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Abstract: In this paper, the comparison of finite difference and Fourier spectral numerical methods for an inverse
problem of simultaneously determining an unknown coefficient in a parabolic equation with the usual initial and boundary
conditions is proposed. We represent the detailed description of the methods and their algorithms. The research work
conducted in this paper shows that the Fourier spectral method is highly accurate.
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1. Introduction
Recent advances in numerical simulations for determining unknown coefficients in a parabolic equation have led
to many interesting results. In heat conduction, attention was paid to the unique solvability of one-dimensional
inverse problems for the heat equation in the case when the unknown thermal coefficients are constant [2], time-
dependent [11, 12], space-dependent [1], or temperature-dependent [8, 10, 14, 15]. Most of these simulations
have been carried out with the finite difference method (FDM) [7, 9, 13]. However, the inverse problem of
a heat equation with the time-dependent coefficient of heat capacity has mathematically smooth solutions.
Accordingly, one expects that the Fourier spectral method (FSM) should be optimal in terms of efficiency and
accuracy. Moreover, numerical studies can also be conducted for a coefficient determination problem for a
fractional diffusion equation [6].

The spectral method, which belongs to the set of weighted residual methods, was originally developed
for solving the spatial part of partial differential equations. For detailed, precise, and numerical information
on spectral methods, see the work in [16, 17] and references therein. This allows one to save computational
resources when evaluating the differentiation and to employ an efficient algorithm such as the fast Fourier
transform when the number of grid nodes is even. The advantage of the spectral method over other numerical
methods in solving linear PDEs is its high accuracy; when solutions of PDEs are smooth enough, errors of
numerical solutions decrease exponentially as the number of discretization nodes increases, while the finite
difference method leads to the algebraically decreasing error in fact.
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In Figure 1, the order of the spectral accuracy is compared to the order of accuracy of the finite
difference. In this case, we use a simple function u(x) = esin(x) on the periodic domain [−π, π] ; hence,
u′(x) = con(x)esin(x) . An error is defined as Error = max|u′(xi) − uapp

i | , 1 ≤ i ≤ N , where uapp
i is an

approximation of u′(xi) and N is the number of grid points. According to Figure 1, the error is decreasing
exponentially via the Fourier spectral method indeed.

Figure 1. Convergence of fourth-order finite difference and Fourier-spectral method where u(x) = esin(x) . Both axes
are on log-scale.

In this paper, we investigate the inverse problem for simultaneous determination of a time-dependent
coefficient in the one-dimensional heat equation. The paper is organized as follows. In the next section, we
give the mathematical formulations of the inverse problem. The numerical setup is presented in Section 3. The
numerical finite-difference discretization of the direct problem is described in Subsection 3.1, whilst Subsection
3.2 introduces the numerical implementation of the direct problem using the Fourier spectral method. In Section
4, we provide numerical results and discussion. Finally, conclusions are presented in Section 5.

2. Mathematical formulation of the inverse problem

Consider the linear one-dimensional parabolic equation on a periodic domain with a time-dependent coefficient:

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
− q(t)u(x, t), (x, t) ∈ (0, l)× (0, T ] =: ΩT , (2.1)

where u(x, t) represents the temperature in a finite slab of length l > 0 over time interval (0, T ] with T > 0 ,
q(t) represents the coefficient of heat capacity.

We study the inverse problem to find the coefficient q together with the solution of u in Eq. (2.1) under
the following conditions: initial condition:

u(x, 0) = φ(x), x ∈ [0, l], (2.2)

boundary and overdetermination conditions:

u(0, t) = u(l, t) = 0,
∂u(0, t)

∂x
= h(t). (2.3)

The first conditions of (2.3) represent the specification of the boundary temperature.

3224



DURDIEV and DURDIEV/Turk J Math

Definition 2.1 The pair {q(t), u(x, t)} from the class C[0, T ]×C2,1(ΩT )∩C(ΩT ) , for which equalities (2.1)–
(2.3) are satisfied and q(t) ≥ 0 on the [0, T ] , is called a classical solution of the inverse problem (2.1)–(2.3).

We assume that the data of the problem (2.1)–(2.3) satisfy the following conditions:(
A1

)
φ(x) ∈ C3[0, l], φ(0) = φ(l) = 0, φ′′(0) = φ′′(l) = 0, φ′(0) = h(0);(

A2

)
h(t) ∈ C1[0, T ], |h(t)| ≥ h0 > 0, h0 = const.

Theorem 2.2 Let the assumptions
(
A1

)
and

(
A2

)
be valid. Then, the inverse problem (2.1)–(2.3) has a unique

classical solution in ΩT0
, where the number T0

(
0 < T0 < T

)
is determined by the data of the problem.

In order to show the existence of a unique solution to inverse problem (2.1)–(2.3), for convenience,
introducing a new function by formula v(x, t) = ∂

∂xu(x, t) , we reduce the inverse problem (2.1)–(2.3) to the
following form:

∂v(x, t)

∂t
=

∂2v(x, t)

∂x2
− q(t)v(x, t), (x, t) ∈ ΩT , (2.4)

v(x, 0) = φ′(x), x ∈ [0, l], (2.5)

vx(0, t) = vx(l, t) = 0, t ∈ [0, T ], (2.6)

v(0, t) = h(t), t ∈ [0, T ]. (2.7)

After determining {q, v} , the pair {q, u} will be the classical solution to the inverse problem (2.1)–(2.3),
where u(x, t) =

∫ x

0
v(ξ, t)dξ. Firstly, we study the direct problem (2.4)–(2.6). At the same time, function q(t)

will be considered known and q(t) ∈ C[0, T ]. The function v(x, t) , as a solution to the second initial-boundary
value problem (2.4)–(2.6), satisfies the integral equation:

v(x, t) =

∫ l

0

G(x, ξ, t)φ′(ξ)dξ −
∫ t

0

q(τ)

∫ l

0

G(x, ξ, t− τ)v(ξ, τ)dξdτ, (x, t) ∈ ΩT , (2.8)

where G(x, ξ, t) = 2
l

{
1
2 +

∑∞
n=1 exp

[
−
(
πn
l

)2
t
]
cos πn

l x cos πn
l ξ

}
is Green’s function of the second initial

boundary value problem for the heat equation. By definition, it satisfies (in the generalized sense) the following
equations:

∂G

∂t
=

∂2G

∂x2
,

lim
t→0

G(x, ξ, t) = δ(x− ξ),
∂G

∂x
(0, ξ, t) =

∂G

∂x
(l, ξ, t) = 0,

where δ(·) is Dirac’s delta function.
We shall now demonstrate that Eq. (2.8) determines a single continuous solution within the domain ΩT .

For this purpose, the method of successive approximation will be used, presenting v(x, t) as a series:

v(x, t) =

∞∑
n=0

vn(x, t), (2.9)
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where v0(x, t) =
∫ l

0
G(x, ξ, t)φ′(ξ)dξ , and vn(x, t), n ≥ 1 , are obtained by:

vn(x, t) = −
∫ t

0

q(τ)

∫ l

0

G(x, ξ, t− τ)vn−1(ξ, τ)dξdτ, n ≥ 1 (x, t) ∈ ΩT . (2.10)

Denote φ0 = max
x∈[0,l]

|φ′(x)|, q0 = max
t∈[0,T ]

|q(t)|. According to the formula (2.10), we estimate un(x, t) for

(x, t) ∈ ΩT as follows:

|v0(x, t)| ≤ φ0, |vn(x, t)| ≤ φ0
(q0t)

n

n!
, n ≥ 1. (2.11)

Estimates (2.11) show that series (2.9) converges uniformly in the domain ΩT , since it is majorized in ΩT

by convergent numerical series φ0

∑∞
n=0(q0T )

n/n! . Thus, it determines continuously within the domain ΩT of
function ϑ(x, t) , which is the solution to (2.8). This solution is unique since the uniform equation corresponding
to (2.8):

v(x, t) = −
∫ t

0

q(τ)

∫ l

0

G(x, ξ, t− τ)v(ξ, τ)dξdτ (2.12)

has only the zero solution in the class of continuous in ΩT functions.
Indeed, if

v(t) = max
0≤x≤l

v(x, t),

then, (2.12) yields:

v(t) ≤ q0

∫ t

0

v(τ)dτ t ∈ [0, T ].

It is known that this integral inequality has the only solution, which is v(t) = 0 ; hence, v(x, t) = 0 for
(x, t) ∈ ΩT . Under the conditions of A1 , the series obtained by differentiating once by x is uniformly convergent
in ΩT . Therefore, its sum vx(x, t) , like v(x, t) , is convergent in ΩT . From this and in view of that G(x, ξ, t)

is infinitely continuously differentiable in ΩT , we have v(x, t) ∈ C2,1(ΩT ) ∩ C1,0(ΩT ).

In addition, vt(x, t), vxx(x, t) are continuous in ΩT . Indeed, by differentiating (2.8) in t and using
relation limt→0 G(x, ξ, t) = δ(x− ξ) , we obtain:

vt(x, t) =
∂

∂t

∫ l

0

G(x, ξ, t)φ′(ξ)dξ − q(t)v(x, t)−
∫ t

0

q(τ)

∫ l

0

∂

∂t
G(x, ξ, t− τ)v(ξ, τ)dξdτ.

Using equalities ∂
∂tG = ∂2

∂x2G, Gξ(x, 0, t) = Gξ(x, l, t) = 0, and integrating by parts, we find:

∂

∂t

∫ l

0

G(x, ξ, t)φ′(ξ)dξ =

∫ l

0

Gξξ(x, ξ, t)φ(ξ)dξ = Gξ(x, ξ, t)φ
′(ξ)

∣∣∣l
0
−

−
∫ l

0

Gξ(x, ξ, t)φ
′′(ξ)dξ = −

∫ l

0

Gξ(x, ξ, t)φ
′′(ξ)dξ =

∫ l

0

G(x, ξ, t)φ′′′(ξ)dξ.
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Transform now the inner integral of the second term in (2.15) by a similar way. Taking into account also
conditions (2.6), we get:

vt(x, t) =

∫ l

0

G(x, ξ, t)φ′′′(ξ)dξ +

∫ t

0

q(τ)

∫ l

0

G(x, ξ, t− τ)vξξ(ξ, τ)dξdτ − q(t)v(x, t). (2.13)

Note also that function v(x, t) satisfies the (2.4), i.e. vxx(x, t) = vt(x, t) + q(t)v(x, t). In view of this equality,
we rewrite (2.13) in the following form:

vt(x, t) =

∫ l

0

G(x, ξ, t)φ′′′(ξ)dξ −
∫ t

0

q(τ)

∫ l

0

G(x, ξ, t− τ)
[
vt(ξ, τ) + q(τ)v(ξ, τ)

]
dξdτ − q(t)v(x, t).

The last equation can be considered the Volterra type integral equation with respect to vt with continuous free
term and kernel (q and v are known functions). As usually, this equation determines the continuous within
the domain ΩT function vt(x, t). Since the right side of vxx(x, t) = vt(x, t) + q(t)v(x, t) is continuous in ΩT ,

then vxx(x, t) ∈ C(ΩT ).

Now we will start studying the inverse problem (2.4)–(2.7). In (2.13), we set x = 0 and use the
overdetermination condition (2.7). Resolving the resulting equality with respect to q(t) , we obtain:

q(t) = −h′(t)

h(t)
+

1

h(t)

∫ l

0

G(0, ξ, t)φ′′′(ξ)dξ − 1

h(t)

∫ t

0

q(τ)

∫ l

0

G(0, ξ, t− τ)vξξ(ξ, τ)dξdτ, t ∈ [0, T ]. (2.14)

Considering (2.14) and equation for vxx , which is obtained by differentiating twice the equality (2.8) in the
variable x and integrating by part:

vxx(x, t) =

∫ l

0

G(x, ξ, t)φ′′′(ξ)dξ −
∫ t

0

q(τ)

∫ l

0

G(x, ξ, t− τ)vξξ(ξ, τ)dξdτ, (x, t) ∈ ΩT , (2.15)

we see that these equations constitute a closed system of integral equations of the Volterra type with respect to
unknown functions q, vxx . The proof of Theorem 2.2 is completed by application of the fixed point principle
(Banach’s theorem) to the system of integral equations (2.14), (2.15). On the application of the fixed point
argument to solving of inverse problems for parabolic equations, see [3–5]. By found function q, vxx , function
v is determined via formula:

v(x, t) = v(0, t) +

∫ x

0

(x− ξ)vξξ(ξ, t)dξ,

where v(0, t) is the value of the solution of integral equation (2.8) with known function q(t) at x = 0.

3. Numerical procedure
In this section, we represent the finite difference and Fourier spectral methods for the numerical solution of Eq.
(2.1) with initial boundary (2.2) and overdetermination (2.3) conditions in a line segment Ω = [lx, rx] . Let Nx

be positive even integer and Lx = rx − lx be the length of a line segment; hence, define ∆x = Lx/Nx as the
spatial step size. We denote discretized points as xj = lx + j∆x where 0 ≤ j ≤ Nx is integer. Let un

j be an
approximation of u(xj , tn) , where tn = n∆t and ∆t = T/Nt is the temporal step size, Nt is the number of
time steps.
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3.1. Finite difference method
By utilizing the forward difference for the time derivative and centered second-order finite difference for the
spatial derivative, Eq. (2.1) takes the following form:

un+1
j − un

j

∆t
=

un
j+1 − 2un

j + un
j−1

∆x2
− qnun

j , 0 ≤ j ≤ Nx, 0 ≤ n ≤ Nt.

With forward Euler time marching, the un+1
j at grid point j for the time step n+ 1 results in:

un+1
j = un

j (1−∆tqn) + ∆t
(un

j+1 − 2un
j + un

j−1

∆x2

)
, 0 ≤ j ≤ Nx, 0 ≤ n ≤ Nt. (3.1)

Because the un
j is known at the time step n = 0 , due to the initial boundary condition (2.2), the explicit Euler

time marching scheme enables the direct solution of Eq. (3.1). The overdetermination condition (2.3) has been
used to compute the unknown coefficient qn by applying the forward difference for the spatial derivative in the
left-hand side of Eq. (2.3) at j = 0 ,

un+1
1 − un+1

0

∆x
= hn+1, 0 ≤ n ≤ Nt. (3.2)

Eq. (3.1) can be represented as:

un+1
j = un

j (1−∆tqn) + ∆tAn
j , 0 ≤ j ≤ Nx, 0 ≤ n ≤ Nt,

where

An
j =

un
j+1 − 2un

j + un
j−1

∆x2
, 0 ≤ j ≤ Nx, 0 ≤ n ≤ Nt, (3.3)

at the discretized point j = 0 and j = 1 ,

un+1
0 = un

0 (1−∆tqn) + ∆tAn
0 , 0 ≤ n ≤ Nt,

un+1
1 = un

1 (1−∆tqn) + ∆tAn
1 , 0 ≤ n ≤ Nt.

The qn can be obtained by substituting un+1
0 and un+1

1 in Eq. (3.2), such as,

(un
1 − un

0 )(1−∆tqn) + ∆t(An
1 −An

0 )

∆x
= hn+1, 0 ≤ n ≤ Nt

and qn ,

qn =
1

∆t

(
1− ∆xhn+1 −∆t(An

1 −An
0 )

un
1 − un

0

)
, 0 ≤ n ≤ Nt. (3.4)

Since un
0 = 0 and An

0 = 0 , due to the boundary condition (2.2), Eq. (3.4) can be reduced to the following form:

qn =
1

∆t

(
1− ∆xhn+1 −∆tAn

1

un
1

)
, 0 ≤ n ≤ Nt. (3.5)

Thus, for (2.1), we now have the following solution steps:
1) for the known un

j , compute An
j using (3.3) at n = 0 ;

2) at j = 1 , evaluate qn using (3.4);
3) for the known un

j and qn , find un+1
j using (3.1).
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3.2. Fourier spectral method
For the given data un

j , where 1 ≤ j ≤ Nx , the discrete Fourier transform is defined as:

ûn
m =

Nx∑
j=1

un
j e

−ikmxj , −Nx

2
+ 1 ≤ m ≤ Nx

2
, (3.6)

where km = 2πm/Lx . The inverse discrete Fourier transform is:

un
j =

1

Nx

Nx∑
m=1

ûn
meikmxj . (3.7)

Note that we can obtain spectral derivatives as if we perform an analytic differentiation in the Fourier space. We
assume that u(x, t) is sufficiently smooth and extended to continuous version of the numerical approximation
un
j . The following shows step-by-step description of how the differentiation works in the Fourier transform with

finite basis.
∂

∂x
u(x, t) =

1

Nx

Nx∑
m=1

(ikm)û(km, t)eikmx.

This process enables one to derive spectral derivatives in the Fourier space easily, not differentiate directly in
the physical space. Therefore, we can represent the second derivative in the Fourier space as follows:

∂2

∂x2
u(x, t) =

1

Nx

Nx∑
m=1

(−k2m)û(km, t)eikmx.

Now we present the numerical solutions of Eq. (2.1). Firstly, we derive the numerical solution for u(x, t) ,
which starts with the Fourier transform of both sides of Eq. (2.1).

∂{u}m
∂t

=
{∂2u

∂x2

}
m
− q(t){u}m, (3.8)

where
{
·
}
m

is the Fourier transform of the quantity inside the bracket and m is the coefficient of the m -Fourier
mode. Then, in the Fourier space, Eq. (3.8) becomes:

∂ûm

∂t
= −k2mûm − q(t)ûm.

Taking the forward difference in time derivative yields:

ûn+1
m − ûn

m

∆t
= −k2mûn+1

m − qnûn
m

in which ∆t is the time between the time steps n+1 and n . Therefore, with forward Euler time marching, we
obtain the following discrete Fourier transform:

ûn+1
m = ûn

m

( 1−∆tqn

1 + ∆tk2m

)
. (3.9)

3229



DURDIEV and DURDIEV/Turk J Math

Then, the updated numerical solution un+1
j can be computed using Eq. (3.7):

un+1
j =

1

Nx

Nx∑
m=1

ûn+1
m eikmxj . (3.10)

Next, we employ the overdetermination condition (2.3) to obtain the unknown coefficient qn by taking
the spectral derivative in the Fourier space, Eq. (2.3) can be rewritten as follows:

∂u(x)

∂x

∣∣∣n+1

x=0
=

{ 1

Nx

Nx∑
m=1

(ikm)ûn+1
m eikmx

}
x=0

=
1

Nx

Nx∑
m=1

(ikm)ûn+1
m = hn+1.

(3.11)

By inserting (3.10) in (3.11), we obtain the following:

1

Nx

Nx∑
m=1

[
(ikm)ûn

m

( 1−∆tqn

1 + ∆tk2m

)]
=

1−∆tqn

Nx

Nx∑
m=1

ikmûn
m

1 + ∆tk2m
= hn+1. (3.12)

Now, the unknown coefficient qn can be easily determined from (3.12):

qn =
(
1− Nxh

n+1

An
m

) 1

∆t
, An

m =

Nx∑
m=1

ikmûn
m

1 + ∆tk2m
. (3.13)

Thus, for (2.1), we now have the following solution steps with the Fourier spectral method:
1) perform the discrete Fourier transform (3.6) of un

j ;
2) compute qn using (3.13);
2) evaluate the updated numerical solution in the Fourier space using (3.9);
3) perform the inverse discrete Fourier transform (3.7) of un+1

j .

4. Numerical results and discussion
Numerical results obtained from both methods are presented for the test example for the inverse problem
(2.1)–(2.3), in which we obtain the numerical solution for the coefficient of heat capacity and temperature,
respectively. In this example, we take, for simplicity, l = 2π and T = 1 . The computational details have
already been given in Section 3 . We have also calculated the relative error to analyse the error between the
exact and estimated solutions, defined as:

η(u) = max1≤i≤Nx |unumerical
i − uexact

i |

η(q) = max1≤i≤Nt
|qnumerical

i − qexacti |

We solve this inverse problem (2.1)–(2.3) with following input data:

φ(x) = sin(x), h(t) = 1 + t
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for x ∈ (0, l = 2π) and t ∈ (0, T = 1) . The exact solution is given by:

u(x, t) = (1 + t)sin(x), q(t) =
−2− t

1 + t
.

Table 1 gives the numerical coefficients, obtained by FDM and FSM for q(t) using Nx ∈ {32, 64, 128}
in comparison with the exact ones. In Figure 2, we present the plots of numerical and analytical results for
both methods, as it can be seen, the comparison is relatively good for both methods. Table 2 illustrates the
absolute errors for u(x, t) for different number of grid points Nx . Figure 3 shows the numerical solutions of
u(x, t) obtained using the proposed numerical approaches at time t = 1 .

Table 1. The exact and numerical coefficients of q(t) for Nx ∈ {32, 64, 128} done by FDM and FSM.

t 0.1 0.2 0.3 ... 0.8 0.9 1 Nx

FDM

–1.9069 –1.8310 –1.7668 ... –1.5528 –1.5235 –1.4972 32
–1.9092 –1.8333 –1.7691 ... –1.5552 –1.5258 –1.4995 64
–1.9098 –1.8339 –1.7697 ... –1.5557 –1.5264 –1.5001 128
–1.9091 –1.8333 –1.7692 ... –1.5555 –1.5263 –1.5000 exact

FSM –1.91082 –1.83486 –1.77059 ... –1.55642 –1.52712 –1.50075 32, 64, 128
–1.9091 –1.8333 –1.7692 ... –1.5555 –1.5263 –1.5000 exact

Figure 2. Comparison of the analytical and numerical solutions of q(t) , FDM, and FSM.

Table 2. The absolute errors for u(x, t) obtained by FDM and FSM for Nx ∈ {32, 64, 128} .

t 0.1 0.2 0.3 ... 0.8 0.9 1 Nx

FDM
η(u)

6.229e-03 6.821e-03 7.417e-03 ... 1.044e-02 1.106e-02 1.168e-02 32
7.877e-04 8.711e-04 9.563e-04 ... 1.412e-03 1.509e-03 1.608e-03 64
5.966e-04 6.451e-04 6.926e-04 ... 9.156e-04 9.572e-04 9.979e-04 128

FSM
η(u)

4.774e-15 6.328e-15 4.775e-15 ... 1.554e-14 1.376e-14 1.443e-14 32
5.773e-15 5.662e-15 4.441e-15 ... 1.112e-14 1.398e-14 2.132e-14 64
2.886e-15 5.218e-15 9.104e-15 ... 1.311e-14 1.176e-14 1.421e-14 128
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Figure 3. Comparison of the numerical solutions (FDM, FSM) with the analytical solution of u(x, t = 1) .

5. Conclusion
This paper has presented the finite difference and Fourier spectral numerical approaches to identify simulta-
neously the time-dependent coefficient in the one-dimensional parabolic heat equation. The resulting inverse
problem have been reformulated as constrained regularized minimization problem which was solved using MAT-
LAB Optimization Toolbox routines. The numerically obtained results show that by increasing the number
of grid points, which requires higher computation time, in the finite difference method, the absolute errors
η(u) and η(q) are decreasing indeed. Nevertheless, the Fourier spectral method has the highest accuracy in
u(x, t) compared to the finite difference method. Moreover, one has to mention that changing the number of
discretizated points in the Fourier spectral method has almost no influence in η(u) and η(q) .

In the future, it is important to study the application possibilities of these numerical algorithms for the
problem of determining the coefficients in fractional diffusion equations [6].
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