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Abstract: We prove that if a translating soliton can be expressed as the sum of two curves and one of these curves
is planar, then the other curve is also planar and consequently the surface must be a plane or a grim reaper. We also
investigate translating solitons that can be locally written as the product of two functions of one variable. We extend
the results in Lorentz-Minkowski space.
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1. Introduction
Let v⃗ ∈ R3 be nonzero vector. A translating soliton in Euclidean 3 -dimensional space R3 with respect to v⃗ ,
called the velocity of the flow, is a surface M whose mean curvature H satisfies

H(p) = ⟨N(p), v⃗⟩, (1.1)

for all p ∈ M , where N is the unit normal vector field on M . Translating solitons appear in the theory of the
mean curvature flow of Huisken and Ilmanen as the solutions of the flow when M evolves purely by translations
along the direction v⃗ ([9, 10]). In particular, M + tv⃗ , t ∈ R , satisfies that fixed t , the normal component of the
velocity vector v⃗ at each point is equal to the mean curvature at that point. In nonparametric way z = u(x, y) ,
Equation (1.1) is

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 2(1 + u2
x + u2

y)(−v1ux − v2uy + v3), (1.2)

where the subindices indicate the corresponding partial differentiation and v⃗ = (v1, v2, v3) . This equation is
a quasilinear elliptic PDE, so the solvability is not assured. Some results of the solvability of the Dirichlet
problem can be proved by assuming convexity in the initial data ([14]). A way to reduce the complexity of
(1.2) is assuming some type of symmetry on the surface which makes that (1.2) converts into an ordinary
differential equation, where classical theory ensures the local existence of solutions. Following this strategy,
we can assume that the surface is invariant under a uniparametric group of translations (cylindrical surfaces)
or rotations (surfaces of revolution). Both families of surfaces are classified and play a remarkable role in the
theory of translating solitons. We now describe both examples. Let (x, y, z) be the canonical coordinates of
R3 .
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1. Cylindrical surfaces. The translating solitons are planes parallel to the velocity vector v⃗ if the rulings
are parallel to v⃗ or grim reapers otherwise. See a detailed discussion in [14]. For grim reapers, we can
assume without loss of generality that v⃗ = (0, 0, 1) . Let w be the direction of the rulings. After a rotation
about the z -axis, let w = cos θe1 + sin θe3 , where {e1, e2, e3} is the canonical basis of R3 , e3 = v⃗ and
cos θ ̸= 0 . The generating curve is included in the plane spanned by {e2, e} , where e = − sin θe1+cos θe3 .
If we write this curve as β(s) = se2 + u(s)e , then u satisfies u′′ = cos θ(1 + u′2) . This equation can be
completely integrated. For example, if θ = 0 , u(s) = − log(cos(s+ a)) + b , a, b ∈ R . We point out that
if a translating soliton is a ruled surface, then it must be cylindrical, hence a plane or a grim reaper ([8]).

2. Surfaces of revolution. The rotation axis is not arbitrary and must be parallel to the velocity vector v⃗ .
There are two types of rotational translating solitons depending on whether or not the surface meets the
rotation axis ([1, 4]). In the first case, the surface is known in the literature as the bowl soliton and in
the second one, the surfaces have a winglike shape.

Another way to address Equation (1.2) is by the technique of separation of variables. We have two
possibilities, u(x, y) = f(x)+g(y) and u(x, y) = f(x)g(y) , where f and g are smooth functions of one variable.
In both cases, Equation (1.2) is an ODE where the unknowns are the functions f = f(x) and g = g(y) . If
z = f(x) + g(y) , the translating soliton equation (1.2) is now

(1 + g′2)f ′′ + (1 + f ′2)g′′ = (1 + f ′2 + g′2)(−v1f
′ − v2g

′ + v3), (1.3)

where ′ indicates the derivative with respect to the corresponding variable. In [13], the second author proved
that if v⃗ = (0, 0, 1) , grim reapers are the only solutions of (1.3). Let us observe that the planes parallel to v⃗

are not graphs on the xy -plane. A surface that is the graph of z = f(x) + g(y) can be expressed as the sum
of two planar curves α(x) + β(y) , where α(x) = (x, 0, f(x)) and β(y) = (0, y, g(y)) . Let us observe that both
curves are contained in orthogonal planes. More generally, a surface is said to be a translation surface if it is the
sum of two curves called generating curves. The name of the translation surface is due to the fact that surface
can be viewed from the kinematic viewpoint as the translation of the curve α (of β ) by means of translations
through β (or α , respectively). Thus the result in [13] is only a partial answer to the following.

Problem 1. Classify all translating solitons that are translation surfaces.

This problem has its analogy in the classical theory of minimal surfaces of R3 . Scherk proved that besides
the planes, the only minimal surface that can be expressed as z = f(x) + g(y) is

u(x, y) =
1

c
log

∣∣∣∣ cos(cy)cos(cx)

∣∣∣∣ ,
where c ̸= 0 ([17]). More recently, Dillen et al. proved that if one of the generating curves of a minimal surface
of translation type is planar, then the other generating curve is also planar ([5]) and the surface belongs to a
family of minimal surfaces discovered by Scherk ([16]). Surprisingly, very recently the second author together
Hasanis and Perdomo discovered many minimal surfaces of translation type where both generating curves are
not planar ([7, 15]).

In this paper, we follow the same approach for translating solitons. However, the presence of the vector
v⃗ in Equation (1.1) makes a great difference because v⃗ is an arbitrary vector in relation with the spatial
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coordinates (x, y, z) of R3 . We give a partial answer to Problem 1 assuming that one of the generating curves
is planar and proving that the surface is a plane or a grim reaper (Theorem 2.2). As a previous step, we prove
this result in case the two generating curves are planar curves but not necessarily contained in orthogonal planes
(Theorem 2.1). Both results are analogous to the minimal surfaces obtained in [5]. The goal of both theorems
is that we do not presuppose any relation between the velocity vector v⃗ and the surface. More precisely, the
notion of translation surface is affine because we use the sum of vectors of R3 . However, the velocity vector v⃗ in
the translating soliton equation (1.1) is assumed in all its generality without any relation with the coordinates
of R3 . This should be pointed out because one may be tempted to fix v⃗ since Equation (1.1) is invariant after
a rigid motion. However, such rigid motion also changes the spatial coordinates of R3 . This seems to be subtle,
but if one assumes that the surface is z = f(x)+g(y) , then the vector v⃗ must be arbitrary. All this complicates
the demonstrations, which are not straightforward.

The second case of separation of variables that we investigate for the translating soliton equation is
z = f(x)g(y) . Then (1.2) is

(1 + f2g′2)gf ′′ − 2fgf ′2g′2 + (1 + g2f ′2)fg′′ − 2(1 + f ′2g2 + f2g′2)(−v1f
′g − v2fg

′ + v3) = 0. (1.4)

Let us observe the symmetry of (1.4) in terms of f or g , hence any discussion on one of both functions also
holds for the other one. As far as the authors know, the first approach to this kind of surface in relation to
the study of the curvature of surfaces appeared in [18, 19], where the authors coined this type of surface as
homothetical surfaces (see also [6, 12]). We have the analogous question.

Problem 2. Classify all translating solitons of homothetical type.

It was proved in [13], and in the particular case v⃗ = (0, 0, 1) , that the only homothetical translating
solitons are grim reapers. Grim reapers appear when one of the functions f or g are constant. Indeed, if
say f(x) = a , a ∈ R , then the parametrization of the surface is X(x, y) = (x, y, ag(y)) deducing that the
surface is cylindrical and the rulings are parallel to the vector e1 of the canonical basis. In contrast to Equation
(1.3), now Equation (1.4) is more difficult to work. The result that we prove is assuming that v⃗ is one of the
canonical directions of R3 and proving that the surface is a plane or a grim reaper (Theorem 3.1). Again we can
make the same observation as before and although this seems elementary analysis and would yield no nontrivial
solutions besides cylindrical surfaces, one can expect the existence of new examples. For instance, in the family
of minimal surfaces, the plane and the helicoid (which is not cylindrical but ruled) are the only homothetical
surfaces ([18]). But if one replaces z = f(x)g(y) by h(z) = f(x)g(y) , then there are many minimal surfaces
([16]).

Finally, in Section 4 we extend all the above results for translating solitons in Lorentz-Minkowski space
R3

1 . Since the underlying affine space for R3
1 coincides with the Euclidean space, the concepts of translation

surfaces and homothetical surfaces are equally valid in the Lorentzian setting. The results are analogous to that
of Euclidean space.

2. Translating solitons of translation type

Consider a translation surface where the generating curves are planar curves. If the planes containing the
generating curves are orthogonal and v⃗ is parallel to both planes, the second author proved that the only

3247



AYDIN and LÓPEZ/Turk J Math

translating solitons are grim reapers whose rulings are parallel to one of the above planes ([14]). We now
investigate Problem 1 in case that v⃗ is arbitrary and the generating curves are planar but not necessarily
contained in orthogonal planes.

Theorem 2.1 Planes and grim reapers are the only translating solitons that are the sum of two planar curves.

Proof If the planes containing the curves are parallel then the sum of the two curves is (part of) a plane.
Suppose now that both planes are not parallel. After renaming coordinates, we will assume that the z -axis is
the common straight line of the two planes, one of the generating curves is included in the plane of equation
x = 0 and the other in the plane cx+ y = 0 , c ∈ R . The cosine of angle between the two planes is c/

√
1 + c2

and if c = 0 then both planes become perpendicular. The first curve parametrizes as β(y) = (0, y, g(y)) and
the second one by α(x) = (x,−cx, f(x)) , where f and g are two smooth functions defined in intervals I and
J , respectively. Thus a parametrization of the surface is

X(x, y) = α(x) + β(y) = (x, y − cx, f(x) + g(y)).

Notice that if we name ỹ = y − cx , then the surface is z = f(x) + g(ỹ + cx) . These surfaces are known in the
literature as affine translation surfaces ([11]).

In case that f or g is a linear function, then the surface is cylindrical and the surface must be a plane
or a grim reaper, proving the result. Now we discard this case. Then there are x0 ∈ I and y0 ∈ J such that
f ′′(x0) ̸= 0 and g′′(y0) ̸= 0 . Then f ′′ ̸= 0 and g′′ ̸= 0 in some subintervals around x0 and y0 respectively,
which we can assume to be I and J . In both intervals, there are points where f ′ ̸= 0 and g′ ̸= 0 , otherwise f or
g would be constant functions. Abusing of notation, suppose f ′f ′′(x0) ̸= 0 and g′g′′(y0) ̸= 0 and analogously,
f ′f ′′ ̸= 0 in I and g′g′′ ̸= 0 in J . If v⃗ = (v1, v2, v3) , Equation (1.2) is writen as

(
1 + g′2

)
f ′′ +

(
1 + c2 + f ′2) g′′ = 2 (−v1 (f

′ + cg′)− v2g
′ + v3)

(
1 + g′2 + (f ′ + cg′)

2
)
.

Divided by (1 + g′2)(1 + c2 + f ′2) ,

f ′′

1 + c2 + f ′2 +
g′′

1 + g′2
= 2 (−v1 (f

′ + cg′)− v2g
′ + v3)

1 + g′2 + (f ′ + cg′)
2

(1 + g′2)(1 + c2 + f ′2)
.

Because the left-hand side is the sum of a function on the variable x and a function on the variable y ,
when we differentiate with respect to x and next with respect to y , these terms are zero. The corresponding
differentiations on the right-hand side give the expression(

4∑
n=0

Pn(y)f
′n
)

f ′′g′′

(1 + g′2)2(1 + c2 + f ′2)2
= 0,

where Pn are functions on the variable y . Thus
∑4

n=0 Pn(y)f
′(x)n = 0 in I × J . Since this is a polynomial

of the function f ′ = f ′(x) , all coefficients Pn must vanish in J . The computation of P4 yields P4 = −v1g
′ ,

deducing v1 = 0 because g′ ̸= 0 . Taking into account that v1 = 0 , the computation of P2 gives

P2 = c(−v3g
′2 − 2v2g

′ + v3).

We discuss two cases:
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1. Case c = 0 . Then all Pn are trivially 0 except P1 , which is P1 = −g′(v2g
′3 +3v2g

′ − 2v3) . From P1 = 0

and because g′ ̸= 0 , we have v2g
′3 + 3v2g

′ − 2v3 = 0 . Since g′′ ̸= 0 , the functions {1, g′, g′3} are linearly
independent, concluding v2 = v3 = 0 , so v⃗ = 0 obtaining a contradiction.

2. Case c ̸= 0 . Then −v3g
′2 − 2v2g

′ + v3 = 0 . Thus v2 = v3 = 0 again, which is contradictory.

2

We point out that in [20] the authors obtained a partial result of Theorem 2.1 in case that v⃗ is one vector
of the canonical basis.

Our next progress in Problem 1 is considering that one of the generating curves is nonplanar.

Theorem 2.2 Planes and grim reapers are the only translating solitons that are the sum of two curves and
where one of the generating curves is planar.

Proof Suppose that the surface is parametrized by X(s, t) = α(s)+β(t) , where β is a planar curve. Without
loss of generality, we assume that β is contained in the plane Π of equation x = 0 and that β parametrizes
as β(y) = (0, y, g(y)) , where g is a smooth function defined in an interval J . The proof of theorem is by
contradiction so by Theorem 2.1, we suppose that the curve α is not planar. Since α is a space curve, then
α is a graph on one of the coordinates axes. We can assume that this axis is the x -axis because otherwise,
the curve α would be contained in a plane parallel to Π and the sum of α and β would be (part of) a plane.
Definitively, α can be expressed as α(x) = (x, f(x), h(x)) , where f and h are two smooth functions defined
in an interval I ⊂ R . If we parametrize the surface by X(x, y) = (x, y + f(x), h(x) + g(y)) , the unit normal
vector field is

N =
1√

1 + g′2 + (f ′g′ − h′)
2
(f ′g′ − h′,−g′, 1)

and the mean curvature H is

H =
(h′′ − f ′′g′)

(
1 + g′2

)
+
(
1 + f ′2 + h′2) g′′

2
(
1 + g′2 + (f ′g′ − h′)

2
)3/2 .

Let v⃗ = (v1, v2, v3) . The translating soliton equation (1.2) is

(h′′ − f ′′g′)
(
1 + g′2

)
+
(
1 + f ′2 + h′2) g′′ = 2 (v1(f

′g′ − h′)− v2g
′ + v3)

(
1 + g′2 + (f ′g′ − h′)

2
)
. (2.1)

If f or h are linear functions, then the generating curve α is planar, which is not possible. Therefore, with a
similar argument as in the beginning of the proof of Theorem 2.1, we can assume that in some subintervals of I

and J , we have f ′f ′′h′h′′ ≠ 0 and g′g′′ ̸= 0 . Without loss of generality we will assume that these subintervals
are I and J again. Our arguments will use the next two claims.

Claim 1. If there are a, b, c ∈ R such that a+ bf ′(x)2 + ch′(x)2 = 0 for all x ∈ I , then either abc ̸= 0 or
a = b = c = 0 . In the first case, we conclude that h′(x) = ±

√
m0 +m1f ′(x)2 , where m0,m1 ̸= 0 , m0,m1 ∈ R .

The proof of the claim is as follows. According to the value of the constant b , we have two cases. If
b = 0 , then a + ch′2 = 0 . In case that c = 0 , then a = 0 and the claim is proved. If c ̸= 0 , we deduce
that h′h′′ = 0 , which is not possible. The other case is b ̸= 0 . With a similar argument, we deduce c ̸= 0 .
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If a = 0 , then bf ′(x)2 + ch′(x)2 = 0 for all x ∈ I , in particular, bc < 0 . Then h′(x) = ±
√
−b/cf ′(x) so

h(x) = ±
√

−b/cf(x) + m , m ∈ R . Thus α(x) = (x, f(x),±
√

−b/cf(x) + m) concluding that α is planar,
which is contradictory. Thus a ̸= 0 . Hence h′2 = −a/c − b/cf ′2 and the result follows by taking m0 = −a/c

and m1 = −b/c .

Claim 2. Suppose h′ = ±
√

m0 +m1f ′2 , where m0,m1 ̸= 0 . Then the functions
{
1, f ′2, f ′h′} are

linearly independent.
The proof is the following. Since f ′′ ̸= 0 , let us introduce s = f ′ . Then the Wronskian of the set{

1, s2,±s
√
m0 +m1s2

}
is ∓ 2m2

0

(m0+m1s2)
3/2 , and this proves the claim.

We come back to the proof of the theorem. Dividing (2.1) by Q = 1 + f ′2 + h′2 and differentiating with
respect to x , we obtain a polynomial equation on g′

3∑
n=0

Pn(x)g
′n = 0,

where

P0(x) =

(
h′′ − 2(v3 − v1h

′)(1 + h′2)

Q

)′

P1(x) =

(
−f ′′ − 2f ′ (3v1h′2 − 2v3h

′ + v1
)
+ 2v2h

′2 + 2v2

Q

)′

P2(x) =

(
h′′ − 2f ′2 (v3 − 3v1h

′)− 4v2f
′h′ + 2v1h

′ − 2v3
Q

)′

P3(x) =

(
−f ′′ + 2(v2 − v1f

′)(1 + f ′2)

Q

)′

.

Thus there are real constants pn ∈ R , 0 ≤ n ≤ 3 , such that

h′′ − 2(v3 − v1h
′)(1 + h′2) = p0Q

−f ′′ − 2f ′ (3v1h′2 − 2v3h
′ + v1

)
+ 2v2h

′2 + 2v2 = p1Q

h′′ − 2f ′2 (v3 − 3v1h
′)− 4v2f

′h′ + 2v1h
′ − 2v3 = p2Q

−f ′′ + 2(v2 − v1f
′)(1 + f ′2) = p3Q.

(2.2)

In order to simplify the notation, set

c1 = p0 − p2, c2 = p1 − p3.

We distinguish two cases.

1. Case v3 = 0 . There are two subcases.
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(a) Subcase v1 = 0 . After a dilation of R3 , we can assume v⃗ = (0, 1, 0) . Equations (2.2) are

h′′ = p0Q, (2.3)

−f ′′ + 2(1 + h′2) = p1Q, (2.4)

h′′ − 4f ′h′ = p2Q, (2.5)

−f ′′ + 2(1 + f ′2) = p3Q. (2.6)

Combining (2.4) and (2.6) and using the value of Q , we have

c1 + (c1 + 2)f ′2 + (c1 − 2)h′2 = 0.

Because the three coefficients are distinct from 0 , Claim 1 implies that h′ = ±
√
m0 +m1f ′2 , where

m0,m1 ̸= 0 . Using now (2.3) and (2.5), 4f ′h′ = c1Q , or equivalently,

c2 +m0c2 + (c2 + c2m1)f
′2 ∓ 4f ′h′ = 0.

From Claim 2, the functions {1, f ′2, f ′h′} are linearly independent, hence the coefficients must vanish,
obtaining a contradiction.

(b) Subcase v1 ̸= 0 . Since v⃗ = (v1, v2, 0) , after a dilation of R3 , we can assume that v⃗ = (1, v2, 0) . Now
(2.2) is

h′′ + 2h′(1 + h′2) = p0Q, (2.7)

−f ′′ + 2v2(1 + h′2)− 2f ′(1 + 3h′2) = p1Q, (2.8)

h′′ + (2− 4v2f
′ + 6f ′2)h′ = p2Q, (2.9)

−f ′′ + 2(v2 − f ′)(1 + f ′2) = p3Q. (2.10)

Combining (2.7) and (2.9),

2h′(2v2f
′ − 3f ′2 + h′2) = c1Q = c1(1 + f ′2 + h′2). (2.11)

Hence we can get the expression

h′2 =
−c1(1 + f ′2) + 4v2f

′h′ − 6h′f ′2

c1 − 2h′ .

From (2.8) and (2.10), we have

−2v2f
′2 + 2f ′3 + (2v2 − 6f ′)h′2 = c2Q = c2(1 + f ′2 + h′2).

Substituting the above value of h′2 ,

(−4c1f
′3 + 2c1v2f

′2 − 3c1f
′ + c1v2) + h′(2c2v2f

′ − 4c2f
′2 − c2 − 4v22f

′ + 16v2f
′2 − 16f ′3) = 0.

In this polynomial equation on h′ of degree ≤ 1 , if the coefficient of h′ is 0 , then this is a polynomial
on f ′ and the leading coefficient of f ′3 is not 0 , which is not possible. Thus the coefficient of h′ is
not 0 , obtaining

h′ = − 2c1v2f
′2 − 4c1f

′3 − 3c1f
′ + c1v2

2c2v2f ′ − 4c2f ′2 − c2 − 4v22f
′ + 16v2f ′2 − 16f ′3 .
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Substituting into (2.11), and after some manipulations, we have an expression of type

9∑
n=0

Anf
′(x)n = 0,

where An are real constants. Thus all coefficients An must vanish. However, the computation of A9

gives A9 = −512 . This completes the proof for the case v3 = 0 .

2. Case v3 ̸= 0 . After a dilation, we suppose v⃗ = (v1, v2, 1) . We distinguish four subcases.

(a) Subcase v1 = v2 = 0 . Then (2.2) is

h′′ − 2
(
1 + h′2) = p0Q (2.12)

−f ′′ + 4f ′h′ = p1Q (2.13)

h′′ − 2f ′2 − 2 = p2Q (2.14)

−f ′′ = p3Q. (2.15)

We deduce from (2.12) and (2.14) that c1Q = 2f ′2 − 2h′2 or equivalently, by Q = 1 + f ′2 + h′2 ,

c1 + (c1 − 2) f ′2 + (c1 + 2)h′2 = 0.

Clearly, the coefficients are nonzero and Claim 1 implies h′ = ±
√
m0 +m1f ′2 , m0,m1 ̸= 0 .

Moreover from (2.13) and (2.15), we deduce c2Q = 4f ′h′, and substituting h′2 = m0 +m1f
′2 ,

c2 (1 +m0) + c2 (1 +m1) f
′2 ∓ 4f ′h′ = 0,

which gives a contradiction from Claim 2.

(b) Subcase v1 = 0 and v2 ̸= 0 . Then (2.2) is

h′′ − 2
(
1 + h′2) = p0Q (2.16)

−f ′′ + 4f ′h′ + 2v2(1 + h′2) = p1Q (2.17)

h′′ − 2f ′2 − 4v2f
′h′ − 2 = p2Q (2.18)

−f ′′ + 2v2
(
1 + f ′2) = p3Q. (2.19)

It follows from (2.16) and (2.18) that

c1Q = 2f ′2 − 2h′2 + 4v2f
′h′. (2.20)

Similarly from (2.17) and (2.19),

c2Q = 4f ′h′ + 2v2(h
′2 − f ′2). (2.21)

Combining (2.20) and (2.21), we deduce

2(1 + v22)(f
′2 − h′2) = (c1 − c2v2)Q = (c1 − c2v2) (1 + f ′2 + h′2).
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Let c3 = p0 − p2 − v2 (p1 − p3) . This equation is written as

c3 + (c3 − 2(1 + v22))f
′2 + (c3 + 2(1 + v22))h

′2 = 0,

where the coefficients of {1, f ′2, h′2} are clearly nonzero. Then Claim 1 implies h′ = ±
√

m0 +m1f ′2 ,
m0,m1 ̸= 0 . Coming back to (2.20), we derive

4v2f
′h′ = c1 (1 +m0) + 2m0 + (c1 (1 +m1) + 2m1 − 2) f ′2.

Claim 2 concludes that this subcase is false because v2 ̸= 0

(c) Subcase v1 ≠ 0 and v2 = 0 . Then (2.2) is

h′′ − 2 (1− v1h
′)
(
1 + h′2) = p0Q (2.22)

−f ′′ − 2f ′ (3v1h′2 − 2h′ + v1
)

= p1Q (2.23)

h′′ − 2f ′2 (1− 3v1h
′) + 2 (v1h

′ − 1) = p2Q (2.24)

−f ′′ − 2v1f
′ (1 + f ′2) = p3Q. (2.25)

From (2.22) and (2.24) we derive f ′2 = A/B , where

A = (2v1h
′ − c1 − 2)h′2 − c1, B = c1 − 2 (1− 3v1h

′) .

Let us observe that B ̸= 0 because h′′ ̸= 0 and v1 ̸= 0 . Similarly, from (2.23) and (2.25), we have

2f ′(v1f
′2 + 2h′2 − 3v1h

′2) = c2Q = c2
(
1 + f ′2 + h′2) .

Substituting f ′ by ±
√
A/B ,

c2
√
B
(
A+B

(
1 + h′2)) = ±2

√
A(Av1 +Bh′(2− 3v1h

′)).

After squaring both sides, we obtain

9∑
n=0

Anh
′(x)n = 0,

where An are real constants. Being A9 = 211v51 ̸= 0 , we arrive to a contradiction.

(d) Subcase v1v2 ̸= 0 . Then (2.2) writes

h′′ − 2 (1− v1h
′)
(
1 + h′2) = p0Q (2.26)

−f ′′ − 2f ′ (3v1h′2 − 2h′ + v1
)
+ 2v2

(
1 + h′2) = p1Q (2.27)

h′′ − 2f ′2 (1− 3v1h
′)− 4v2f

′h′ + 2 (v1h
′ − 1) = p2Q (2.28)

−f ′′ + 2 (v2 − v1f
′)
(
1 + f ′2) = p3Q. (2.29)

From (2.26) and (2.28),

2 (v1h
′ − 1)h′2 + 2f ′2 (1− 3v1h

′) + 4v2f
′h′ = c1Q = c1

(
1 + f ′2 + h′2) ,
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or equivalently
Af ′2 +Bf ′ + C = 0,

where

A = c1 − 2 + 6v1h
′,

B = −4v2h
′,

C = c1 + (c1 + 2− 2v1h
′)h′2.

Note that A and B cannot vanish because v1v2 ̸= 0 and h′′ ̸= 0 . Then

f ′ =
−B ±

√
B2 − 4AC

2A
.

On the other hand, (2.27) and (2.29) imply

c2Q+ 2
(
f ′(3v1h

′2 − 2h′) + f ′2(v2 − v1f
′)− v2h

′2) = 0. (2.30)

As in the previous subcase, our purpose is to substitute the value of f ′ in order to obtain a polynomial
on h′ . Let D = B2 − 4AC . If we write (2.30) again in terms of

√
D , then we have a polynomial

equation of type a + b
√
D = 0 , hence, a2 − b2D = 0 . Substituting the value of D as well as of A ,

B , and C , we obtain the desired polynomial equation on h′ , namely,

12∑
n=0

Anh
′n = 0,

where An are real constants. Because A12 = 21633v81 ̸= 0 , we arrive to a contradiction, completing
the proof of theorem.

2

3. Translating solitons of homothetical type

Let u(x, y) = f(x)g(y) be a homothetical surface. Suppose that the surface is also a translating soliton with
respect to v⃗ . There are three initial cases that can be previously considered.

1. Case that f or g is constant. Then the surface is ruled, so we know that the surface is a grim reaper or
a plane parallel to the vector v⃗ .

2. Case that f (or g ) is linear. Indeed, if f(x) = ax + b with a, b ∈ R , a ̸= 0 , then (1.4) is a polynomial
equation

∑3
n=0 An(y)x

n = 0 . In particular all coefficients An must vanish. The computation of A3

yields 2a3v2g
′3 . Since g is not constant and a ̸= 0 , we deduce v2 = 0 . Now the computation of A2 gives

A2 = 2a3(av1g)g
′2 . Hence, v1 = v3 = 0 , obtaining a contradiction.

3. Case that f and f ′ (or g and g′ ) are linearly dependent. Assume that f ′ = af, a ∈ R , a ̸= 0 . Then
f ′′ = a2f and (1.4) is a polynomial equation on f of degree 3 , namely,

∑3
n=0 An(y)f

n = 0 . Then all
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coefficients An must vanish. In particular, A0 = −2v3 , hence v3 = 0 . Now A1 = 0 and A3 lead to

A1 = a (a+ 2v1) g + 2v2g
′ + g′′ = 0

A3 = (av1g + v2g
′)
(
ag2 + g′2

)
+ a2

(
g2g′′ − gg′2

)
= 0.

The linear combination A1 − a2gA3 = 0 writes −a4g3 + (2av1 − a2)gg′2 + 2v2g
′3 = 0 , or equivalently,

−a3 + (2av1 − a2)

(
g′

g

)2

+ 2v2

(
g′

g

)3

= 0.

Since all coefficients are not all zero, there is b ∈ R such that g′/g = b with b ̸= 0 . Taking into account
that g′′ = b2g and that a2 + b2 ̸= 0 , then A1 = 0 is

a2 + (2(av1 + bv2) + b2)g = 0,

obtaining a contradiction.

After this discussion, we can assume that f ′f ′′ ̸= 0 and g′g′′ ̸= 0 in their domains and let us introduce new
variables. So, let p = p(f) = f ′ , as well as, q = q(g) = g′ . Then p′ = f ′′/f ′ and q′′ = g′′/g′ . Let us observe
that pp′qq′ ̸= 0 . Now the translating soliton equation (1.4) is

(1 + f2q2)gpp′ − 2fgp2q2 + (1 + g2p2)fqq′ − 2(1 + p2g2 + f2q2)(−v1pg − v2fq + v3) = 0. (3.1)

We now give a partial result on Problem 2 in case that v⃗ is one of the canonical basis of R3 .

Theorem 3.1 Grim reapers are the only translating solitons of homothetical type when v⃗ is one vector of the
canonical basis.

Proof We know that the case v⃗ = (0, 0, 1) was solved in [13]. It remains the case that v⃗ is (1, 0, 0) or (0, 1, 0) .
By the symmetry of Equation (3.1) with respect to v1 and v2 , it suffices to consider the case that v⃗ = (0, 1, 0) .
Then

(1 + f2q2)gpp′ − 2fgp2q2 + (1 + g2p2)fqq′ + 2fq(1 + p2g2 + f2q2) = 0. (3.2)

We divide by fgp2q2 ,

1

q2

(
p′

fp

)
+

1

p2

(
q′

gq

)
+

1

q
(gq′ − q) +

1

p
(fp′ − p) + 2

(
1

p2gq
+

g

q
+

f2q

p2g

)
= 0.

Differentiating with respect to f and g successively, we obtain(
1

q2

)′(
p′

fp

)′

+

(
1

p2

)′(
q′

gq

)′

+ 2

[(
1

p2

)′(
1

gq

)′

+

(
f2

p2

)′(
q

g

)′
]
= 0.

Notice that
(

1
p2

)′ (
1
q2

)′
≠ 0 . Dividing by 2

(
1
p2

)′ (
1
q2

)′
and next differentiating with respect to f and g

successively, 
(
f2

p2

)′

(
1

p2

)′


′

(
q

g

)′

(
1

q2

)′


′

= 0. (3.3)
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1. Case (
f2

p2

)′

= a

(
1

p2

)′

for some a ̸= 0 . Integrating we have p2 = kf2−ak for some k ≠ 0 . Differentiating with respect to f , we
deduce pp′ = kf . Substituting into (3.2), we have a polynomial equation B1(g)f + B3(g)f

3 = 0 . Thus
B1 = B3 = 0 . The computation of these coefficients yield

B1 = −q
(
ag2k − 1

)
(q′ + 2) + 2agkq2 + gk,

B3 = q
(
g2k (q′ + 2)− gkq + 2q2

)
.

Equation B3 = 0 can be solved explicitly. Suppose k > 0 (an analogous argument if k < 0). Then

q(g) = g
√
k tan

(
m− 2√

k
log(g)

)
, m ∈ R.

Substituting into B1 = 0 , we conclude

2
(
ag2k − 1

)
tan3

(
m− 2 log(g)√

k

)
+

√
k
(
ag2k + 1

)
tan2

(
m− 2 log(g)√

k

)
+
√
k = 0,

obtaining a contradiction.

2. Case (
q

g

)′

= a

(
1

q2

)′

for some a ̸= 0 . Integrating,

g =
q3

a+ kq2
,

for some constant k ∈ R . Differentiating with respect to g ,

q′ =
q2
(
3a+ kq2

)
(a+ kq2)

2 .

By substituting these values of g and q in (3.2), we obtain

q

(a+ kq2)4

10∑
n=0

Cn(x)q
n = 0.

Then all coefficients Cn must vanish. However, the computation of C0 gives C0 = 2a4f which is not
possible.

2

3256



AYDIN and LÓPEZ/Turk J Math

4. Extension of the results to the Lorentzian setting

In this last section, we extend the results to the Lorentz-Minkowski 3-space R3
1 . Here R3

1 is the affine space R3

endowed with the canonical Lorentzian metric dx2 + dy2 − dz2 . Denote ⟨·, ·⟩L and ×L the Lorentzian inner
and cross product, respectively.

We first consider a (nonplanar) nondegenerate cylindrical surface X(s, t) = α(s)+ tw where α = α(s) is
parametrized by the arc length s and w ∈ R3

1 . The unit normal vector N is parallel to α′(s)×L w and hence
(1.1) writes

⟨w,w⟩L ⟨α′ ×L w,α′′⟩L = 2ϵ
(
ϵ1 ⟨w,w⟩L − ⟨α′(s), w⟩2L

)
⟨α′(s)×L w, v⃗⟩L , (4.1)

where ϵ is the sign of ⟨α′(s)×L w,α′(s)×L w⟩L and ϵ1 = ⟨α′(s), α′(s)⟩L . In case the rulings are lightlike, the
surface is a translating soliton if ⟨α′(s) ×L w, v⃗⟩L = 0 . In particular, this equation holds if v⃗ is parallel to w

being α is an arbitrary curve.
In all Lorentzian versions of the results, we will conclude that the surface is a cylindrical surface.

According to the causal character of the rulings, the description of the translating solitons of R3
1 of cylindrical

type is the following ([2]). After a rigid motion of R3
1 , we can fix w .

1. Spacelike rulings. Let w = (1, 0, 0) . If X(s, t) = (0, s, u(s)) + tw , then (1.1)

u′′ =

{
2(1− u′2)(v2u

′ − v3), 1− u′2 > 0
−2(1− u′2)(v2u

′ − v3), 1− u′2 < 0.

For example, if v⃗ = (0, 0, 1) , the rulings are orthogonal to v⃗ and the integration of both equations give

u(s) =

{
− 1

2 log(cosh(−2s+ a)) + b, 1− u′2 > 0
1
2 log(sinh(2s+ a)) + b, 1− u′2 < 0,

where a, b ∈ R . These two curves appeared in [3].

2. Timelike rulings. Let w = (0, 0, 1) . If X(s, t) = (s, u(s), 0)+tw , then the surface is timelike and Equation
(1.1) is

u′′ = 2(1 + u′2)(v1u
′ − v2).

If v⃗ = (0, 1, 0) , the rulings are orthogonal to v⃗ and the solution is u(s) = log(cos(2s+a))/2+ b , a, b ∈ R .

3. Lightlike rulings. Then H = 0 , so the translating equation (1.1) is ⟨N, v⃗⟩ = 0 . Let w = (1, 0, 1) and
X(s, t) = (u(s), s,−u(s)) + tw . The surface is not degenerated if u′ ̸= 0 . Then Equation (1.1) is

v1 − 2v2u
′ − v3 = 0.

If v2 = 0 , then v⃗ is parallel to w and with arbitrary generating curve. Otherwise the function u is linear
and X(s, t) is a plane.

Summarizing, the cylindrical translating solitons in R3
1 are planes (when the rulings are parallel to v⃗ ),

Lorentzian grim reapers and cylindrical surfaces whose rulings are lightlike and parallel to v⃗ .
As we have pointed out, the extensions of Theorems 2.1, 2.2, and 3.1 to the Lorentzian setting are

straightforward and the conclusion is that the surfaces must be cylindrical surfaces.
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Theorem 4.1 A translating soliton in R3
1 that is the sum of two curves and where one of the generating curve

is planar must be a cylindrical surface.

Theorem 4.2 A translating soliton in R3
1 of homothetical type when v⃗ is one vector of the canonical basis

must be a cylindrical surface.
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