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Abstract: In an attempt to show the way we pass from ordered semigroups to ordered Γ -hypersemigroups, we examine 
the results of Semigroup Forum (1992; 46: 341-346) for an ordered Γ -hypersemigroup. It has been shown that the 
concept of semisimple ordered Γ -hypersemigroup S is identical with the concept “the ideals of S are idempotent” and 
the ideals of S are idempotent if and only if for all ideals A, B of S , we have A ∩ B = (AΓB] . The main results of the 

paper are the following: The ideals of an ordered Γ -hypersemigroup S are weakly prime if and only if they form a chain 
and S is semisimple. The ideals of S are prime if and only if they form a chain and S is intraregular. It should be 
finally mentioned that the concepts “prime ideal” and “both semiprime and weakly prime ideal” are the same; and that 
in commutative ordered Γ -hypersemigroups the prime and weakly prime ideals coincide. For an abstract formulation of the 
above statements we refer to Turk J Math (2016; 40: 310–316) .
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1. Introduction
The concept of prime ideal has played an important role in the theory of commutative rings. Semigroups in
which the ideals are prime or weakly prime have been considered by Szász [14]. Ordered semigroups in which
the ideals are prime or weakly prime have been studied in 1992 in Semigroup Forum [1]. From the results on
ordered semigroups given in [1], corresponding results on semigroups (without order) can be obtained as every
semigroup endowed with the relation ≤= {(x, y) | x = y} is an ordered semigroup. Later, the results of ordered
semigroups have been studied for ordered Γ -semigroups [3]; and for ordered hypersemigroups [5]. Relationship
between lattice ordered semigroups and ordered hypersemigroups has been given in [10]. An le -semigroup is
a lattice ordered semigroup possessing a greatest element usually denoted by “e” . An abstract formulation of
the results for le -semigroups has been given in [4]. In this type of semigroups, the ideal elements (instead of
ideals) play the essential role. The paper in [4] is in the same spirit with the abstract formulation of general
topology (the so-called topology without points) initiated by Koutský [12], Nöbeling [13] and, even earlier, by
Chittenden, Terasaka, Nakamura, Monteiro and Ribeiro (see [7]).

The present paper, as a continuation of the papers in [5, 10], shows the way we pass from the results
on ordered semigroups considered in [1] to ordered Γ -hypersemigroups. It is shown that an ordered Γ -
hypersemigroup is semisimple if and only if the ideals of S are idempotent. On the other hand the ideals of S

are idempotent if and only if for all ideals A , B of S , we have A ∩ B = {t ∈ S | t ≤ aγb for some a ∈ A, b ∈
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B, γ ∈ Γ} . The main results are the following: (a) The ideals of an ordered Γ -hypersemigroup S are weakly
prime if and only if they form a chain and S is semisimple and (b) The ideals of an ordered Γ -hypersemigroup
S are prime if and only if they form a chain and S is intraregular. It should be mentioned here that the
concepts “prime” and “both semiprime and weakly prime” ideals are the same and that in commutative ordered
Γ -hypersemigroups the prime and weakly prime ideals coincide. The sets in the proofs show their pointless
character and that they come from the poe -semigroups.

2. Prerequisites

Let S and Γ be two nonempty sets. The set S is called a Γ -hypergroupoid [6] if the following assertions are
satisfied:

(1) if a, b ∈ S and γ ∈ Γ , then ∅ ̸= aγb ⊆ S and
(2) if a, b, c, d ∈ S and γ, µ ∈ Γ such that a = c , γ = µ and b = d , then aγb = cµd .
If S is a Γ -hypergroupoid then, for every γ ∈ Γ , we denote by γ the operation on the set P∗(S) of all

nonempty subsets of S defined by

AγB :=
∪

a∈A, b∈B

aγb

and by Γ the operation on P∗(S) defined by

AΓB :=
∪
γ∈Γ

AγB.

As one can easily see, AΓB =
∪

a∈A, b∈B, γ∈Γ

aγb . As a consequence, the following holds:

x ∈ AΓB if and only if x ∈ aγb for some a ∈ A, b ∈ B, γ ∈ Γ;

from which we have the following: if a ∈ A , b ∈ B and γ ∈ Γ , then aγb ⊆ AΓB .
We write, for short, aΓb instead of {a}Γ{b} .

Lemma 2.1 [6, Lemma 3.5] If S is a hypergroupoid then, for any x, y ∈ S and any γ ∈ Γ , we have

{x}γ{y} = xγy.

Lemma 2.2 [6, Lemmas 3.6 and 3.8] If S is a Γ-hypergroupoid, A,B,C,D nonempty subsets of S, γ ∈ Γ ,
A ⊆ B and C ⊆ D , then AΓC ⊆ BΓD and AγC ⊆ BγD .

A Γ -hypergroupoid S is called a Γ -hypersemigroup [6, Definition 3.14] if, for any a, b, c ∈ S and any
γ, µ ∈ Γ , we have

{a}γ(bµc) = (aγb)µ{c}.

Lemma 2.3 [6, Proposition 3.17] If S is a Γ-hypersemigroup then, for any nonempty subsets A,B,C of S ,
we have (AΓB)ΓC = AΓ(BΓC) .

Lemma 2.4 [8, Lemma 2] If S is a Γ-hypersemigroup then, for any nonempty subsets A,B,C of S and any
γ, µ ∈ Γ , we have (AγB)µC = Aγ(BµC) .
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Lemma 2.5 (see also [6, Proposition 3.13]) If S is a Γ-hypergroupoid then, for any nonempty subsets A , B

of S, we have
(1) (A ∪B)ΓC = AΓC ∪BΓC and
(2) AΓ(B ∪ C) = AΓB ∪AΓC .

Lemma 2.6 If S is a Γ-hypergroupoid then, for any nonempty subsets A , B of S, we have
(1) (A ∩B)ΓC ⊆ AΓC ∩BΓC and
(2) AΓ(B ∩ C) ⊆ AΓB ∩AΓC .

Proof (1) Let x ∈ (A∩B)ΓC . Then x ∈ dγc for some d ∈ A∩B , γ ∈ Γ , c ∈ C . Since d ∈ A , γ ∈ Γ , c ∈ C ,
we have dγc = {d}γ{c} ⊆ AΓC . Since d ∈ B , γ ∈ Γ , c ∈ C , we have dγb = {d}γ{b} ⊆ BΓC . Thus we have
x ∈ AΓC ∩BΓC . The proof of (2) is similar. 2

Lemma 2.7 [6, Proposition 3.12] If S is a Γ-hypergroupoid, A is a right ideal of S and B is a left ideal of S,
then A ∩B ̸= ∅ .

A Γ -hypergroupoid S is called commutative if AΓB = BΓA for any nonempty subsets A,B of S .
A Γ -hypergroupoid S is called an ordered Γ -hypergroupoid [8] if there exists an order relation ≤ of S

such that a ≤ b implies aγc ⪯ bγc and cγa ⪯ cγb for every c ∈ S and every γ ∈ Γ , in the sense that for every
u ∈ aγc there exists v ∈ bγc such that u ≤ v and for every u ∈ cγa there exists v ∈ cγb such that u ≤ v .

Lemma 2.8 [9, Lemma 2.2] If S is an ordered Γ-hypergoupoid, a ≤ b , c ≤ d and γ ∈ Γ , then aγc ⪯ bγd .

For an ordered Γ -hypersemigroup S and a nonempty subset A of S , denote by (A] the subset of S

defined by:
(A] := {t ∈ S such that t ≤ a for some a ∈ A}

and, for any nonempty subsets A , B of S , we have S = (S] ; A ⊆ (A] ; if A ⊆ B , then (A] ⊆ (B] ;
(
(A]

]
= (A] ;

if A is a right (or left) ideal of S , then (A] = A (see also [1] -as the order does not play any role in these
properties).

3. Main results
Definition 3.1 [9, Definition 2.5] Let S be an ordered Γ-hypergroupoid. A nonempty subset A of S is called
an ideal of S if

(1) SΓA ⊆ A , AΓS ⊆ A ; that is if x ∈ sγa for some s ∈ S , γ ∈ Γ , a ∈ A , then x ∈ A and if x ∈ aγs

for some a ∈ A , γ ∈ Γ , s ∈ S , then x ∈ A .
(2) if a ∈ A and S ∋ b ≤ a , then b ∈ A ; that is if (A] = A .

Definition 3.2 Let S be a Γ–hypergroupoid or an ordered Γ–hypergroupoid. A nonempty subset T of S is called
prime if, for any nonempty subsets A, B of S such that AΓB ⊆ T , we have A ⊆ T or B ⊆ T .

For A = {a} and B = {b} we write, for short, aΓb instead of {a}Γ{b} .
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Proposition 3.3 Let S be a Γ-hypergroupoid or an ordered Γ-hypergroupoid and T a nonempty subset of S.
The following are equivalent:

(1) T is prime.
(2) For any a, b ∈ S such that aΓb ⊆ T , we have a ∈ T or b ∈ T .

Proof (1) =⇒ (2) . Let a, b ∈ S such that aΓb ⊆ T . Since {a} ,{b} are nonempty subsets of S ,
aΓb := {a}Γ{b} ⊆ T and T is prime, by (1), we have {a} ⊆ T or {b} ⊆ T ; that is a ∈ T or b ∈ T .
(2) =⇒ (1) . Let A , B be nonempty subsets of S such that AΓB ⊆ T . Suppose that A ⊈ T and let b ∈ B .
We will prove that b ∈ T . For this purpose, take an element a ∈ A such that a ̸∈ T . By Lemma 2.2, we have
{a}Γ{b} ⊆ AΓB ⊆ T i.e. aΓb ⊆ T . Since a, b ∈ S such that aΓb ⊆ T , by (2), we have a ∈ T or b ∈ T . Since
a ̸∈ T , we have b ∈ T . Thus we get B ⊆ T and T is prime. 2

Definition 3.4 Let S be a Γ–hypergroupoid or an ordered Γ-hypergroupoid. A nonempty subset T of S is called
weakly prime if, for any ideals A, B of S such that AΓB ⊆ T , we have A ⊆ T or B ⊆ T .

Definition 3.5 Let S be a Γ–hypergroupoid or an ordered Γ-hypergroupoid. A nonempty subset T of S is called
semiprime if, for any nonempty subset A of S such that AΓA ⊆ T , we have A ⊆ T .

Proposition 3.6 Let S be a Γ–hypergroupoid or an ordered Γ–hypergroupoid and T a nonempty subset of S.
The following are equivalent:

(1) T is semiprime.
(2) For any a ∈ S such that aΓa ⊆ T , we have a ∈ T .

Proof (1) =⇒ (2) . Let a ∈ S such that aΓa ⊆ T . Since {a}Γ{a} ⊆ T and T is semiprime, we have {a} ⊆ T

and so a ∈ T .
(2) =⇒ (1) . Let A be a nonempty subset of S such that AΓA ⊆ T and let a ∈ A . By Lemma 2.2, we have
aΓa ⊆ AΓA ⊆ T . Since a ∈ S and aΓa ⊆ T , by (2), we have a ∈ T . Thus we have A ⊆ T and so T is
semiprime. 2

Definition 3.7 Let S be a Γ–hypergroupoid or an ordered Γ-hypergroupoid. A nonempty subset T of S is called
weakly semiprime if, for every ideal A of S such that AΓA ⊆ T , we have A ⊆ T .

Lemma 3.8 [9, Lemma 2.6] If S is an ordered Γ-hypergroupoid then, for any nonempty subsets A ,B of S, we
have

(A]Γ(B] ⊆ (AΓB].

Lemma 3.9 [9, lemma 2.8] If S is an ordered hypergroupoid then, for any nonempty subsets A, B of S, we
have

(AΓB] =
(
AΓ(B]

]
=

(
(A]ΓB

]
=

(
(A]Γ(B]

]
.

Lemma 3.10 [9, Lemma 2.17] If S is an ordered Γ-hypersemigroup then, for any subsets A,B,C of S, we
have (

AΓ(B]ΓC
]
= (AΓBΓC].
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Lemma 3.11 Let (S,Γ,≤) be an ordered Γ-hypergroupoid and A, B nonempty subsets of S. Then we have the
following:

(1) If A and B are ideals of S, then the sets A ∩B and A ∪B are also ideals of S.
In particular, if S is an ordered Γ-hypersemigroup, then we have the following:

(2) If A is a left ideal of S and B is a right ideal of S, then (AΓB] is an ideal of S.

(3) (SΓAΓS] is an ideal of S for every nonempty subset A of S .

Proof (1) Let A , B be ideals of S . By Lemma 2.7, A ∩ B is a nonempty set. Moreover we have
(A∩B)ΓS ⊆ AΓS ∩BΓS ⊆ A∩B and SΓ(A∩B) ⊆ SΓA∩ SΓB ⊆ A∩B . If x ∈ A∩B and S ∋ y ≤ x , then
y ∈ A ∩B . Thus A ∩B is an ideal of S . Similarly, A ∪B is an ideal of S .

(2) Let A be a left and B a right ideal of S . Then (AΓB] is a nonempty subset of S and we have

(AΓB]ΓS = (AΓB]Γ(S] ⊆
(
(AΓB)ΓS

]
(by Lemma 3.8)

=
(
AΓ(BΓS)

]
(by Lemma 2.3)

⊆ (AΓB],

SΓ(AΓB] = (S]Γ(AΓB] ⊆
(
SΓ(AΓB)

]
=

(
(SΓA)ΓB

]
⊆ (AΓB] .

Let x ∈ (AΓB] and S ∋ y ≤ x . Since x ∈ (AΓB] , we have x ≤ t for some t ∈ AΓB . Then we have
y ≤ t ∈ AΓB and so y ∈ (AΓB] . Thus (AΓB] is an ideal of S .

(3) Let A be a nonempty subset of S . Then we have

(SΓAΓS]ΓS = (SΓAΓS]Γ(S] ⊆
(
(SΓAΓS)ΓS

]
(by Lemma 3.8)

⊆
(
SΓAΓ(SΓS)

]
(by Lemma 2.3)

⊆ (SΓAΓS] (since SΓS ⊆ S),

SΓ(SΓAΓS] = (S]Γ(SΓAΓS] ⊆
(
SΓ(SΓAΓS)

]
=

(
(SΓS)ΓAΓS

]
⊆ (SΓAΓS].

Let x ∈ (SΓAΓS] and S ∋ y ≤ x . Since x ∈ (SΓAΓS] , we have x ≤ t for some t ∈ SΓAΓS . We have
y ≤ t ∈ SΓAΓS and so y ∈ (SΓAΓS] . Thus (SΓAΓS] is an ideal of S . 2

Proposition 3.12 Let S be an ordered Γ-hypergroupoid. An ideal T of S is weakly prime if and only if for
every ideals A, B of S such that (AΓB] ∩ (BΓA] ⊆ T , we have A ⊆ T or B ⊆ T .

Proof =⇒ . Let A , B be ideals of S such that (AΓB] ∩ (BΓA] ⊆ T . By Lemma 3.11(2), the sets (AΓB]

and (BΓA] are ideals of S . Thus we have

(AΓB]Γ(BΓA] ⊆ (AΓB]ΓS ∩ SΓ(BΓA] ⊆ (AΓB] ∩ (BΓA] ⊆ T.

Since (AΓB] , (BΓA] are ideals of S , (AΓB]Γ(BΓA] ⊆ T and T is weakly prime, we have (AΓB] ⊆ T or
(BΓA] ⊆ T , then AΓB ⊆ T or BΓA ⊆ T . If AΓB ⊆ T then, since A ,B are ideals of S and T is weakly
prime, we have A ⊆ T or B ⊆ T . If BΓA ⊆ T , in a similar way, we get A ⊆ T or B ⊆ T .
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⇐= . Let A , B be ideals of S such that AΓB ⊆ T . Then (AΓB]∩ (BΓA] ⊆ (AΓB] ⊆ (T ] = T . By hypothesis,
we have A ⊆ T or B ⊆ T and so T is weakly prime. 2

For a nonempty subset A of an ordered hypersemigroup S , we denote by I(A) the ideal of S generated
by A and we have I(A) = (A ∪ SΓA ∪AΓS ∪ SΓAΓS] (see [9, Lemma 2.7]). When is convenient we write, for
short, A3 , A4 instead of AΓAΓA , AΓAΓAΓA and so on.

Lemma 3.13 If S is an ordered Γ-hypersemigroup and A,B nonempty subsets of S , then we have

I(A)ΓI(B) ⊆ (SΓB ∪ SΓBΓS] (3.1)

I(A)3 ⊆ (SΓAΓS] (3.2)

If S is commutative, then
I(A)ΓI(B) ⊆ (AΓB ∪ SΓAΓB] (3.3)

Proof

I(A)ΓI(B) = (A ∪ SΓA ∪AΓS ∪ SΓAΓS]Γ(B ∪ SΓB ∪BΓS ∪ SΓBΓS]

⊆
(
(A ∪ SΓA ∪AΓS ∪ SΓAΓS)Γ(B ∪ SΓB ∪BΓS ∪ SΓBΓS)

]
.

On the other hand,

(A ∪ SΓA ∪AΓS ∪ SΓAΓS)Γ(B ∪ SΓB ∪BΓS ∪ SΓBΓS)

= AΓB ∪ SΓAΓB ∪AΓSΓB ∪ SΓAΓSΓB ∪AΓSΓB ∪ SΓAΓSΓB ∪AΓSΓSΓB ∪ SΓAΓSΓSΓB

∪AΓBΓS ∪ SΓAΓBΓS ∪AΓSΓBΓS ∪ SΓAΓSΓBΓS ∪AΓSΓBΓS ∪ SΓAΓSΓBΓS

∪AΓSΓSΓBΓS ∪ SΓAΓSΓSΓBΓS

⊆ SΓB ∪ SΓBΓS.

This is because
AΓB ⊆ SΓB ; SΓAΓB = (SΓA)ΓB ⊆ SΓB ; AΓSΓB = (AΓS)ΓB ⊆ SΓB ;
SΓAΓSΓB = (SΓAΓS)ΓB ⊆ SΓB as SΓAΓS = (SΓA)ΓS ⊆ SΓS ⊆ S ;
AΓSΓSΓB = (AΓSΓS)ΓB ⊆ SΓB , as AΓSΓS = AΓ(SΓS) ⊆ AΓS ⊆ S ;
SΓAΓSΓSΓB = (SΓAΓSΓS)ΓB ⊆ SΓB as SΓAΓSΓS = SΓAΓ(SΓS) ⊆ SΓAΓS ;
AΓBΓS ⊆ SΓBΓS ; SΓAΓBΓS = (SΓA)ΓBΓS ⊆ SΓBΓS ; AΓSΓBΓS = (AΓS)ΓBΓS ⊆ SΓBΓS ;
SΓAΓSΓBΓS = (SΓAΓS)ΓBΓS ⊆ SΓBΓS as SΓAΓS = SΓ(AΓS) ⊆ SΓS ⊆ S ;
AΓSΓBΓS = (AΓS)ΓBΓS ⊆ SΓBΓS ;
SΓAΓSΓBΓS = (SΓAΓS)ΓBΓS ⊆ SΓBΓS as SΓAΓS = (SΓA)ΓS ⊆ SΓS ⊆ S ;
AΓSΓSΓBΓS = (AΓSΓS)ΓBΓS ⊆ SΓBΓS as AΓSΓS = AΓ(SΓS) ⊆ AΓS ⊆ S ;
SΓAΓSΓSΓBΓS = (SΓAΓSΓS)ΓBΓS ⊆ SΓBΓS as SΓAΓSΓS = (SΓA)Γ(SΓS) ⊆ SΓS ⊆ S .

Thus we have I(A)ΓI(B) ⊆ (SΓB ∪ SΓBΓS] and property (3.1) holds.
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By (3.1), we have

I(A)3 ⊆ (SΓA ∪ SΓAΓS]Γ(A ∪ SΓA ∪AΓS ∪ SΓAΓS]

⊆
(
(SΓA ∪ SΓAΓS)Γ(A ∪ SΓA ∪AΓS ∪ SΓAΓS)

]
=

(
SΓAΓA ∪ SΓAΓSΓA ∪ SΓAΓAΓS ∪ SΓAΓSΓAΓS ∪ SΓAΓSΓA ∪ SΓAΓSΓSΓA

∪SΓAΓSΓAΓS ∪ SΓAΓSΓSΓAΓS
]

⊆ (SΓAΓS]

and property (3.2) holds.
If S is commutative, then I(A)ΓI(B) ⊆ (AΓB ∪ SΓAΓB] (and property (3.3) holds).
This is because

(a) AΓSΓB = (AΓS)ΓB = (SΓA)ΓB = SΓAΓB (since S is commutative ) .
(b) SΓAΓSΓB = SΓ(AΓS)ΓB = SΓ(SΓA)ΓB = (SΓS)ΓAΓB ⊆ SΓAΓB .
(c) AΓSΓSΓB = AΓ(SΓS)ΓB ⊆ AΓSΓB ⊆ SΓAΓB (by (a)).
(d) SΓAΓSΓSΓB = SΓAΓ(SΓS)ΓB ⊆ SΓAΓSΓB ⊆ SΓAΓB (by (b)).
(e) AΓBΓS = AΓ(BΓS) = AΓ(SΓB) = (AΓS)ΓB = (SΓA)ΓB = SΓAΓB .
(f) SΓAΓBΓS = SΓAΓ(BΓS) = SΓAΓ(SΓB) = SΓAΓSΓB ⊆ SΓAΓB (by (b)).
(g) AΓSΓBΓS = (AΓS)ΓBΓS = (SΓA)ΓBΓS = SΓAΓBΓS ⊆ SΓAΓB (by (b)).
(h) SΓAΓSΓBΓS = SΓAΓSΓ(BΓS) = SΓAΓSΓ(SΓB) = SΓAΓ(SΓS)ΓB ⊆ SΓAΓSΓB ⊆ SΓAΓB

(by (b)).
(i) AΓSΓBΓS = (AΓS)Γ(BΓS) = (SΓA)Γ(SΓB) = SΓ(AΓS)ΓB = SΓAΓSΓB ⊆ SΓAΓB (by (b)).
(j) SΓAΓSΓBΓS = SΓ(AΓS)Γ(BΓS) = SΓ(SΓA)Γ(SΓB) = (SΓS)ΓAΓSΓB ⊆ SΓAΓSΓB ⊆ SΓAΓB

(by (b)).
(k) AΓSΓSΓBΓS = AΓ(SΓS)ΓBΓS ⊆ AΓSΓBΓS ⊆ SΓAΓB (by (i)).
(l) SΓAΓSΓSΓBΓS = SΓAΓ(SΓS)ΓBΓS ⊆ SΓAΓSΓBΓS ⊆ SΓAΓB (by (j)).

2

Proposition 3.14 An ideal T of an ordered Γ-hypersemigroup S is prime if and only if it is semiprime and
weakly prime. In commutative ordered Γ-hypersemigroups the prime and weakly prime ideals coincide.

Proof If T is prime, then clearly it is semiprime and weakly prime. For the converse statement, suppose T is
an ideal of S both semiprime and weakly prime and let A , B be nonempty subsets of S such that AΓB ⊆ T .
Then

(BΓSΓA]Γ(BΓSΓA] ⊆
(
(BΓS)Γ(AΓB)Γ(SΓA)

]
⊆

(
SΓ(AΓB)ΓS

]
⊆ (SΓTΓS] ⊆ (T ] = T.

Since T is semiprime, we have (BΓSΓA] ⊆ T . Then we have

(SΓBΓS]Γ(SΓAΓS] ⊆
(
SΓ

(
BΓ(SΓS)ΓA

)
ΓS

]
⊆

(
SΓ(BΓSΓA)ΓS

]
=

(
SΓ(BΓSΓA]ΓS

]
⊆ (SΓTΓS] ⊆ (T ] = T.

3282



KEHAYOPULU/Turk J Math

Since (SΓBΓS] , (SΓAΓS] are ideals of S and T is weakly prime, we have (SΓBΓS] ⊆ T or (SΓAΓS] ⊆ T .
Let (SΓAΓS] ⊆ T . Then we have

(
I(A)ΓI(A)

]
ΓI(A) =

(
I(A)ΓI(A)

]
Γ
(
I(A)

]
⊆

(
I(A)ΓI(A)ΓI(A)

]
⊆

(
(SΓAΓS]

]
(by Lemma 3.13)

= (SΓAΓS] ⊆ T.

As I(A) is an ideal of S ,
(
I(A)ΓI(A)

]
is an ideal of S (by Lemma 3.11(2)), and T is weakly prime, we have(

I(A)ΓI(A)
]
⊆ T or I(A) ⊆ T . If I(A) ⊆ T , then A ⊆ T . If

(
I(A)ΓI(A)

]
⊆ T , then I(A)ΓI(A) ⊆ T then,

since T is weakly prime, we have I(A) ⊆ T and so A ⊆ T . From (SΓBΓS] ⊆ T , in a similar way, we get
B ⊆ T . Therefore T is prime.

Let now S be commutative, T a weakly prime ideal of S and A , B nonempty subsets of S such that
AΓB ⊆ T . Then, by (3.3), I(A)ΓI(B) ⊆ (AΓB ∪ SΓAΓB] ⊆ (T ∪ SΓT ] = (T ] = T . Since I(A) , I(B) are
ideals of S , I(A)ΓI(B) ⊆ T and T is weakly prime, we have I(A) ⊆ T or I(B) ⊆ T , then A ⊆ T or B ⊆ T

and so T is prime. 2

Definition 3.15 Let S be an ordered Γ-hypergroupoid. A subset T of S is called meet-irreducible if for any
ideals A,B of S such that A ∩B = T , we have A = T or B = T .

Proposition 3.16 Let S be an ordered Γ-hypergroupoid. If a subset A of S is weakly prime, then it is meet-
irreducible. If an ideal of S is weakly semiprime and meet-irreducible, then it is weakly prime.

Proof =⇒ . Let T be an weakly prime subset of S and A , B be ideals of S such that A ∩B = T . We have
AΓB ⊆ AΓS ⊆ A and AΓB ⊆ SΓB ⊆ B and so AΓB ⊆ A ∩ B = T . Since A , B are ideals of S , AΓB ⊆ T

and T is weakly prime, we have A ⊆ T or B ⊆ T . Then we have A = T or B = T and T is meet-irreducible.
⇐= . Let T be an weakly semiprime and meet-irreducible ideal of S and A , B be ideals of S such that
AΓB ⊆ T . By Lemma 3.11(1), A ∩ B is an ideal of T . On the other hand, (A ∩ B)Γ(A ∩ B) ⊆ AΓB ⊆ T .
Since T is weakly semiprime subset of S and A ∩ B is an ideal of S , we have A ∩ B ⊆ T . Then we have
T = T ∪ (A∩B) = (T ∪A)∩ (T ∪B) . Since T ,A ,B are ideals of S , by Lemma 3.11(1), T ∪A and T ∪B are
ideals of S . Since T is meet-irreducible, we have T ∪A = T or T ∪B = T . Then A ⊆ T or B ⊆ T and T is
weakly semiprime. 2

Definition 3.17 [11, Definition 2.16] An ordered Γ-hypersemigroup S is said to be semisimple if for every
a ∈ S there exist x, y, z, t ∈ S and γ, µ, ρ, ζ ∈ Γ such that

t ∈ (xγa)µ(yρa)ζ{z} and a ≤ t.

Proposition 3.18 Let S be an ordered Γ-hypersemigroup. The following are equivalent:
(1) S is semisimple.

(2) For every a ∈ S there exist γ, µ, ρ, ζ ∈ Γ such that a ∈
(
Sγ{a}µSρ{a}ζS

]
.
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(3) For any nonempty subset A of S, we have A ⊆ (SΓAΓSΓAΓS] .
(4) For any a ∈ S , we have a ∈ (SΓaΓSΓaΓS] .

Proof (1) =⇒ (2) . Let a ∈ S . Since S is semiprime, there exist x, y, z, t ∈ S and γ, µ, ρ, ζ ∈ Γ such that
t ∈ (xγa)µ(yρa)ζ{z} and a ≤ t. Since a ≤ t ∈ (xγa)µ(yρa)ζ{z} , by Lemmas 2.1, 2.4 and 2.2, we have

a ∈
(
(xγa)µ(yρa)ζ{z}

]
=

(
{x}γ{a}µ{y}ρ{a}ζ{z}

]
⊆

(
Sγ{a}µSρ{a}ζS

]
and property (2) is satisfied.

(2) =⇒ (3) . Let A be a nonempty subset of S and a ∈ A . By (2), there exist γ, µ, ρ, ζ ∈ Γ such that

a ∈
(
Sγ{a}µSρ{a}ζS

]
. We have Sγ{a} ⊆ SΓ{a} ⊆ SΓA , Sγ{a}µSρ{a} ⊆ SΓAµSρ{a} ⊆ SΓAΓSΓA ,

Sγ{a}µSρ{a}ζS ⊆ SΓAΓSΓAΓS . Thus we have a ∈ (SΓAΓSΓAΓS] and property (3) holds.
The implication (3) ⇒ (4) is obvious.

(4) =⇒ (1) . Let a ∈ S . By hypothesis, we have a ∈ (SΓaΓSΓaΓS] , thus a ≤ t for some t ∈ SΓaΓSΓaΓS =

(SΓaΓS)Γ(aΓS) (⊆ S) . Then we have
t ∈ uρv for some u ∈ (SΓa)ΓS , ρ ∈ Γ , v ∈ aΓS ,
u ∈ wµy for some w ∈ SΓa , µ ∈ Γ , y ∈ S , w ∈ xγa for some x ∈ S , γ ∈ Γ and
v ∈ aζz for some ζ ∈ Γ , z ∈ S .

Hence we obtain

t ∈ uρv = {u}ρ{v} ⊆ (wµy)ρ(aζz) (by Lemmas 2.1 and 2.2)

=
(
{w}µ{y}

)
ρ
(
{a}ζ{z}

)
(by Lemma 2.1)

= {w}µ
(
{y}ρ{a}

)
ζ{z} (by Lemma 2.4)

⊆ (xγa)µ(yρa)ζ{z} (by Lemmas 2.1 and 2.2).

Then t ∈ (xγa)µ(yρa)ζ{z} , where x, y, z, t ∈ S and a ≤ t and so S is semisimple. 2

Definition 3.19 A nonempty subset A of an ordered Γ-hypergroupoid S is called idempotent if A = (AΓA] .
That is, for every a ∈ A , there exist b, c ∈ A , γ ∈ Γ and t ∈ bγc such that a ≤ t and if x ≤ t and t ∈ bγc for
some b, c ∈ A , γ ∈ Γ , then x ∈ A .

Theorem 3.20 Let S be an ordered Γ-hypersemigroup. The following are equivalent:
(1) S is semisimple.
(2) The ideals of S are idempotent.
(3) A ∩B = (AΓB] for any ideals A, B of S.

(4) I(A) ∩ I(B) =
(
I(A)ΓI(B)

]
for any nonempty subsets A, B of S.

(5) I(A) =
(
I(A)ΓI(A)

]
for every nonempty subset A of S.
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Proof (1) =⇒ (2) . Let A be an ideal of S . If x ∈ (AΓA] , then x ∈ (AΓS] ⊆ (A] = A and so x ∈ A . Let
now x ∈ A . Since S is semisimple, by Proposition 3.18, we have x ∈ (SΓxΓSΓxΓS] . Then x ≤ t for some
t ∈ SΓxΓSΓxΓS = (SΓxΓS)Γ(xΓS) (by Lemma 2.3) and t ∈ aγb for some a ∈ SΓxΓS , γ ∈ Γ , b ∈ xΓS . Since
a ∈ SΓxΓS ⊆ SΓAΓS ⊆ A , b ∈ xΓS ⊆ AΓS ⊆ A and γ ∈ Γ , we have aγb ⊆ AΓA . We have x ≤ t ∈ AΓA and
so x ∈ (AΓA] .
(2) =⇒ (3) . Let A , B be ideals of S . Then (AΓB] ⊆ (AΓS] ⊆ (A] = A and (AΓB] ⊆ (SΓB] ⊆ (B] = B and
so (AΓB] ⊆ A ∩B . By Lemma 3.11(1), A ∩B is an ideal of S thus, by (2), we have

A ∩B =
(
(A ∩B)Γ(A ∩B)

]
⊆ (AΓB].

Thus we get A ∩B = (AΓB] and property (3) holds.
The implications (3) ⇒ (4) and (4) ⇒ (5) are obvious.

(5) =⇒ (1) . Let A be a nonempty subset of S . By hypothesis, we have I(A) =
(
(I(A)ΓI(A)

]
. Then we have

I(A)ΓI(A) =
(
(I(A)ΓI(A)

]
ΓI(A) =

(
(I(A)ΓI(A)

]
Γ
(
I(A)

]
⊆

(
I(A)ΓI(A)ΓI(A)

]
,

I(A)3 ⊆
(
I(A)ΓI(A)ΓI(A)

]
ΓI(A) =

(
I(A)ΓI(A)ΓI(A)

]
Γ
(
I(A)

]
⊆

(
I(A)ΓI(A)ΓI(A)ΓI(A)

]
.

We continue at the same way, and we have

I(A)4 ⊆
(
I(A)ΓI(A)ΓI(A)ΓI(A)ΓI(A)

]
.

Hence we have

I(A) =
(
I(A)ΓI(A)

]
⊆

((
I(A)ΓI(A)ΓI(A)

]]
=

(
I(A)ΓI(A)ΓI(A)

]
⊆

((
I(A)ΓI(A)ΓI(A)ΓI(A)

]]
=

(
I(A)ΓI(A)ΓI(A)ΓI(A)

]
⊆

((
I(A)ΓI(A)ΓI(A)ΓI(A)ΓI(A)

]]
=

((
I(A)ΓI(A)ΓI(A)ΓI(A)

)
ΓI(A)

]
⊆

(
SΓI(A)

]
⊆

(
I(A)

]
= I(A)

(as I(A)ΓI(A) ⊆ SΓS ⊆ S , I(A)ΓI(A)ΓI(A) ⊆ SΓI(A) ⊆ SΓS ⊆ S , I(A)ΓI(A)ΓI(A)ΓI(A) ⊆ SΓI(A) ⊆ S ).
Thus we have

I(A) =
(
I(A)ΓI(A)ΓI(A)ΓI(A)ΓI(A)

]
=

(
I(A)5

]
.

On the other hand, by Lemma 3.13, we have

I(A)ΓI(A)ΓI(A) ⊆ (SΓAΓS].

Then we have

I(A)4 ⊆ (SΓAΓS]Γ(A ∪ SΓA ∪AΓS ∪ SΓAΓS]

⊆
(
(SΓAΓS)Γ(A ∪ SΓA ∪AΓS ∪ SΓAΓS)

]
=

(
SΓAΓSΓA ∪ SΓAΓ(SΓS)ΓA ∪ SΓAΓSΓAΓS ∪ SΓAΓ(SΓS)ΓAΓS

]
= (SΓAΓSΓA ∪ SΓAΓSΓAΓS].
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I(A)5 ⊆ (SΓAΓSΓA ∪ SΓAΓSΓAΓS]Γ(A ∪ SΓA ∪AΓS ∪ SΓAΓS]

⊆
(
(SΓAΓSΓA ∪ SΓAΓSΓAΓS)Γ(A ∪ SΓA ∪AΓS ∪ SΓAΓS)

]
= (SΓAΓSΓAΓA ∪ SΓAΓSΓAΓSΓA ∪ SΓAΓSΓAΓAΓS

∪SΓAΓSΓAΓSΓAΓS ∪ SΓAΓSΓAΓSΓA ∪ SΓAΓSΓAΓSΓSΓA

∪SΓAΓSΓAΓSΓAΓS ∪ SΓAΓSΓAΓSΓSΓAΓS]

⊆ (SΓAΓSΓAΓS].

Therefore, we have

A ⊆ I(A) =
(
I(A)5

]
⊆

(
(SΓAΓSΓAΓS]

]
= (SΓAΓSΓAΓS].

Hence we obtain A ⊆ (SΓAΓSΓAΓS] for every A ∈ P∗(S) and, by Proposition 3.18(3) ⇒ (1) , S is semisimple.

The equivalence (2) ⇔ (3) holds in ordered Γ -hypergroupoids in general. 2

Remark 3.21 In the above theorem we tried to use sets (instead of elements) to show the pointless character
of the results. However, conditions

(1) I(a) ∩ I(b) =
(
I(a)ΓI(b)

]
or

(2) I(a) =
(
I(a)ΓI(a)

]
for any a, b ∈ S , also characterize the semisimple Γ-hypersemigroups. From (2) one can prove that S is
semisimple exactly as in (5) ⇒ (1) of Theorem 3.20.

Remark 3.22 We have seen in [10, Theorem 3.15] that for an le-semigroup S the following are equivalent:
(1) S is semisimple [4, 10]. (2) a ∧ b = ab for any ideal elements a, b of S . (3) a2 = a for any ideal element
a of S . (4) Every ideal element of S is weakly semiprime. Therefore, the following theorem also holds.

Theorem 3.23 An ordered Γ-hypersemigroup S is semisimple if and only if every ideal of S is weakly
semiprime.

Proof Let T be an ideal of S and A be an ideal of S such that AΓA ⊆ T . Since S is semisimple, by

Theorem 3.20(1) ⇒ (5) , we have I(A) =
(
I(A)ΓI(A)

]
. Since A is an ideal of S , we have I(A) = A . Then we

have A = (AΓA] ⊆ (T ] = T , then A ⊆ T and so T is weakly semiprime.
The “⇐ -part can be proved by and easy modification of the proof of (4) ⇒ (1) in [10, Theorem 3.18] (in fact by
replacing the ∗ by Γ) as follows: Let A be a nonempty subset of S . Then we have I(A)8 ⊆ (SΓAΓSΓA] and
since (SΓAΓSΓA] is an ideal of S and S is weakly semiprime, we have A ⊆ (SΓAΓSΓA] and by Proposition
3.18(3) ⇒ (1) , S is semiprime. 2

Theorem 3.24 Let S be an ordered Γ-hypersemigroup. The ideals of S are weakly prime if and only if they
form a chain and one of the nine equivalent conditions given in Theorem 3.20, Remark 3.21 or Theorem 3.23
holds in S.

3286



KEHAYOPULU/Turk J Math

Proof =⇒ . Let A , B be ideals of S . Since (AΓB] is an ideal of S , by hypothesis, it is weakly prime. Since
A , B are ideals of S , AΓB ⊆ (AΓB] and (AΓB] is weakly prime, we have A ⊆ (AΓB] or B ⊆ (AΓB] . Then
we have A ⊆ (SΓB] ⊆ (B] = B or B ⊆ (AΓS] ⊆ (A] = A i.e. A ⊆ B or B ⊆ A , and the ideals of S form a
chain. For the rest of the ⇒ -part of the theorem, it is enough to prove that the ideals of S are idempotent.
For this purpose, let A be an ideal of S . By Lemma 3.11(2), (AΓA] is an ideal of S . By hypothesis, (AΓA]

is weakly prime. Since A is an ideal of S , AΓA ⊆ (AΓA] and (AΓA] is weakly prime, we have A ⊆ (AΓA] . If
now x ∈ (AΓA] , then x ∈ (AΓS] ⊆ (A] = A and so x ∈ A . Thus we have A = (AΓA] .
⇐= . Suppose condition (3) of Theorem 3.20 holds in S and let A,B, T be ideals of S such that AΓB ⊆ T .
By hypothesis, we have A ⊆ B or B ⊆ A . If A ⊆ B then, we have A = A∩B = (AΓB] ⊆ (T ] = T . If B ⊆ A ,
then B = A ∩B = (AΓB] ⊆ T . Thus we have A ⊆ T or B ⊆ T and so T is weakly prime. 2

As a consequence, the following theorem holds.

Theorem 3.25 The ideals of an ordered Γ-hypersemigroup S are weakly prime if and only if they form a chain
S is semisimple.

Definition 3.26 [9, Definition 2.10] An ordered Γ-hypersemigroup S is called intraregular if for every a ∈ S

there exist x, y, t ∈ S and γ, µ, ρ ∈ Γ such that t ∈ (xγa)µ(aρy) and a ≤ t .
This is equivalent to saying A ⊆ (SΓAΓAΓS] for any nonempty subset A of S [9, Proposition 2.11].

Proposition 3.27 (For ordered semigroups see [2]). If S is an intraregular ordered Γ-hypersemigroup then,
for any nonempty subsets A,B of S , we have

(SΓAΓBΓS] = (SΓBΓAΓS].

Proof Let A,B be nonempty subsets of S . Since S is intraregular and AΓB is a nonempty subset of S , by
[9, Proposition 2.11], we have

AΓB ⊆
(
SΓ(AΓB)Γ(AΓB)ΓS

]
=

(
(SΓA)ΓBΓAΓ(BΓS)

]
⊆ (SΓBΓAΓS].

Then

SΓ(AΓB)ΓS ⊆ SΓ(SΓBΓAΓS]ΓS = (S]Γ(SΓBΓAΓS]Γ(S]

⊆
(
(SΓS)ΓBΓAΓ(SΓS)

]
⊆ (SΓBΓAΓS].

Thus we have (SΓAΓBΓS] ⊆
(
(SΓBΓAΓS]

]
= (SΓBΓAΓS] . By symmetry, we have (SΓBΓAΓS] ⊆

(SΓAΓBΓS] and equality holds. 2

Proposition 3.28 Let S be an ordered Γ-hypersemigroup. If S is intraregular, then it is semisimple. If S is
commutative and semisimple, then S is intraregular. Therefore, a commutative ordered Γ-hypersemigroup is
semisimple if and only if it is intraregular.
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Proof =⇒ . Let A be a nonempty subset of S . Since S is intraregular, we have

A ⊆ (SΓAΓAΓS] ⊆
(
SΓ(SΓAΓAΓS]ΓAΓS

]
(by Lemma 2.2)

=
(
SΓ(SΓAΓAΓS)ΓAΓS

]
(by Lemma 3.10)

=
(
(SΓS)ΓAΓAΓSΓAΓS

]
(by Lemma 2.3)

⊆
(
SΓAΓAΓSΓAΓS

]
(since SΓS ⊆ S)

⊆
(
SΓAΓ(AΓS)ΓAΓS

]
(by Lemma 2.3)

⊆ (SΓAΓSΓAΓS] (since AΓS ⊆ S).

By Proposition 3.18(3) ⇒ (1) , S is semisimple.

⇐= . Let A be a nonempty subset of S . Since S is semisimple, by Proposition 3.18(1) ⇒ (3) , we have

A ⊆ (SΓAΓSΓAΓS] =
(
SΓAΓ(SΓA)ΓS

]
(by Lemma 2.3)

=
(
SΓAΓ(AΓS)ΓS

]
(since S is commutative)

=
(
SΓ(AΓA)Γ(SΓS)

]
(by Lemma 2.3)

⊆
(
SΓ(AΓA)ΓS

]
(since SΓS ⊆ S)

= (SΓAΓAΓS) (by Lemma 2.3).

By [9, Proposition 2.11], S is intraregular. 2

Theorem 3.29 Let S be an ordered Γ-hypersemigroup. The ideals of S are prime if and only if they form a
chain and S is intraregular.

Proof =⇒ . If the ideals of S are prime, then they are weakly prime, so, by Theorem 3.24, they form a chain.
To show that S is intraregular, let A be a nonempty subset of S . By [9, Proposition 2.11], it is enough to prove
that A ⊆ (SΓAΓAΓS] . By Lemma 3.11(3), the set (SΓAΓAΓS] is an ideal of S ; by hypothesis, (SΓAΓAΓS]

is prime, and so semiprime as well. Since (AΓA)Γ(AΓA) ⊆ (SΓAΓAΓS] and (SΓAΓAΓS] is semiprime, we
have AΓA ⊆ (SΓAΓAΓS] and A ⊆ (SΓAΓAΓS] .
⇐= . Since S is intraregular, the ideals of S are semiprime. In fact, if T is an ideal of S and A a nonempty
subset of S such that AΓA ⊆ T then, since S is is intraregular, by [9, Proposition 2.11], we have

A ⊆
(
SΓ(AΓA)ΓS

]
⊆ (SΓTΓS] =

(
(SΓT )ΓS

]
⊆ (TΓS] ⊆ (T ] = T,

then A ⊆ T and so T is semiprime.
Since the ideals of S are semiprime we have (1) and (2) below:

(1) I(A) = (SΓAΓS] for every nonempty subset A of S . Indeed:
(AΓA)Γ(AΓA) ⊆ (SΓAΓS] , where (SΓAΓS] is an ideal of S . Since (SΓAΓS] is semiprime, we have AΓA ⊆
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(SΓAΓS] and A ⊆ (SΓAΓS] . Then we have I(A) ⊆ (SΓAΓS] ⊆ I(A) , then I(A) = (SΓAΓS] and condition
(1) is satisfied.

(2) I(xΓy) = I(x) ∩ I(y) for every x, y ∈ S . Indeed:
Let x, y ∈ S . We have xΓy ⊆ I(x)ΓS ⊆ I(x) and xΓy ⊆ SΓI(y) ⊆ I(y) , thus we have I(xΓy) ⊆ I(x) ∩ I(y) .
Let now t ∈ I(x) ∩ I(y) . By (1), we have t ∈ I(x) = (SΓxΓS] and t ∈ I(y) = (SΓyΓS] . Then we have

t ≤ u for some u ∈ SΓxΓS and t ≤ w for some w ∈ SΓyΓS.

Since u ∈ (SΓx)ΓS , we have u ∈ vµb for some v ∈ SΓx , µ ∈ Γ , b ∈ S . Since v ∈ SΓx , we have v ∈ aζx for
some a ∈ S , ζ ∈ Γ . Then we have

u ∈ vµb = {v}µ{b} ⊆ (aζx)µ{b} = {a}ζ{x}µ{b}.

Since w ∈ SΓ(yΓS) , we have w ∈ cξz for some c ∈ S , ξ ∈ Γ , z ∈ yΓS . Since z ∈ yΓS , we have z ∈ yωd for
some ω ∈ Γ , d ∈ S . Then we have

w ∈ cξz = {c}ξ{z} ⊆ {c}ξ(yωd) = {c}ξ{y}ω{d}.

Hence we obtain
t ≤ u, where u ∈ {a}ζ{x}µ{b} for some a, b ∈ S, ζ, µ ∈ Γ,

t ≤ w, where w ∈ {c}ξ{y}ω{d} for some c, d ∈ S, ξ, ω ∈ Γ.

Let now γ ∈ Γ . By Lemma 2.8, we have

tγt ⪯ wγu = {w}γ{u} ⊆
(
{c}ξ{y}ω{d}

)
γ
(
{a}ζ{x}µ{b}

)
= {c}ξ

(
{y}ω{d}γ{a}ζ{x}

)
µ{b}.

On the other hand, {y}ω{d}γ{a}ζ{x} ⊆ I(xΓy) . Indeed: We have(
{y}ω{d}γ{a}ζ{x}

)
Γ
(
{y}ω{d}γ{a}ζ{x}

)
⊆ Sζ{x}Γ{y}ωS

= Sζ(xΓy)ωS ⊆ SΓ(xΓy)ΓS ⊆ I(xΓy).

Since the ideal I(xΓy) is semiprime, we have

{y}ω{d}γ{a}ζ{x} ⊆ I(xΓy),

and then
{c}ξ

(
{y}ω{d}γ{a}ζ{x}

)
µ{b} ⊆ {c}ξI(xΓy)µ{b} ⊆ SΓI(xΓy)ΓS ⊆ I(xΓy).

Hence we obtain tγt ⪯ wγu ⊆ I(xΓy) for every γ ∈ Γ . Then tΓt ⊆ I(xΓy) . Indeed: Let z ∈ tΓt . Then
z ∈ tρt for some ρ ∈ Γ . Since tγt ⪯ wγu ⊆ I(xΓy) for every γ ∈ Γ , we have tρt ⪯ wρu ⊆ I(xΓy) . Since
tρt ⪯ wρu and z ∈ tρt , there exists h ∈ wρu such that z ≤ h . We have z ≤ h ∈ wρu ⊆ I(xΓy) and so
z ∈ I(xΓy) . Therefore, tΓt ⊆ I(xΓy) . Since tΓt ⊆ I(xΓy) and I(xΓy) is semiprime, we have t ∈ I(xΓy) .
Thus I(x) ∩ I(y) ⊆ I(xΓy) , and property (2) is satisfied.

Let now T be an ideal of S and a, b ∈ S such that aΓb ⊆ T . By hypothesis, I(a) ⊆ I(b) or I(b) ⊆ I(a) .
If I(a) ⊆ I(b) then, by property (2), we have a ∈ I(a) = I(a) ∩ I(b) = I(aΓb) ⊆ I(T ) = T and so a ∈ T . If
I(b) ⊆ I(a) , then b ∈ I(b) = I(a) ∩ I(b) = I(aΓb) ⊆ I(T ) = T and so b ∈ T . By Proposition 3.3, T is prime.
2
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Corollary 3.30 (For ordered semigroups see [2]). An ordered Γ-hypersemigroup S is intraregular and the ideals
of S form a chain if and only if, for any nonempty subsets A,B of S, we have

A ⊆ (SΓAΓBΓS] or B ⊆ (SΓAΓBΓS].

Proof =⇒ . If S is intraregular and the ideals of S form a chain, then, by Theorem 3.29, the ideals of S are
prime. Since (SΓAΓBΓS] is an ideal of S and (AΓA)Γ(BΓB) ⊆ (SΓAΓBΓS] , we have AΓA ⊆ (SΓAΓBΓS]

or BΓB ⊆ (SΓAΓBΓS] , then A ⊆ (SΓAΓBΓS] or B ⊆ (SΓAΓBΓS] .
⇐= . Suppose that for any nonempty subsets A,B of S , we have A ⊆ (SΓAΓBΓS] or B ⊆ (SΓAΓBΓS] .
To prove that S is intraregular and the ideals of S form a chain, by Theorem 3.29, it is enough to prove
that the ideals of S are prime. For this, let T be an ideal of S and A,B nonempty subsets of S such that
AΓB ⊆ T . By hypothesis, we have A ⊆ (SΓAΓBΓS] or B ⊆ (SΓAΓBΓS] . If A ⊆ (SΓAΓBΓS] , then we have
A ⊆ (SΓTΓS] ⊆ (STS] ⊆ (T ] = T . If B ⊆ (SΓAΓBΓS] , then B ⊆ (SΓTΓS] ⊆ T . Thus we have A ⊆ T or
B ⊆ T and T is prime. 2

Remark 3.31 According to the present paper, the results on ordered semigroups in [1] hold not only for elements
but for sets as well that shows that the results on [1] are also based on le(poe)-semigroups.

Remark 3.32 A poe-semigroup S is called intraregular if for every a ∈ S we have a ≤ ea2e . It is called
semisimple if a ≤ eaeae for every a ∈ S [4]. The abstract formulation of Proposition 3.27 is the following: If
S is an intraregular poe-semigroup then, for any a, b ∈ S , we have eabe = ebae . In fact, if a, b ∈ S then, since
S is intraregular, we have ab ≤ e(ab)2e = eababe ≤ ebae , then eabe ≤ e2bae2 ≤ ebae . By symmetry, we have
ebae ≤ eabe and equality holds. The abstract formulation of Proposition 3.28 is as follows. If S is intraregular
and a ∈ S , then a ≤ ea2e ≤ e(ea2e)ae = (e2a)aeae ≤ eaeae and so S is semisimple. If S is commutative and
semisimple, then a ≤ e(ae)(ae) = e(ea)(ae) = e2a2e ≤ ea2e and so S is intraregular.

4. Examples

We apply the results of this paper to the following examples.
For the first example we have to give the following definitions:
An ordered Γ -hypersemigroup S is called regular if for every a ∈ S there exist x, t ∈ S and γ, µ ∈ Γ

such that t ∈ (aγx)µ{a} and a ≤ t [9, Definition 2.3]. An ordered Γ -hypersemigroup S is regular if and only
if for any nonempty subset A of S we have A ⊆ (AΓSΓA] [9, Proposition 2.4]. An ordered Γ -hypersemigroup
S is called right regular if for every a ∈ S there exist x, t ∈ S and γ, µ ∈ Γ such that t ∈ (aγa)µ{x} and a ≤ t

[9, Definition 2.13]; equivalently if A ⊆ (AΓAΓS] for every nonempty subset A of S [9, Proposition 2.14]. It is
called left regular if for every a ∈ S there exist x, t ∈ S and γ, µ ∈ Γ such that t ∈ {x}γ(aµa) and a ≤ t [9,
Definition 2.13]; equivalently if A ⊆ (SΓAΓA] for any nonempty subset A of S [9, Proposition 2.15].

Example 4.1 Here we give some examples of ordered Γ-hypersemigroups in which the ideals are idempotent.
In a regular ordered Γ-hypersemigroup the right (or left) ideals are idempotent. In fact, if A is a right ideal of

S , then A ⊆ (AΓSΓA] =
(
(AΓS)ΓA

]
⊆ (AΓA] ⊆ (AΓS] ⊆ (A] = A and so (AΓA] = A . Therefore, in a regular

ordered Γ-hypersemigroup, the ideals are idempotent. If S is a semisimple ordered Γ-hypersemigroup and A

3290



KEHAYOPULU/Turk J Math

is an ideal of S , then A ⊆ (SΓAΓSΓAΓS] =
(
(SΓA)ΓSΓ(AΓS)

]
⊆ (AΓSΓA] =

(
(AΓS)ΓA

]
⊆ (AΓA] ⊆

(AΓS] ⊆ (A] = A and so A is idempotent. As a result, in an intraregular ordered Γ-hypersemigroup the ideals
are idempotent. The right (or left) regular ordered Γ-hypersemigroups are intraregular. In fact, if S is right

regular and A is a nonempty subset of S , then A ⊆ (AΓAΓS] ⊆
(
AΓ(AΓAΓS]ΓS

]
=

(
AΓ(AΓAΓS)ΓS

]
=(

AΓAΓAΓ(SΓS)
]

⊆ (SΓAΓAΓS] and so S is intraregular. Thus in right regular or left regular ordered

Γ-hypersemigroups, the ideals are idempotent.

Remark 4.2 Regarding Example 4.1, clearly, the idea comes from the poe-semigroups. If S is a regular
poe-semigroup and a is a right (resp. left) ideal element of S , then a ≤ aea = (ae)a ≤ a2 ≤ ae ≤ a (resp.
a ≤ aea ≤ a(ea) ≤ a2 ≤ ea ≤ a) and so a2 = a . If S is an intraregular poe-semigroup and a is an ideal
element of S , then a ≤ ea2e = (ea)(ae) ≤ a2 ≤ ae ≤ a and so a2 = a . If S is a semisimple poe-semigroup
and a is an ideal element of S , then a ≤ eaeae ≤ (ea)e(ae) ≤ aea ≤ a2 ≤ a and so a2 = a . If S is a right
regular poe-semigroup, then a ≤ a2e ≤ a(a2e)e ≤ ea2e so a ≤ ea2e for every a ∈ S and so S is intraregular.
If S is a left regular poe-semigroup, then a ≤ ea2 = e(ea2)a ≤ ea2e for every a ∈ S and so S is intraregular.
For the necessary definitions see [4] and [6].

Example 4.3 We consider the ordered Γ-semigroup S = {a, b, c, d} given by Tables 1 and 2 and Figure 1.
Using the methodology described in [11], from this ordered Γ-semigroup the ordered Γ-hypersemigroup given by
Tables 3 and 4 and the same figure (Figure 1) can be obtained. This is an intraregular ordered Γ-hypersemigroup
as, for example,

a ∈ (aγa)µ(aγa) = {a}µ{a} = aµa = {a, b, c} and a ≤ a .
b ∈ (aγb)µ(bγa) = {b}µ{a, b, c} =

∪
x∈{a,b,c}

bµx = bµa ∪ bµb ∪ bµc = {a, b, c} and b ≤ b .

c ∈ (cγc)µ(cγc) = {a, b, c}µ{a, b, c} =
∪

x∈{a,b,c},y∈{a,b,c}

xµy

= aµa ∪ aµb ∪ aµc ∪ bµa ∪ bµb ∪ bµc ∪ cµa ∪ cµb ∪ cµc = {a, b, c} and c ≤ c.

d ∈ (dγd)γ(dγd) = {d}γ{d} = dγd = {d} and d ≤ d .
The set of all nonempty subsets of S is the set{

{a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},

{a, c, d}, {b, c, d}, S
}
.

The only ideals of S are the sets {a, b, c} and S and they form a chain. Indeed, we have
SΓ{a} = SΓ{b} = SΓ{c} = {a, b, c} ⊈ {a}, {b}, {c} that means that {a} , {b} , {c} cannot be ideals.
SΓ{d} = {a, b, c, d} ⊈ {d} that means that {d} cannot be ideal.
SΓ{a, b} = SΓ{a, c} = SΓ{b, c} = {a, b, c} ⊈ {a, b}, {a, c}, {b, c} and so {a, b} , {a, c} , {b, c}
are not ideals.
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SΓ{a, d} = SΓ{b, d} = SΓ{c, d} = SΓ{a, b, d} = SΓ{a, c, d} = SΓ{b, c, d} = {a, b, c, d}
⊈ {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}

and so {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d} cannot be ideals.

On the other hand,
SΓ{a, b, c} = {a, b, c} ⊆ {a, b, c} .
{a, b, c}ΓS = {a, b, c}{γ, µ}{a, b, c, d} = {a, b, c} ⊆ {a, b, c} .

Let x ∈ {a, b, c} and {a, b, c, d} ∋ y ≤ x . We have the following cases:
(a) x = a and {a, b, c, d} ∋ y ≤ a . Then y = a ∈ {a, b, c} .
(b) x = b and {a, b, c, d} ∋ y ≤ b . Then y = b ∈ {a, b, c} .
(c) x = c and {a, b, c, d} ∋ y ≤ c . Then y = a or y = b or y = c and so y ∈ {a, b, c} .

Therefore, the set {a, b, c} is an ideal of S .

Theorem 3.29 can be applied and the set {a, b, c} is a prime ideal of S . Independently, one can write
a computer program to see that {a, b, c} is the only proper ideal of S . As S is intraregular, by Proposition
3.28, it is semisimple as well and so Theorem 3.20 can be also applied. As a consequence, the ideals of S are
idempotent and for any ideals A,B of S , we have A ∩B = (AΓB] . Independently,

(
{a, b, c}Γ{a, b, c}

]
=

(
{a, b, c}{γ, µ}{a, b, c}

]
= (aγa ∪ aγb ∪ aγc ∪ bγa ∪ bγb ∪ bγc ∪ cγa ∪ cγb ∪ cγc

∪aµa ∪ aµb ∪ aµc ∪ bµa ∪ bµb ∪ bµc ∪ cµa ∪ cµb ∪ cµc]

=
(
{a, b, c}

]
= {a, b, c} (as {a, b, c} is an ideal of S)

= {a, b, c} ∩ {a, b, c}.(
{a, b, c}Γ{a, b, c, d}

]
=

(
{a, b, c}{γ, µ}{a, b, c, d}

]
=

(
{a, b, c}

]
= {a, b, c} = {a, b, c} ∩ {a, b, c, d} .(

{a, b, c, d}Γ{a, b, c}
]
=

(
{a, b, c, d}{γ, µ}{a, b, c}

]
=

(
{a, b, c}

]
= {a, b, c} = {a, b, c, d} ∩ {a, b, c} .(

{a, b, c, d}Γ{a, b, c, d}
]
= {a, b, c, d} = {a, b, c, d} ∩ {a, b, c, d} .

Table 1. The ω -operation of Example 4.3.

ω a b c d

a a b c a

b c c c b

c c c c c

d a b c d

Example 4.4 We consider the ordered Γ-semigroup S = {a, b, c, d, e} given by Tables 5 and 6 and Figure
2. From this ordered Γ-semigroup the ordered Γ-hypersemigroup given by Tables 7 and 8 and the same figure
(Figure 2) can be obtained. This is an intraregular ordered Γ-hypersemigroup as, for example,
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Table 2. The ξ -operation of Example 4.3.

ξ a b c d

a c c c b

b c c c c

c c c c c

d c c c b

a

b

c

d

Figure 1. The order of Example 4.3.

Table 3. The γ -hyperoperation of Example 4.3.

γ a b c d

a {a} {b} {a, b, c} {a}
b {a, b, c} {a, b, c} {a, b, c} {b}
c {a, b, c} {a, b, c} {a, b, c} {a, b, c}
d {a} {b} {a, b, c} {d}

Table 4. The µ -hyperoperation of Example 4.3.

µ a b c d

a {a, b, c} {a, b, c} {a, b, c} {b}
b {a, b, c} {a, b, c} {a, b, c} {a, b, c}
c {a, b, c} {a, b, c} {a, b, c} {a, b, c}
d {a, b, c} {a, b, c} {a, b, c} {b}

a ∈ (aγa)µ(aγa) = {a}µ{a} = aµa = {a} and a ≤ a ,

b ∈ (bγb)µ(bγb) = {a, b, e}µ{a, b, e} =
∪

x,y∈{a,b,e}

xµy

= aµa ∪ aµb ∪ aµe ∪ bµa ∪ bµb ∪ bµe ∪ eµa ∪ eµb ∪ eµe = {a, b, e} and b ≤ b,

c ∈ (cγc)γ(cγc) = {c}γ{c} = cγc = {c} and c ≤ c ,
d ∈ (dγd)γ(dγd) = {c, d}γ{c, d} = cγc ∪ cγd ∪ dγc ∪ dγd = {c, d} and d ≤ d ,
e ∈ (eγe)µ(eγe) = {e}µ{e} = eµe = {e} and e ≤ e .
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The set of all nonempty subsets of S is the set{
{a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {c, d}, {c, e}, {d, e},

{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e},

{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}, S
}
.

As in the previous example, one can check that the sets {a, b, e} and S are ideals of S and there is no any other
ideal of S . As the ideals {a, b, e} and S clearly form a chain, according to Theorem 3.29, they are prime ideals.
As this is an example of semisimple ordered Γ-hypersemigroup as well, the results of the paper concerning the
semisimple ordered Γ-hypersemigroup can be also applied.

Table 5. The ω -operation of Example 4.4.

ω a b c d e

a a b a b a

b a b b b b

c a b c d e

d a b d d b

e a b e b e

Table 6. The ζ -operation of Example 4.4.

ζ a b c d e

a a b a b a

b a b b b b

c a b e b e

d a b b b b

e a b e b e

Table 7. The γ -hyperoperation of Example 4.4.

γ a b c d e

a {a} {a, b, e} {a} {a, b, e} {a}
b {a} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
c {a} {a, b, e} {c} {c, d} {e}
d {a} {a, b, e} {c, d} {c, d} {a, b, e}
e {a} {a, b, e} {e} {a, b, e} {e}

Example 4.5 We consider the ordered Γ-semigroup S = {a, b, c, d, e} given by Tables 9 and 10 and Figure 3.
From this ordered Γ-semigroup the ordered Γ-hypersemigroup given by Tables 11 and 12 and the same figure
(Figure 3) can be obtained. This is an intraregular ordered Γ-hypersemigroup as, for example,
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Table 8. The µ -hyperoperation of Example 4.4.

µ a b c d e

a {a} {a, b, e} {a} {a, b, e} {a}
b {a} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
c {a} {a, b, e} {e} {a, b, e} {e}
d {a} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
e {a} {a, b, e} {e} {a, b, e} {e}

e

a

b

c

d

Figure 2. The order of Example 4.4.

a ∈ (aγa)µ(aγa) = {a} and a ≤ a , b ∈ (bγb)µ(bγb) = {a, b} and b ≤ b ,
c ∈ (cγc)γ(cγc) = {c} and c ≤ c , d ∈ (dγd)γ(dγd) = {d} and d ≤ d ,
e ∈ (eγe)γ(eγe) = {e} and e ≤ e .

The sets {a, b} , {a, b, d} , {a, b, e} , {a, b, d, e} and S are the only ideals of S and they do not form a
chain. However, the ideals of S could be prime, but they are not. The ideal {a, b} is not weakly prime as
{a, b, d}{γ, µ}{a, b, e} = {a, b} but {a, b, d} ⊈ {a, b} and {a, b, e} ⊈ {a, b} .

The ideal {a, b, d, e} is weakly prime as
{a, b}Γ{a, b} = {a, b} , {a, b}Γ{a, b, d} = {a, b} , {a, b}Γ{a, b, e} = {a, b} ,
{a, b}Γ{a, b, d, e} = {a, b} , {a, b}Γ{a, b, c, d, e} = {a, b} ,
{a, b, d}Γ{a, b} = {a, b} , {a, b, d}Γ{a, b, d} = {a, b, d} , {a, b, d}Γ{a, b, e} = {a, b} ,
{a, b, d}Γ{a, b, d, e} = {a, b, d} , {a, b, d}Γ{a, b, c, d, e} = {a, b, d} ,
{a, b, e}Γ{a, b} = {a, b} , {a, b, e}Γ{a, b, d} = {a, b} , {a, b, e}Γ{a, b, e} = {a, b, e} ,
{a, b, e}Γ{a, b, d, e} = {a, b, e} , {a, b, e}Γ{a, b, c, d, e} = {a, b, e} ,
{a, b, d, e}Γ{a, b} = {a, b} , {a, b, d, e}Γ{a, b, d} = {a, b, d} , {a, b, d, e}Γ{a, b, e} = {a, b, e},
{a, b, d, e}Γ{a, b, d, e} = {a, b, d, e} , {a, b, d, e}Γ{a, b, c, d, e} = {a, b, d, e} ,
{a, b, c, d, e}Γ{a, b} = {a, b} , {a, b, c, d, e}Γ{a, b, d} = {a, b, d} , {a, b, c, d, e}Γ{a, b, e} = {a, b, e} ,
{a, b, c, d, e}Γ{a, b, d, e} = {a, b, d, e} .

The ideals {a, b, d} and {a, b, e} are weakly prime as well.
If we take the ordered Γ-semigroup given by Tables 9 and 10 and change Figure 3 to Figure 4, then we

obtain the ordered Γ-hypersemigroup given by Tables 13 and 14.
This is an intraregular Γ-hypersemigroup as, for example,
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Table 9. The ρ -operation of Example 4.5.

ρ a b c d e

a a b a b a

b a b b b b

c a b c d e

d a b d d b

e a b e b e

Table 10. The ζ -operation of Example 4.5.

ζ a b c d e

a a b a b a

b a b a b a

c a b a b a

d a b a b a

e a b a b a

b

d

e

a

c

Figure 3. The order of Example 4.5.

Table 11. The γ -hyperoperation of Example 4.5.

γ a b c d e

a {a} {a, b} {a} {a, b} {a}
b {a} {a, b} {a, b} {a, b} {a, b}
c {a} {a, b} {c} {d} {e}
d {a} {a, b} {d} {d} {a, b}
e {a} {a, b} {e} {a, b} {e}

a ∈ (aγa)µ(aγa) = {a} and a ≤ a , b ∈ (bγb)µ(bγb) = S and b ≤ b ,
c ∈ (cγc)γ(cγc) = {c} and c ≤ c , d ∈ (dγd)γ(dγd) = {d} and d ≤ d ,
e ∈ (eγe)γ(eγe) = {e} and e ≤ e (and so semisimple as well)

having the S as its only ideal that clearly is prime.

Let us finally give an example of an intraregular poe -semigroup to apply the results mentioned in Remark
3.32.
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Table 12. The µ -hyperoperation of Example 4.5.

µ a b c d e

a {a} {a, b} {a} {a, b} {a}
b {a} {a, b} {a} {a, b} {a}
c {a} {a, b} {a} {a, b} {a}
d {a} {a, b} {a} {a, b} {a}
e {a} {a, b} {a} {a, b} {a}

Table 13. The γ -hyperoperation of Example 4.5 related to Figure 4.

γ a b c d e

a {a} S {a} S {a}
b {a} S S S S

c {a} S {c} {d} {e}
d {a} S {d} {d} S

e {a} S {e} S {e}

Table 14. The µ -hyperoperation of Example 4.5 related to Figure 4.

µ a b c d e

a {a} S {a} S {a}
b {a} S {a} S {a}
c {a} S {a} S {a}
d {a} S {a} S {a}
e {a} S {a} S {a}

b

a

c

d

e

Figure 4. The (second) order of Example 4.5.

Example 4.6 The poe-semigroup S = {a, b, c, d, e} defined by Table 15 and Figure 5 is intraregular and so
semisimple as well. From the fact that S is commutative and semisimple, we also get that S is intraregular.
Also, for any a, b ∈ S , we have eabe = ebae .

The poe-semigroup S = {a, b, c, d, e} given by Table 16 and Figure 6 is intraregular and not commutative.
However, it is semisimple.

Note: There is mistake in the proof of the implication (4) ⇒ (1) in [10, Theorem 3.15] that affects the
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Table 15. The multiplication of Example 4.6 related to Figure 5.

· a b c d e

a c b a b e

b b b b b b

c a b c b e

d b b b b b

e e b e b e

d

b

c

a

e

Figure 5. The order of Example 4.6 related to Table 15.

Table 16. The multiplication of Example 4.6 related to Figure 6.

· a b c d e

a e b a d e

b b b b b b

c e b c d e

d d b d d d

e e b e d e

b

d

c

a

e

Figure 6. The order of Example 4.6 related to Table 16.
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proof of (4) ⇒ (1) of [10, Theorem 3.18] as well corrected in Theorem 3.23 above. In Theorem 3.15, after the(
r(l(a)

)5 ≤ eaeae , we should write
(
r(l(a)

)8 ≤ eaeae and, since eaeae is an ideal element of S and S is weakly
semiprime, we have a ≤

(
r(l(a)

)
≤ eaeae and so S is semiprime.

I would like to thank the two anonymous referees for their time to read the paper carefully and their
prompt reply.
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