^{r} \mathrm{~d}-T C\left(S_{\min }^{n_{q}}\right)
$$

Proof We consider the cartesian product of two digital projective product spaces d- $P_{\bar{n}} \times \mathrm{d}-P_{\bar{n}}=\left(\mathrm{d}-S_{\bar{n}} \times\right.$ $\left.\mathrm{d}-S_{\bar{n}}\right) / \sim$ as the quotient of $\left(S_{\min }^{n_{1}} \times S_{\min }^{n_{1}}\right) \times \cdots \times\left(S_{\min }^{n_{r}} \times S_{\min }^{n_{r}}\right)$ by using the well-known isomorphism for the relation

$$
\left(u_{1}, v_{1}, \ldots, u_{r}, v_{r}\right) \sim\left(u_{1}^{\prime}, v_{1}^{\prime}, \ldots, u_{r}^{\prime}, v_{r}^{\prime}\right) \Leftrightarrow\left\{\begin{array}{rr}
\forall i & u_{i}=u_{i}^{\prime} \text { and } v_{i}=v_{i}^{\prime} \tag{1}\\
\text { or } \forall i & u_{i}=-u_{i}^{\prime} \text { and } v_{i}=v_{i}^{\prime} \\
\text { or } \forall i & u_{i}=u_{i}^{\prime} \text { and } v_{i}=-v_{i}^{\prime} \\
\text { or } \forall i & u_{i}=-u_{i}^{\prime} \text { and } v_{i}=-v_{i}^{\prime}
\end{array}\right.
$$

We set the construction of motion planning in the digital projective space d- $P^{n_{1}}$ and a digital sphere $S_{\text {min }}^{n_{q}}$, which is inspired by [16] and [14], respectively. We will get a motion planning on d- $P_{\bar{n}}$ by gathering them.

Assume that $\mathrm{d}-T C\left(\mathrm{~d}-P^{n_{1}}\right)=k$. Thus, there exists a digital nonsingular map $\theta=\left(\theta_{0}, \cdots, \theta_{k}\right)$: $\mathbb{Z}^{n_{1}+1} \times \mathbb{Z}^{n_{1}+1} \rightarrow \mathbb{Z}^{k+1}$ by Proposition 3.6. The $k+1$ scalar maps $\theta_{0}, \ldots, \theta_{k}: \mathbb{Z}^{n_{1}+1} \times \mathbb{Z}^{n_{1}+1} \rightarrow \mathbb{Z}$ satisfy $\theta_{i}\left(a u_{1}, b v_{1}\right)=a b \cdot \theta\left(u_{1}, v_{1}\right)$ for $\left(u_{1}, v_{1}\right) \in S_{\min }^{n_{1}} \times S_{\min }^{n_{1}}$ with $a, b \in \mathbb{Z}$ and they do not become zero simultaneously. We suppose that $\theta_{0}\left(u_{1}, u_{1}\right)>0$ for any $u_{1} \in S_{\min }^{n_{1}}$ by the definition of the digital sphere for $n_{1}+1<k$. Let

$$
\begin{aligned}
U_{0} & =\left\{\left(u_{1}, v_{1}\right) \in S_{\min }^{n_{1}} \times S_{\min }^{n_{1}}: \theta_{0}\left(u_{1}, v_{1}\right) \neq 0\right\} \\
U_{i} & =\left\{\left(u_{1}, v_{1}\right) \in S_{\min }^{n_{1}} \times S_{\min }^{n_{1}}: \text { for all } 0 \leq n<i, \theta_{n}\left(u_{1}, v_{1}\right)=0 \text { and } \theta_{i}\left(u_{1}, v_{1}\right) \neq 0\right\}
\end{aligned}
$$

where $1 \leq i \leq k-1$.
Notice that all the sets are compatible with the equivalence relation on $S_{\min }^{n_{1}} \times S_{\min }^{n_{1}}$ deduced by the antipodal relation $u_{1} \sim-u_{1}$ on $S_{\min }^{n_{1}}$. Moreover, all the sets U_{i} are disjoint and $\bigcup_{i=0}^{k} U_{i}$ is a cover of $S_{\min }^{n_{1}} \times S_{\min }^{n_{1}}$.

FİŞEKCİ and KARACA/Turk J Math

Let $\rho(A, B): I_{m_{1}} \rightarrow S_{\min }^{n}$ be the digital path from A to B except for antipodal points A, B of digital sphere $S_{\min }^{n}$. Recall that $\rho(-A,-B)=-\rho(A, B)$ and $\rho(A, A)$ is the constant digital path.

For $0 \leq i \leq k$, we define the map $\quad i: U_{i} \rightarrow\left(\mathrm{~d}-P^{n_{1}}\right)^{I_{m_{1}+m_{2}}}$ by

$$
\psi_{i}\left(u_{1}, v_{1}\right)= \begin{cases}{\left[\rho\left(u_{1}, v_{1}\right)\right],} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)>0 \\ {\left[\rho\left(-u_{1}, v_{1}\right)\right],} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)<0\end{cases}
$$

We obtain $\theta_{0}\left(u_{1}, u_{1}\right)>0$ for any $u_{1} \in S_{\min }^{n}$ and we get $\theta_{0}\left(u_{1},-u_{1}\right)=\theta_{0}\left(-u_{1}, u_{1}\right)<0$, consequently. Therefore, we have $\left(u_{1}, u_{1}\right) \in U_{0}$ or $\left(-u_{1}, u_{1}\right) \in U_{0}$, equivalently. This allows us to assure that ψ_{i} is well-defined on pairs of antipodal points. The map ψ is digitally continuous on U_{i} and satisfies $\psi_{i}\left(u_{1}, v_{1}\right)=\psi_{i}\left(\pm u_{1}, \pm v_{1}\right)$ for $0 \leq i \leq k$ and the induced map $\bar{\psi}_{i}: U_{i} / \sim \rightarrow\left(\mathrm{d}-P^{n_{1}}\right)^{I_{m_{1}+m_{2}}}$ admits an explicit motion planning in the digital projective space d- $P^{n_{1}}$.

For $2 \leq q \leq r$, we use the following subsets of $S_{\min }^{n_{q}} \times S_{\min }^{n_{q}}$. In the case that n_{q} is odd, we take subsets

$$
\begin{aligned}
& V_{0}=\left\{\left(u_{q}, v_{q}\right) \in S_{\min }^{n_{q}} \times S_{\min }^{n_{q}}: v_{q} \neq \pm u_{q}\right\} \\
& V_{1}=\left\{\left(u_{q}, v_{q}\right) \in S_{\min }^{n_{q}} \times S_{\min }^{n_{q}}: v_{q}= \pm u_{q}\right\} .
\end{aligned}
$$

In the case that n_{q} is even, we consider subsets

$$
\begin{gathered}
V_{0}=\left\{\left(u_{q}, v_{q}\right) \in S_{\min }^{n_{q}} \times S_{\min }^{n_{q}}: v_{q} \neq \pm u_{q}\right\} \\
V_{1}=\left\{\left(u_{q}, v_{q}\right) \in S_{\min }^{n_{q}} \times S_{\min }^{n_{q}}: v_{q}= \pm u_{q}, u_{q} \neq \pm a_{q}\right\} \\
V_{2}=\left\{\left(u_{q}, v_{q}\right) \in S_{\min }^{n_{q}} \times S_{\min }^{n_{q}}: v_{q}= \pm u_{q}, u_{q}= \pm a_{q}\right\} .
\end{gathered}
$$

Here, the fixed element $a_{q}=(0, \ldots, 0,1) \in S_{\text {min }}^{n_{q}}$ corresponds to the vanishing point of even dimensional spheres.
We describe the motion planning in a digital sphere by the paths as follows:

- For $\left(u_{q}, v_{q}\right) \in V_{0}$ and $\left(u_{q}, u_{q}\right) \in V_{1} \cup V_{2}$, we consider the digital path $\rho\left(u_{q}, v_{q}\right)$.
- For $\left(u_{q},-u_{q}\right) \in V_{1}$, we choose the digital path $\sigma: I_{m_{2}} \rightarrow S_{\min }^{n_{q}}$ path $\sigma\left(u_{q},-u_{q}\right)$ from u_{q} to $-u_{q}$ in the positive direction, which is symmetrical to the digital path from $-u_{q}$ to u_{q}.
- For $\left(a_{q},-a_{q}\right) \in V_{2}$, we fix the digital path $\sigma_{0}: I_{m_{2}} \rightarrow S_{\text {min }}^{n_{q}}$ from a_{q} to $-a_{q}$ and we set $\sigma_{0}\left(-a_{q}, a_{q}\right)=$ $-\sigma_{0}\left(a_{q},-a_{q}\right)$.

We combine these motion plannings in the following way:
Given $i \in\{0,1, \ldots, k\}$ and $2 \leq q \leq r$, let $j_{q} \in\{0,1\}$ when n_{q} is odd; or $j_{q} \in\{0,1,2\}$ when n_{q} is even. We define the map

$$
\left(i, j_{2}, \ldots, j_{r}\right): U_{i} \times \prod_{q=2}^{r} V_{j_{q}} \rightarrow\left(\mathrm{~d}-P_{\bar{n}}\right)^{I_{m_{1}+m_{2}}}
$$

by

$$
\psi_{\left(i, j_{2}, \ldots, j_{r}\right)}\left(u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{r}, v_{r}\right)= \begin{cases}{\left[\rho\left(u_{1}, v_{1}\right), \omega_{2}, \ldots, \omega_{r}\right],} & \theta_{i}\left(u_{1}, v_{1}\right)>0 \\ {\left[\rho\left(u_{1}, v_{1}\right), \omega_{2}^{\prime}, \ldots, \omega_{r}^{\prime}\right],} & \theta_{i}\left(u_{1}, v_{1}\right)<0\end{cases}
$$

where, for n_{q} odd,

$$
\begin{aligned}
& \omega_{q}= \begin{cases}\sigma\left(u_{q}, v_{q}\right), & \text { if } v_{q}=-u_{q} \\
\rho\left(u_{q}, v_{q}\right), & \text { otherwise }\end{cases} \\
& \omega_{q}^{\prime}= \begin{cases}\sigma\left(-u_{q}, v_{q}\right), & \text { if } v_{q}=u_{q} \\
\rho\left(-u_{q}, v_{q}\right), & \text { otherwise }\end{cases}
\end{aligned}
$$

and, for n_{q} even,

$$
\begin{aligned}
& \omega_{q}= \begin{cases}\sigma\left(u_{q}, v_{q}\right), & \text { if } v_{q}=-u_{q}, u_{q} \neq \pm a_{q} \\
\sigma_{0}\left(u_{q}, v_{q}\right), & \text { if } v_{q}=-u_{q}, u_{q}= \pm a_{q} \\
\rho\left(u_{q}, v_{q}\right), & \text { otherwise }\end{cases} \\
& \omega_{q}^{\prime}= \begin{cases}\sigma\left(-u_{q}, v_{q}\right), & \text { if } v_{q}=u_{q}, u_{q} \neq \pm a_{q} \\
\sigma_{0}\left(-u_{q}, v_{q}\right), & \text { if } v_{q}=u_{q}, u_{q}= \pm a_{q} \\
\rho\left(-u_{q}, v_{q}\right), & \text { otherwise }\end{cases}
\end{aligned}
$$

The map $\psi_{\left(i, j_{2}, \ldots, j_{r}\right)}$ is the well-defined digitally continuous on $U_{i} \times \prod_{q=2}^{r} V_{j_{q}}$. Moreover, the compatibility of this map does not conflict with the equivalence relation (1).

For $i \in\{0, \ldots, k\}$ and $2 \leq q \leq r$, let $j_{q} \in\{0,1\}$ when n_{q} is odd; and $j_{q} \in\{0,1,2\}$ when n_{q} is even. We obtain a digitally continuous map with respect to antipodal relation

$$
\bar{\psi}_{\left(i, j_{2}, \ldots, j_{r}\right)}: \frac{U_{i} \times \prod_{q=2}^{r} V_{j_{q}}}{\sim} \rightarrow\left(\mathrm{~d}-P_{\bar{n}}\right)^{I_{m_{1}+m_{2}}}
$$

that satisfies $\bar{\psi}_{\left(i, j_{2}, \ldots, j_{q}\right)}\left(u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{r}, v_{r}\right)=\left[\rho\left(u_{1}, v_{1}\right), \bar{\omega}_{2}, \ldots, \bar{\omega}_{r}\right]$, where for n_{q} odd,

$$
\bar{\omega}_{q}= \begin{cases}\sigma\left(u_{q}, v_{q}\right), & \text { if } v_{q}=-u_{q} \\ \rho\left(u_{q}, v_{q}\right), & \text { otherwise }\end{cases}
$$

and, for n_{q} even,

$$
\bar{\omega}_{q}= \begin{cases}\sigma\left(u_{q}, v_{q}\right), & \text { if } v_{q}=-u_{q}, u_{q} \neq \pm a_{q} \\ \sigma_{0}\left(u_{q}, v_{q}\right), & \text { if } v_{q}=-u_{q}, u_{q}= \pm a_{q} \\ \rho\left(u_{q}, v_{q}\right), & \text { otherwise }\end{cases}
$$

For $i \in\{0,1, \ldots, k\}$ and $2 \leq q \leq r$, let $j_{q} \in\{0,1\}$ when n_{q} is odd; and $j_{q} \in\{0,1,2\}$ when n_{q} is even. The disjoint union W_{l} is presented by

$$
W_{l}=\bigcup_{l=i+\sum_{q=2}^{r} j_{q}}\left(U_{i} \times \prod_{q=2}^{r} V_{q}\right) \subset\left(S_{\min }^{n_{1}} \times S_{\min }^{n_{1}}\right) \times \cdots \times\left(S_{\min }^{n_{r}} \times S_{\min }^{n_{r}}\right)
$$

where $l=0, \ldots, k+\sum_{q=2}^{r} \mathrm{~d}-T C\left(S_{\min }^{n_{q}}\right)=\mathrm{d}-T C\left(\mathrm{~d}-P^{n_{1}}\right)+\sum_{q=2}^{r} \mathrm{~d}-T C\left(S_{\min }^{n_{q}}\right)$. The cartesian product $S_{\min }^{n_{1}} \times$ $S_{\min }^{n_{1}} \times S_{\min }^{n_{2}} \times S_{\min }^{n_{2}} \times \cdots \times S_{\min }^{n_{r}} \times S_{\min }^{n_{r}} \cong \mathrm{~d}-S_{\bar{n}} \times \mathrm{d}-S_{\bar{n}}$ contains all subsets W_{l} concerning the relation (1).

In the quotient space,

$$
\bar{W}_{l}=\bigcup_{i+\sum_{q=2}^{r} j_{q}=l} \frac{\left(U_{i} \times \prod_{q=2}^{r} V_{q}\right)}{\sim} \subset \mathrm{d}-P_{\bar{n}} \times \mathrm{d}-P_{\bar{n}}
$$

is a disjoint union where $l=0, \ldots, k+\sum_{q=2}^{r} \mathrm{~d}-T C\left(S_{\text {min }}^{n_{q}}\right)$. The induced maps $\psi^{-}\left(i, j_{2}, \ldots, j_{r}\right)$ provide an explicit motion planning in \bar{W}_{l} and $\bigcup_{l=0}^{k+\sum_{q=2}^{r} \mathrm{~d}-T C\left(S_{\min }^{n q}\right)} \bar{W}_{l}$ covers d- $P_{\bar{n}} \times \mathrm{d}-P_{\bar{n}}$. Hence, we conclude that

$$
\mathrm{d}-T C\left(\mathrm{~d}-P_{\bar{n}}\right) \leq k+\sum_{q=2}^{r} \mathrm{~d}-T C\left(S_{\min }^{n_{q}}\right)=\mathrm{d}-T C\left(\mathrm{~d}-P^{n_{1}}\right)+\mathrm{d}-T C\left(S_{\min }^{n_{q}}\right)
$$

Example 3.8 We analyze the digital topological complexity of digital projective product space $d-P=\left(S_{\min }^{2} \times\right.$ $\left.S_{\text {min }}^{2}\right) / \sim$. We state that

$$
d-T C(d-P)=d-T C\left(\frac{S_{\min }^{2} \times S_{\min }^{2}}{\sim}\right) \leq d-T C\left(d-P^{2}\right)+d-T C\left(S_{\min }^{2}\right)
$$

where $d-P^{2}=S_{\text {min }}^{2} / \sim$.

Figure 4. $S_{\text {min }}^{2} \times S_{\text {min }}^{2}$.
We construct explicitly motion plannings in the digital projective space $d-P^{2}$ and digital sphere $S_{m i n}^{2}$. The case of $d-P^{2}$, we use the characterization of digital nonsingular maps.

We build a cover of $S_{\text {min }}^{2} \times S_{\text {min }}^{2} \subset \mathbb{Z}^{3} \times \mathbb{Z}^{3}$ by processing similarly as in [16]. The digital nonsingular map $\mathbb{Z}^{4} \times \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{4}$ has a restriction onto $\mathbb{Z}^{3} \subset \mathbb{Z}^{4}$. This provides us the digital nonsingular map $\theta: \mathbb{Z}^{3} \times \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{4}$ with the formula:

$$
\theta\left(u_{1}, v_{1}\right)=\left\langle u_{1}, v_{1}\right\rangle-\left|\begin{array}{cc}
u_{1_{1}} & u_{1_{2}} \\
v_{1_{1}} & v_{1_{2}}
\end{array}\right| i-\left|\begin{array}{cc}
u_{1_{1}} & u_{1_{3}} \\
v_{1_{1}} & v_{1_{3}}
\end{array}\right| j-\left|\begin{array}{ll}
u_{1_{2}} & u_{1_{3}} \\
v_{1_{2}} & v_{1_{3}}
\end{array}\right| k,
$$

where $u_{1}=\left(u_{1_{1}}, u_{1_{2}}, u_{1_{3}}\right)$, $v_{1}=\left(v_{1_{1}}, v_{1_{2}}, v_{1_{3}}\right) \in \mathbb{Z}^{3}, i, j, k \in \mathbb{Z}^{4}$ are the imaginary units and $\left\langle u_{1}, v_{1}\right\rangle$ represents the scalar product of u_{1} and v_{1} such that

$$
\theta\left(u_{1}, v_{1}\right)=\theta_{0}\left(u_{1}, v_{1}\right)+\theta_{1}\left(u_{1}, v_{1}\right) i+\theta_{2}\left(u_{1}, v_{1}\right) j+\theta_{3}\left(u_{1}, v_{1}\right) k
$$

We indicate that the following subsets are compatible with the antipodal relation on $S_{\text {min }}^{2}$:

$$
\begin{aligned}
& U_{0}=\left\{\left(u_{1}, v_{1}\right) \in S_{\min }^{2} \times S_{\min }^{2}: \theta_{0}\left(u_{1}, v_{1}\right) \neq 0\right\} \\
& U_{1}=\left\{\left(\left(u_{1}, v_{1}\right) \in S_{\min }^{2} \times S_{\min }^{2}: \theta_{0}\left(u_{1}, v_{1}\right)=0, \theta_{1}\left(u_{1}, v_{1}\right) \neq 0\right\}\right. \\
& U_{2}=\left\{\left(u_{1}, v_{1}\right) \in S_{\min }^{2} \times S_{\min }^{2}: \theta_{0}\left(u_{1}, v_{1}\right)=0, \theta_{1}\left(u_{1}, v_{1}\right)=0, \theta_{2}\left(u_{1}, v_{1}\right) \neq 0\right\} \\
& U_{3}=\left\{\left(u_{1}, v_{1}\right) \in S_{\min }^{2} \times S_{\min }^{2}: \theta_{0}\left(u_{1}, v_{1}\right)=0, \theta_{1}\left(u_{1}, v_{1}\right)=0, \theta_{2}\left(u_{1}, v_{1}\right)=0, \theta_{3}\left(u_{1}, v_{1}\right) \neq 0\right\}
\end{aligned}
$$

FİŞEKCİ and KARACA/Turk J Math

Notice that $\bigcup_{i=0}^{3} U_{i}$ includes the disjoint subsets of $S_{\min }^{2} \times S_{\min }^{2}$ and this gives us a cover of $S_{\min }^{2} \times S_{\min }^{2}$.
We consider the digital path $\rho(A, B): I_{m_{1}} \rightarrow S_{\text {min }}^{n}$ as mentioned before.
We set the map $\quad{ }_{i}: U_{i} \rightarrow\left(d-P^{2}\right)^{I_{m_{1}+m_{2}}}$ for $0 \leq i \leq 3$ by

$$
\psi_{i}\left(u_{1}, v_{1}\right)= \begin{cases}{\left[\rho\left(u_{1}, v_{1}\right)\right],} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)>0 \\ {\left[\rho\left(-u_{1}, v_{1}\right],\right.} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)<0\end{cases}
$$

For any $u_{1} \in S_{\min }^{2}$, we have $\theta_{0}\left(u_{1}, u_{1}\right)=\theta_{0}\left(-u_{1},-u_{1}\right)>0$ and $\theta_{0}\left(u_{1},-u_{1}\right)=\theta_{0}\left(-u_{1}, u_{1}\right)<0$. Accordingly, we have pairs $\left(u_{1}, u_{1}\right),\left(-u_{1},-u_{1}\right) \in U_{0}$; hence, ψ_{i} is well-defined on pairs of antipodal points. This map is digitally continuous on U_{i} and satisfies $\psi_{i}\left(u_{1}, v_{1}\right)=\psi_{i}\left(\pm u_{1}, \pm v_{1}\right)$ for $0 \leq i \leq k$. Furthermore, the induced map $\bar{\psi}_{i}: U_{i} / \sim\left(d-P^{2}\right)^{I_{m_{1}+m_{2}}}$ gives us an explicit motion planning in d-P ${ }^{2}$.

In the case that n_{q} is even, we use the following subsets of $S_{\min }^{2} \times S_{\min }^{2}$:

$$
\begin{aligned}
& V_{0}=\left\{\left(u_{2}, v_{2}\right) \in S_{\min }^{2} \times S_{m i n}^{2}: v_{2} \neq \pm u_{2}\right\} \\
& V_{1}=\left\{\left(u_{2}, v_{2}\right) \in S_{m i n}^{2} \times S_{m i n}^{2}: v_{2}= \pm u_{2}, u_{2} \neq \pm a_{2}\right\} \\
& V_{2}=\left\{\left(u_{2}, v_{2}\right) \in S_{m i n}^{2} \times S_{m i n}^{2}: v_{2}= \pm u_{2}, u_{2}= \pm a_{2}\right\} .
\end{aligned}
$$

Here, $a_{2}=(0,0,1) \in S_{\text {min }}^{2}$ corresponds to the vanishing point of even dimensional spheres.
We present the motion planning in even dimensional digital sphere $S_{m i n}^{2}$ as below.

- For $\left(u_{2}, v_{2}\right) \in V_{0}$ and for $\left(u_{2}, v_{2}\right) \in V_{1} \cup V_{2}$, we use the digital path $\rho\left(u_{2}, v_{2}\right)$.
- For $\left(u_{2},-u_{2}\right) \in V_{1}$, we consider the digital path $\sigma\left(u_{2},-u_{2}\right): I_{m_{2}} \rightarrow S_{m i n}^{2}$ from u_{2} to $-u_{2}$ in the positive direction.
- For $\left(a_{2},-a_{2}\right)$, we fix the digital path $\sigma_{0}: I_{m_{2}} \rightarrow S_{\min }^{2}$ from a_{2} to $-a_{2}$ and we set $\sigma_{0}\left(-a_{2}, a_{2}\right)=$ $-\sigma_{0}\left(a_{2},-a_{2}\right)$.

We gather these motion planners on $U_{i} \times V_{j} \subset S_{m i n}^{2} \times S_{m i n}^{2} \times S_{m i n}^{2} \times S_{m i n}^{2}$ for $i \in\{0,1,2,3\}$ and $j \in\{0,1,2\}$ as follows:

The motion planning in $U_{i} \times V_{0}$: We define the map $\quad(i, 0): U_{i} \times V_{0} \rightarrow(d-P)^{I_{m_{1}+m_{2}}}$ by

$$
\psi_{(i, 0)}\left(u_{1}, v_{1}, u_{2}, v_{2}\right)= \begin{cases}{\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)>0 \\ {\left[\rho\left(-u_{1}, v_{1}\right), \rho\left(-u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)<0\end{cases}
$$

where $\left(u_{1}, v_{1}\right) \in U_{i}$ and $\left(u_{2}, v_{2}\right) \in V_{0}$. As in the proof of Theorem 3.7, we consider the image of $\left(u_{1}, v_{1}, u_{2}, v_{2}\right)$ under the isomorphism and specify the image of $\psi_{(i, 0)}$ as below.

* If $\left(u_{1}, u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{0}$ with $\theta_{i}\left(u_{1}, v_{1}\right)>0$ and $v_{2} \neq \pm u_{2}$, then

$$
(i, 0)\left(u_{1}, u_{2}, v_{1}, v_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]
$$

* For $\left(u_{1}, u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{0}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0$ and $v_{2} \neq \pm u_{2}$. Thus, we get

$$
{ }_{(i, 0)}\left(u_{1}, u_{2},-v_{1},-v_{2}\right)=\left[\rho\left(-u_{1},-v_{1}\right), \rho\left(-u_{2},-v_{2}\right)\right]=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]
$$

* For $\left(-u_{1},-u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{0}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0$ and $v_{2} \neq \pm u_{2}$. In that case, we have

$$
{ }_{(i, 0)}\left(-u_{1},-u_{2}, v_{1}, v_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]
$$

* For $\left(-u_{1},-u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{0}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)>0$ and $v_{2} \neq \pm u_{2}$. Thus, we obtain

$$
(i, 0)\left(-u_{1},-u_{2},-v_{1},-v_{2}\right)=\left[\rho\left(-u_{1},-v_{1}\right), \rho\left(-u_{2},-v_{2}\right)\right]=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]
$$

The motion planning in $U_{i} \times V_{1}$: We give the map $\psi_{(i, 1)}: U_{i} \times V_{1} \rightarrow(d-P)^{I_{m_{1}+m_{2}}}$ by

$$
\psi_{(i, 1)}\left(u_{1}, v_{1}, u_{2}, v_{2}\right)= \begin{cases}{\left[\rho\left(u_{1}, v_{1}\right), \sigma\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=-u_{2}, u_{2} \neq \pm a_{2} \\ {\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=u_{2}, u_{2} \neq \pm a_{2} \\ {\left[\rho\left(-u_{1}, v_{1}\right), \rho\left(-u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=-u_{2}, u_{2} \neq \pm a_{2} \\ {\left[\rho\left(-u_{1}, v_{1}\right), \sigma\left(-u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=u_{2}, u_{2} \neq \pm a_{2}\end{cases}
$$

* Let $\left(u_{1}, u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{1}$ with $\theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=-u_{2}$ and $u_{2} \neq \pm a_{2}$. After that, we get

$$
{ }_{(i, 1)}\left(u_{1}, u_{2}, v_{1}, v_{2}\right)=\psi_{(i, 1)}\left(u_{1}, u_{2}, v_{1},-u_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \sigma\left(u_{2},-u_{2}\right)\right] .
$$

* For $\left(u_{1}, u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{1}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0$, $v_{2}=-u_{2}$ and $u_{2} \neq \pm a_{2}$. Thus, we have

$$
\left.\begin{array}{rl}
{ }_{(i, 1)}\left(u_{1}, u_{2},-v_{1},-v_{2}\right)=\quad(i, 1) \\
& \left(u_{1}, u_{2},-v_{1}, u_{2}\right)
\end{array}\right)\left[\rho\left(-u_{1},-v_{1}\right), \sigma\left(-u_{2}, u_{2}\right)\right] .\left[\rho\left(u_{1}, v_{1}\right), \sigma\left(u_{2},-u_{2}\right)\right] .
$$

* For $\left(-u_{1},-u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{1}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=-u_{2}$ and $u_{2} \neq \pm a_{2}$. Hence, we obtain

$$
{ }_{(i, 1)}\left(-u_{1},-u_{2}, v_{1}, v_{2}\right)={ }_{(i, 1)}\left(-u_{1},-u_{2}, v_{1},-u_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \sigma\left(u_{2},-u_{2}\right)\right]
$$

* For $\left(-u_{1},-u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{1}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=-u_{2}$ and $u_{2} \neq \pm a_{2}$. Thus, we get

$$
\begin{aligned}
{ }_{(i, 1)}\left(-u_{1},-u_{2},-v_{1},-v_{2}\right)={ }_{(i, 1)}\left(-u_{1},-u_{2},-v_{1}, u_{2}\right) & =\left[\rho\left(-u_{1},-v_{1}\right), \sigma\left(-u_{2}, u_{2}\right)\right] \\
& =\left[\rho\left(u_{1}, v_{1}\right), \sigma\left(u_{2},-u_{2}\right)\right]
\end{aligned}
$$

* Let $\left(u_{1}, u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{1}$ with $\theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=u_{2}$ and $u_{2} \neq \pm a_{2}$. Thus, there exists:

$$
{ }_{(i, 1)}\left(u_{1}, u_{2}, v_{1}, v_{2}\right)=\psi_{(i, 1)}\left(u_{1}, u_{2}, v_{1}, u_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, u_{2}\right)\right]
$$

* For $\left(u_{1}, u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{1}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=u_{2}$ and $u_{2} \neq \pm a_{2}$. At that case, this satisfies:

$$
\begin{aligned}
{ }_{(i, 1)}\left(u_{1}, u_{2},-v_{1},-v_{2}\right)=\psi_{(i, 1)}\left(u_{1}, u_{2},-v_{1},-u_{2}\right) & =\left[\rho\left(-u_{1},-v_{1}\right), \rho\left(-u_{2},-u_{2}\right)\right] \\
& =\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, u_{2}\right)\right]
\end{aligned}
$$

FİŞEKCİ and KARACA/Turk J Math

* For $\left(-u_{1},-u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{1}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=u_{2}$ and $u_{2} \neq \pm a_{2}$. Afterwards, this gives that:

$$
{ }_{(i, 1)}\left(-u_{1},-u_{2}, v_{1}, v_{2}\right)=\psi_{(i, 1)}\left(-u_{1},-u_{2}, v_{1}, u_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, u_{2}\right)\right]
$$

* For $\left(-u_{1},-u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{1}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=u_{2}$ and $u_{2} \neq \pm a_{2}$. Therefore, this provides that:

$$
\begin{aligned}
{ }_{(i, 1)}\left(-u_{1},-u_{2},-v_{1},-v_{2}\right)=\psi_{(i, 1)}\left(-u_{1},-u_{2},-v_{1},-u_{2}\right) & =\left[\rho\left(-u_{1},-v_{1}\right), \rho\left(-u_{2},-u_{2}\right)\right] \\
& =\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, u_{2}\right)\right]
\end{aligned}
$$

$\underline{\text { The motion planning in } U_{i} \times V_{2}}$: We present the map $\quad{ }_{(i, 2)}: U_{i} \times V_{2} \rightarrow(d-P)^{I_{m_{1}+m_{2}}}$ by:

$$
\psi_{(i, 2)}\left(u_{1}, v_{1}, u_{2}, v_{2}\right)= \begin{cases}{\left[\rho\left(u_{1}, v_{1}\right), \sigma_{0}\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=-u_{2}, u_{2}= \pm a_{2} \\ {\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=u_{2}, u_{2}= \pm a_{2} \\ {\left[\rho\left(-u_{1}, v_{1}\right), \rho\left(-u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=-u_{2}, u_{2}= \pm a_{2} \\ {\left[\rho\left(-u_{1}, v_{1}\right), \sigma_{0}\left(-u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=u_{2}, u_{2}= \pm a_{2}\end{cases}
$$

* Let $\left(u_{1}, u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{2}$ with $\theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=-u_{2}$ and $u_{2}= \pm a_{2}$. Then we have:

$$
{ }_{(i, 2)}\left(u_{1}, u_{2}, v_{1}, v_{2}\right)=\psi_{(i, 2)}\left(u_{1}, \pm a_{2}, v_{1},-u_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \sigma_{0}\left(\pm a_{2}, \mp a_{2}\right)\right]
$$

* For $\left(u_{1}, u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{2}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=-u_{2}$ and $u_{2}= \pm a_{2}$. Hence, we obtain:

$$
\begin{aligned}
&(i, 2) \\
&\left(u_{1}, u_{2},-v_{1},-v_{2}\right)=\quad(i, 2)\left(u_{1}, \pm a_{2},-v_{1}, \pm a_{2}\right)=\left[\rho\left(-u_{1},-v_{1}\right), \sigma_{0}\left(\mp a_{2}, \pm a_{2}\right)\right] \\
&=\left[\rho\left(u_{1}, v_{1}\right), \sigma_{0}\left(\pm a_{2}, \mp a_{2}\right)\right]
\end{aligned}
$$

* For $\left(-u_{1},-u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{2}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0$, $v_{2}=-u_{2}$ and $u_{2}= \pm a_{2}$. Thus, we get:

$$
{ }_{(i, 2)}\left(-u_{1},-u_{2}, v_{1}, v_{2}\right)=\psi_{(i, 2)}\left(-u_{1}, \mp a_{2}, v_{1}, \mp a_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \sigma_{0}\left(\pm a_{2}, \mp a_{2}\right)\right]
$$

* For $\left(-u_{1},-u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{2}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)>0$, $v_{2}=-u_{2}$ and $u_{2}= \pm a_{2}$. Thus, we state that:

$$
\begin{aligned}
(i, 2)\left(-u_{1},-u_{2},-v_{1},-v_{2}\right) & =\psi_{(i, 2)}\left(-u_{1}, \mp a_{2},-v_{1}, \pm a_{2}\right) \\
& =\left[\rho\left(-u_{1},-v_{1}\right), \sigma_{0}\left(\mp a_{2}, \pm a_{2}\right)\right] \\
& =\left[\rho\left(u_{1}, v_{1}\right), \sigma_{0}\left(\pm a_{2}, \mp a_{2}\right)\right]
\end{aligned}
$$

* Let $\left(u_{1}, u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{2}$ with $\theta_{i}\left(u_{1}, v_{1}\right)>0, v_{2}=u_{2}$ and $u_{2}= \pm a_{2}$. Then

$$
{ }_{(i, 2)}\left(u_{1}, u_{2}, v_{1}, v_{2}\right)=\psi_{(i, 2)}\left(u_{1}, \pm a_{2}, v_{1}, \pm a_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(\pm a_{2}, \pm a_{2}\right)\right]
$$

* For $\left(u_{1}, u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{2}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=u_{2}$ and $u_{2}= \pm a_{2}$. Next, this gives that:

$$
\begin{aligned}
{ }_{(i, 2)}\left(u_{1}, u_{2},-v_{1},-v_{2}\right)=\psi_{(i, 2)}\left(u_{1}, \pm a_{2},-v_{1}, \mp a_{2}\right) & =\left[\rho\left(-u_{1},-v_{1}\right), \rho\left(\mp a_{2}, \mp a_{2}\right)\right] \\
& =\left[\rho\left(u_{1}, v_{1}\right), \rho\left(\pm a_{2}, \pm a_{2}\right)\right]
\end{aligned}
$$

FİŞEKCİ and KARACA/Turk J Math

* For $\left(-u_{1},-u_{2}, v_{1}, v_{2}\right) \in U_{i} \times V_{2}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)<0, v_{2}=u_{2}$ and $u_{2}= \pm a_{2}$. Hence, this provides that:

$$
{ }_{(i, 2)}\left(-u_{1},-u_{2}, v_{1}, v_{2}\right)=\psi_{(i, 2)}\left(-u_{1}, \mp a_{2}, v_{1}, \pm a_{2}\right)=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(\pm a_{2}, \pm a_{2}\right)\right]
$$

* For $\left(-u_{1},-u_{2},-v_{1},-v_{2}\right) \in U_{i} \times V_{2}$, we have $\theta_{i}\left(u_{1}, v_{1}\right)>0$, $v_{2}=u_{2}$ and $u_{2}= \pm a_{2}$. Accordingly, this satisfies:

$$
\begin{aligned}
(i, 2)\left(-u_{1},-u_{2},-v_{1},-v_{2}\right) & =\psi_{(i, 2)}\left(-u_{1}, \mp a_{2},-v_{1}, \mp a_{2}\right) \\
& =\left[\rho\left(-u_{1},-v_{1}\right), \rho\left(\mp a_{2}, \mp a_{2}\right)\right] \\
& =\left[\rho\left(u_{1}, v_{1}\right), \rho\left(\pm a_{2}, \pm a_{2}\right)\right] .
\end{aligned}
$$

These constructions yield the following maps by considering the quotient space, since the equivalence classes are the same.

- $\bar{\psi}_{(i, 0)}: \frac{\left(U_{i} \times V_{0}\right)}{\sim} \rightarrow(d-P)^{I_{m_{1}+m_{2}}}$ is defined by:

$$
\bar{\psi}_{(i, 0)}\left(\left[u_{1}, v_{1}, u_{2}, v_{2}\right]\right)=\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]
$$

- $\bar{\psi}_{(i, 1)}: \frac{\left(U_{i} \times V_{1}\right)}{\sim} \rightarrow(d-P)^{I_{m_{1}+m_{2}}}$ is given by:

$$
\bar{\psi}_{(i, 1)}\left(\left[u_{1}, v_{1}, u_{2}, v_{2}\right]\right)= \begin{cases}{\left[\rho\left(u_{1}, v_{1}\right), \sigma\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right) \neq 0, v_{2}=-u_{2}, u_{2} \neq \pm a_{2} \\ {\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right) \neq 0, v_{2}=u_{2}, u_{2} \neq \pm a_{2}\end{cases}
$$

- $\bar{\psi}_{(i, 2)}: \frac{\left(U_{i} \times V_{2}\right)}{\sim} \rightarrow(d-P)^{I_{m_{1}+m_{2}}}$ is set by:

$$
\bar{\psi}_{(i, 2)}\left(\left[u_{1}, v_{1}, u_{2}, v_{2}\right]\right)= \begin{cases}{\left[\rho\left(u_{1}, v_{1}\right), \sigma_{0}\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right) \neq 0, v_{2}=-u_{2}, u_{2} \neq \pm a_{2} \\ {\left[\rho\left(u_{1}, v_{1}\right), \rho\left(u_{2}, v_{2}\right)\right]} & \text { if } \theta_{i}\left(u_{1}, v_{1}\right) \neq 0, v_{2}=u_{2}, u_{2} \neq \pm a_{2}\end{cases}
$$

where $i \in\{0,1,2,3\}$ and $d-P=\frac{S_{\min }^{2} \times S_{\min }^{2}}{\sim}$.
We obtain an explicit construction of $\frac{S_{\min }^{2} \times S_{\min }^{2}}{\sim}=\frac{U_{0}}{\sim} \cup \frac{U_{1}}{\sim} \cup \frac{U_{2}}{\sim} \cup \frac{U_{3}}{\sim}$ and $S_{\min }^{2} \times S_{\min }^{2}=V_{0} \cup V_{1} \cup V_{2}$.
We define the disjoint union:

$$
W_{l}=\bigcup_{i+j=l}\left(U_{i} \times V_{j}\right) \subset S_{\min }^{2} \times S_{\min }^{2} \times S_{\min }^{2} \times S_{m i n}^{2}
$$

where $l=0, \ldots, 3+d$-TCS $S_{\text {min }}^{2}$. All subsets of $S_{m i n}^{2} \times S_{m i n}^{2} \times S_{m i n}^{2} \times S_{m i n}^{2}$ are compatible with respect to the equivalence relation (1). In the quotient space,

$$
\bar{W}_{l}=\bigcup_{i+j=l} \frac{U_{i} \times V_{j}}{\sim} \subset d-P \times d-P
$$

FİŞEKCİ and KARACA/Turk J Math

is the disjoint union, where $l=0, \ldots, 3+d-T C S_{\text {min }}^{2}$. We describe a motion planning strategy over each \bar{W}_{l} and $\bigcup_{l=0}^{5} \bar{W}_{l}$ is a cover of $d-P \times d-P$. Therefore, we conclude that:

$$
d-T C(d-P) \leq d-T C\left(d-P^{2}\right)+d-T C\left(S_{\min }^{2}\right)
$$

4. Conclusion

The combination of topological structures with robotics forms a new area called topological robotics. Although robotics is a practical discipline, there is a theoretical side of the subject. The theoretical idea of robotics is associated with many branches of mathematics. Topology plays a key role in implementing great ideas. For instance, researchers discuss topological problems inspired by robotics and study motion planning problem, as well as the concept of Farber's topological complexity in detail. When the digital topological tools, more specifically, the notion of the digital topological complexity and related invariants are utilized in finding solutions to problems, interdisciplinary interaction will increase and hence this will open new windows in the field.

In this paper, we aim to introduce the digital projective product space and the digital projective spaces by using the digital spheres [13]. The main goal is to deal with the digital topological complexity and the digital LS-category of these spaces. We determine an upper bound for the digital LS-category and ultimately an upper bound for the digital topological complexity of the digital projective product spaces. Additionally, the digital nonsingular map characterization is used to measure the digital topological complexity of the digital projective spaces. This study reveals the digital topological complexity of the digital PPS in terms of the digital topological complexity of the digital projective space associated with the first digital sphere and the digital topological complexity of the remaining digital spheres. We accomplish this by constructing an explicit motion planning in these spaces. In this context, the advantages of more direct methods in the digital sense provide the results in [17] apart from requiring cohomological operational lower bound properties. In particular, we give examples on specific spaces to clarify our results.

This leads us to work on the digital higher topological complexity and related invariants of the digital projective product spaces, which is an open problem.

Acknowledgment

The authors gratefully thank the anonymous referees for the valuable comments and constructive suggestions. The Scientific and Technological Research Council of Turkey granted the first author a fellowship (TÜBİTAK2211/A).

References

[1] Berge C. Graphs and Hypergraphs 2nd edition. Amsterdam: North-Holland Mathematical Library, 1976.
[2] Borat A, Vergili T. Digital Lusternik-Schnirelmann category. Turkish Journal of Mathematics 2018; 42 (4): 18451852. https://doi.org/10.3906/mat-1801-94
[3] Boxer L. A classical construction for the digital fundamental group. Journal of Mathematical Imaging and Vision 1999; 10: 51-62. https://doi.org/10.1023/A:1008370600456
[4] Boxer L. Properties of digital homotopy. Journal of Mathematical Imaging and Vision 2005; 22: 19-26. https://doi.org/10.1007/s10851-005-4780-y
[5] Boxer L. Homotopy properties of sphere-like digital images. Journal of Mathematical Imaging and Vision 2006; 24: 167-175. https://doi.org/10.1007/s10851-005-3619-x

FİŞEKCİ and KARACA/Turk J Math

[6] Boxer L. Digital products, wedges, and covering spaces. Journal of Mathematical Imaging and Vision 2006; 25: 169-171. https://doi.org/10.1007/s10851-006-9698-5
[7] Boxer L, Karaca I. Fundamental groups for digital products. Advances and Applications in Mathematical Sciences 2012; 11: 161-180.
[8] Cohen DC, Pruidze G. Motion planning in tori. Bulletin of the London Mathematical Society 2008; 40 (2): 249-262. https://doi.org/10.1112/blms/bdn005
[9] Cornea O, Lupton G, Oprea J, Tanré D. Lusternik-Schnirelmann-Category. Mathematical Surveys \& Monographs volume 103: AMS, 2003.
[10] Davis D. Projective product spaces. Journal of Topology 2010; 3 (2): 265-279. https://doi.org/10.1112/jtopol/jtq006
[11] Ege O, Karaca I. Fundamental properties of simplicial homology groups for digital images. American Journal of Computer Technology and Application 2013; 1: 25-43.
[12] Ege O, Karaca I. Cohomology theory for digital images. Romanian Journal of Information Science and Technology 2013; 16: 10-28.
[13] Evako AV. Properties of Digital n-Dimensional Spheres and Manifolds. Separation of Digital Manifolds, SCIREA Journal of Mathematics 2018; 3 (1): 29-56.
[14] Farber M. Topological complexity of motion planning. Discrete and Computational Geometry 2003; 29: 211-221. https://doi.org/10.1007/s00454-002-0760-9
[15] Farber M. Invitation to topological robotics. Zurich Lectures in Adv. Mathematics: European Mathematical Society, 2008. https://doi.org/10.4171/054
[16] Farber M, Tabachnikov S, Yuzvinsky S. Topological robotics: motion planning in projective spaces. International Mathematics Research Notices 2003; 34: 1853-1870. https://doi.org/10.1155/S1073792803210035
[17] Fişekci S, Vandembroucq L. On the LS-category and topological complexity of projective product spaces. Journal of Homotopy and Related Structures. 2021; 16: 769-780. https://doi.org/10.1007/s40062-021-00295-3
[18] Gonzales J, Grant M, Torres-Giese E, Xicotebcatl M. Topological complexity of motion planning in projective product spaces. Algebraic and Geometric Topology 2013; 13 (2): 1027-1047. https://doi.org/10.2140/agt.2013.13.1027
[19] Herman GT. Oriented surfaces in digital spaces. CVGIP: Graphical models and image processing 1993; 55: 381-396. https://doi.org/10.1006/cgip.1993.1029
[20] Is M, Karaca I. Digital topological complexity numbers. Turkish Journal of Mathematics 2018; 42 (6): 3173-3181. https://doi.org/10.3906/mat-1807-101
[21] Is M, Karaca I. The higher topological complexity in digital images. Applied General Topolology 2020; 21 (2): 305-325. https://doi.org/10.4995/agt.2020.13553
[22] Is M, Karaca I. Counterexamples for topological complexity in digital images. arXiv: 2006.04144. https://doi.org/10.48550/arXiv.2006.04144
[23] Is M, Karaca I. Topological complexities of finite digital images. arXiv:2009.00311. https://doi.org/10.48550/arXiv.2009.00311
[24] Is M, Karaca I. Digital topological complexity of digital maps. arXiv:2103.00585. https://doi.org/10.48550/arXiv.2103.00585
[25] Khalimsky E. Motion, deformation, and homotopy in finite spaces. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics; Boston, USA; 1987; pp. 227-234.
[26] Lupton G, Oprea J, Scoville NA. Homotopy theory in digital topology. Discrete \& Computational Geometry 2022; 67: 112-165. https://doi.org/10.1007/s00454-021-00336-x
[27] Vergili T, Borat A. Digital Lusternik-Schnirelmann category of digital functions. Hacettepe Journal of Mathematics and Statistics 2020; 49 (4): 1414-1422. https://doi.org/10.15672/hujms. 559796

[^0]: *Correspondence: fisekciseher@gmail.com
 2010 AMS Mathematics Subject Classification: 55M30, 65D18, 68U10.

