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Abstract: In recent papers, it was shown for the biharmonic Schrödinger equation and 2D Schrödinger equation that
Fokas method-based formulas are capable of defining weak solutions of associated nonlinear initial boundary value
problems (ibvps) below the Banach algebra threshold. In view of these results, we revisit the theory of interior-
boundary Strichartz estimates for the Schrödinger equation posed on the right half line, considering both Dirichlet
and Neumann cases. Finally, we apply these estimates to obtain low regularity solutions for the nonlinear Schrödinger
equation (NLS) with Neumann boundary condition and a coupled system of NLS equations defined on the half line with
Dirichlet/Neumann boundary conditions.
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1. Introduction
Well-posedness of the initial-boundary value problem (ibvp) for the nonlinear Schrödinger equation (NLS) on
various domains with inhomogeneous boundary data has been studied in several papers, see e.g., [2, 5, 9, 11–
13, 16, 20–23, 26]. Here we are concerned with the particular case where the spatial domain is the right half-line.
Consider first the ibvp for the NLS given by

yt + Py = f(y), (x, t) ∈ R+ × (0, T ), (1.1)

y(x, 0) = y0(x), (1.2)

[By](t) = g(t), (1.3)

where P = −i∂2x (formal Schrödinger operator), f is the complex valued power type function defined by
f(y) = λ|y|py with λ ∈ C , p > 0 , and B is a trace operator given by B = γ0 (Dirichlet trace) or B = γ1

(Neumann trace) but more general boundary conditions could also be considered. Solutions of the nonlinear
problem (1.1)–(1.3) can be obtained by applying a fixed point theorem to the linear solution operator, which is
constructed based on a formula for solutions of an associated linear ibvp. The latter problem is usually studied
via a decompose-and-reunify approach. In this approach, one decomposes the problem into three subproblems (i)
a homogeneous Cauchy problem with no interior source, (ii) a nonhomogeneous Cauchy problem with zero initial
value, and (iii) an ibvp with zero initial and interior data. Spatial regularity of both types of Cauchy problems for

∗Correspondence: turker.ozsari@bilkent.edu.tr
2010 AMS Mathematics Subject Classification: 35A22, 35Q55, 35C15, 35B65, 35B4

This work is licensed under a Creative Commons Attribution 4.0 International License.
3323

https://orcid.org/0000-0001-6569-5446
https://orcid.org/0000-0003-4240-5252


KÖKSAL and ÖZSARI/Turk J Math

NLS are widely studied in the literature, see for instance Cazenave’s book [6]—a classical reference on this topic.
However, much less effort was given for the temporal regularity of these Cauchy problems as well as the spatial
regularity of the ibvp with an inhomogeneous boundary datum. We are aware of some approaches regarding the
treatment of the ibvp for the half line problem. Holmer [16] studied this problem by constructing a boundary
forcing operator based on the Riemann-Liouville fractional integral, an approach that was previously applied to
the ibvp for the Korteweg-de Vries (KdV) equation posed on the half line [8]. Some recent papers studied the
same ibvp by analyzing the solution formula constructed with one of the traditional integral transforms. For
instance, Bona-Sun-Zhang [5] used the Laplace transform in temporal variable, and Esquivel-Hayashi-Kaikina
[9] used the Fourier sine transform. Finally, Fokas-Himonas-Mantzavinos [11] introduced an approach utilizing
the integral representation formula obtained through the unified transform method of Fokas [10].

In [11], authors treated (1.1)–(1.3) at the high regularity level (i.e. in Hs
x(R+) with s > 1/2) and

obtained estimates in the L∞
t (0, T ;Hs

x(R+)) norm. In this setting, Hs
x(R+) is a Banach algebra, i.e.

|ϕψ|Hs
x(R+) ≲ |ϕ|Hs

x(R+)|ψ|Hs
x(R+) for ϕ,ψ ∈ Hs

x(R+);

therefore, handling the nonlinearities via contraction is relatively easier. In the low regularity setting s ≤ 1
2 ,

Hs
x(R+) looses its algebra structure, and estimates in the L∞

t (0, T ;Hs
x(R+)) norm are not good enough

to perform the associated nonlinear analysis. The classical method in the theory of nonlinear dispersive
PDEs for dealing with this difficulty is to prove Strichartz type estimates in mixed norm function spaces
Lλ
t (0, T ;H

s,r
x (R+)) , where (λ, r) satisfies a special admissibility condition intrinsic to the underlying evolution

operator. Holmer [16] and Bona et al. [5] gave proofs of such estimates for the Dirichlet problem in the
low regularity setting by analyzing the representation formulas obtained through Riemann–Liouville fractional
integral and Laplace transform, respectively.

Strichartz estimates, first noted in [27] within the framework of the Fourier restriction problem, are a
group of inequalities for linear dispersive PDEs that allow us to bound the size and decay of solutions in mixed
norm Lebesgue-Sobolev spaces. These estimates are mostly established for Cauchy type problems where the
spatial domain is the whole Euclidean space. The results on other geometries are rather limited, and not as
strong. In these results, either the given geometry has no boundary (e.g., a boundaryless manifold) or else the
boundary conditions are set to zero. Therefore, the estimates are still given with respect to only initial and
interior data. On the other hand, Strichartz estimates for inhomogeneous ibvps are rare, and there are relatively
much fewer studies in this direction.

Strichartz estimates generally rely on local-in-time dispersive estimates. In the second author’s work [24]
on the biharmonic nonlinear Schrödinger equation (BNLS) with Dirichlet-Neumann boundary conditions, it was
shown that these estimates can also be proven through the analysis of the representation formula obtained via
the Fokas method. Most recently, Himonas and Mantzavinos [14] made use of the same idea for obtaining the
low regularity solutions of NLS posed on the half plane with Dirichlet boundary condition. In view of these two
papers, one can also expect that recent UTM-based L∞

t H
s
x(R+) estimates of Fokas et al. [11] should extend to

UTM-based Lλ
tH

s,r
x (R+) estimates in the one dimensional setting. The goal of this paper is to revisit the one

dimensional theory, prove Strichartz estimates and apply them to NLS and a system of coupled NLS equations
defined on the half line with Dirichlet or Neumann boundary conditions. The Neumann case is a topic which
was not treated also with other methods; the authors in [5] and [16] only considered the Dirichlet case. The
second author’s paper [3] and later Himonas et al. [15] treated the Neumann problem with Laplace transform
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and UTM-based formulas, respectively; however, both of these papers handle only the high regularity solutions
(i.e. s > 1/2).

The paper is organized as follows. In Section 2, we review the decompose and reunify algorithm for
treatment of the linear ibvp and, in particular, give the Fokas method-based representation formulas for Dirichlet
and Neumann problems. In Section 3.1, we look over the Strichartz estimates for Cauchy problems and review
known time estimates. In Section 3.2, we state boundary Strichartz estimates for Dirichlet and Neumann
problems. Sections 3.2-3.3 present the proofs of these estimates. Finally, in Section 4, we apply the linear
estimates to prove local well-posedness of NLS and coupled system of NLS equations.

2. Decompose-and-reunify

In this section, we review the decompose-and-reunify algorithm to study (1.1)–(1.3). Abusing the notation, we
first write the associated linear nonhomogeneous problem:

yt + Py = f(x, t), (x, t) ∈ R+ × (0, T ),

y(x, 0) = y0(x),

[By](t) = g(t),

(2.1a)
(2.1b)
(2.1c)

where f : R+ × (0, T ) → C . We fix spatial bounded extension operators (·)∗ , say from a Sobolev space defined
on R+ , into a Sobolev space defined on R and consider (i) a homogeneous Cauchy problem with nonzero initial
datum, (ii) a nonhomogeneous Cauchy problem with zero initial datum, and (iii) an ibvp with zero initial and
interior data:

vt + Pv = 0, (x, t) ∈ R× (0, T ),

v(x, 0) = y∗0(x),

(2.2a)
(2.2b)

zt + Pv = f∗(x, t), (x, t) ∈ R× (0, T ),

z(x, 0) = 0,

(2.3a)
(2.3b)

ut + Pu = 0, (x, t) ∈ R+ × (0, T ′),

u(x, 0) = 0,

[Bu](t) = h(t).

(2.4a)
(2.4b)
(2.4c)

In the above equations, y∗0 and f∗ are spatial extensions of initial and interior data,

h(t) ≡ g(t)− [Bv](t)− [Bz](t)

in which, for convenience, we extend the RHS beyond the given time interval (0, T ) such that it is zero for
t > T ′ for some T ′ > T . The condition T ′ > T is convenient for a smooth transition to zero so that the given
regularity level of h on (0, T ) is preserved on the extended interval. Now, the solution of (2.1a)–(2.1c) can be
defined via reunification as follows:

y = v|R+×(0,T ) + z|R+×(0,T ) + u|(0,T ). (2.5)
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Note that we subtract the boundary traces associated with the two Cauchy problems when we define h ; therefore,
one needs to know the existence of these traces. A representation formula for the solution of the homogeneous
Cauchy problem (2.2a)–(2.2b) is formally given via Fourier transform as:

v(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tŷ∗0(k)dk. (2.6)

We will use the notation v(x, t) = e−tP y∗0(x) to denote the solution of the homogeneous Cauchy problem. The

above formula is well-defined for y∗0 ∈ S, and one has v̂(k, t) = e−ik2tŷ∗0(k) for y∗0 ∈ S , which implies the
conservation property |e−tP y∗0 |Hs(R) = |y∗0 |Hs(R) for y∗0 ∈ S . Since S is dense in Hs(R) , e−tP easily extends
to a group of isometries on Hs(R) (still denoted same). Moreover, we have a Duhamel formulation for the
solution of (2.3a)–(2.3b):

z(x, t) =

∫ t

0

e−(t−t′)P f∗(x, t′)dt′. (2.7)

The solution of the ibvp (2.4a)–(2.4c) with B = γ0 (Dirichlet b.c.), and zero initial and interior data is given
by the Fokas method as a complex integral [10]:

u(x, t) =
1

π

∫
∂D+

eikx−ik2tkh̃(k2, T ′)dk, (2.8)

where D+ = {k ∈ C+ | <(ik2) < 0}, its boundary ∂D+ is positively oriented (see Figure 1), and h̃(k2, T ′) =∫ T ′

0
eik

2sh(s)ds. The solution in the case B = γ1 (Neumann b.c.) takes the form

u(x, t) = − i

π

∫
∂D+

eikx−ik2th̃(k2, T ′)dk. (2.9)

We will use the notation TB(t)h to denote the solution of the ibvp, namely to denote the right hand side of
(2.8) or (2.9) (depending on B ) obtained through the Fokas method. Therefore, we can rewrite (2.5) as follows:

y(t) = e−tP y∗0
∣∣
R+×(0,T )

+

∫ t

0

e−(t−t′)P f∗(t′)dt′
∣∣∣∣
R+×(0,T )

+ TB(t)h|(0,T ) . (2.10)

Remark 2.1 We recall that the integral representation formulas (2.8) and (2.9) is first obtained by assuming
that h is smooth and has sufficient decay. However, it is then shown that the same formula makes sense under
much weaker regularity conditions imposed on h as shown in this paper. Therefore, this formula in particular
defines weak solutions.

3. Linear estimates
3.1. A quick review

Cauchy problems (2.2) and (2.3) are well-studied in the literature. For instance, regarding the homogeneous
Cauchy problem, we have the theorem below in which the Schrödinger admissibility condition

1

λ
+

1

2r
=

1

4
, 2 ≤ λ, r ≤ ∞ (3.1)

between indices λ and r is important.
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Figure 1. The contour of integration.

Theorem 3.1 ([16]) Let s ∈ R , y∗0 ∈ Hs
x(R) , (λ, r) be Schrödinger admissible. Then v(t) = e−tP y∗0 defines

a solution to (2.6) that belongs to C([0, T ];Hs
x(R+)) ∩ C(R;H

2s+1
4

t (0, T )) such that

(i) |v|C([0,T ];Hs
x(R+)) ≲ |y∗0 |Hs

x(R) ,

(ii) sup
x∈R

|v(x)|
H

2s+1
4

t (0,T )
≲ 〈T 〉 1

4 |y∗0 |Hs
x(R),

(iii) |v|Lλ
t (0,T ;Hs,r

x (R)) ≲ |y∗0 |Hs
x(R), where constants of inequalities depend only on s .

For the nonhomogeneous Cauchy problem, the following theorem is known:

Theorem 3.2 ([5, 16]) Let s ∈ R , (λ, r) be Schrödinger admissible, f∗ ∈ Lλ′

t H
s,r′

x . Then z given by (2.7)

belongs to C([0, T ];Hs
x(R+)) ∩ C(R;H

2s+1
4

t (0, T )) such that

(i) |z|C([0,T ];Hs
x(R+)) ≲ |f∗|

Lλ′
t (0,T ;Hs,r′

x (R)) ,

(ii) if − 3
2 < s < 1

2 , then sup
x∈R

|z(x)|
H

2s+1
4

t (0,T )
≲ 〈T 〉 1

4 |f∗|
Lλ′

t (0,T ;Hs,r′
x (R)),

(iii) if 1
2 < s < 5

2 and sup
x∈R

|f∗(x, ·)|
H

2s−3
4

t

<∞ , then

sup
x∈R

|z(x)|
H

2s+1
4

t (0,T )
≲
(
sup
x∈R

|f∗(x, ·)|
H

2s−3
4

t

+ |f∗|
Lλ′

t (0,T ;Hs,r′
x (R))

)
,

(iv) |z|Lλ
t (0,T ;Hs,r

x (R)) ≲ |f∗|
Lλ′

t (0,T ;Hs,r′
x (R)), where constants of inequalities depend only on s except in item

(iii), in which it also depends on T .

Regarding the last term in (2.10) obtained through the Fokas method, we know the following result for B = γ0

(Dirichlet b.c.):

Theorem 3.3 ([11]) Suppose s > 1
2 and h ∈ H

2s+1
4

t (R) with supp h ⊂ [0, T ′) so that it satisfies necessary

compatibility conditions. Then, u given by (2.8) belongs to C([0, T ′];Hs
x(R+))∩C(R+;H

2s+1
4

t (0, T ′)) such that
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(i) |u|C([0,T ′];Hs
x(R+)) ≲ |h|

H
2s+1

4
t (R)

,

(ii) sup
x≥0

|u(x)|
H

2s+1
4

t (0,T ′)
≲ |h|

H
2s+1

4
t (R)

,

where constants of inequalities depend on s .

Remark 3.4 The estimates in Theorem 3.1-(i), (iii), Theorem 3.2-(i), (iv), and Theorem 3.3-(i) are referred
to as space estimates, and the estimates in Theorem 3.1-(ii), Theorem 3.2-(ii), (iii), and Theorem 3.3-(ii)
are time estimates. The indices λ and r in the spaces Lλ

t (0, T
′;Hs,r

x (R+) are not random, and, as noted in
Theorems 3.1 and 3.2, they must obey an admissibility condition intrinsic to the underlying differential operator.
The space estimates in Theorem 3.1-(i), Theorem 3.2-(i), and Theorem 3.3-(i) are essentially a special case of
Strichartz estimates, namely they are Lλ

t (0, T
′;Hs,r

x (R+) type estimates with λ = ∞ and r = 2 .

3.2. Boundary type Strichartz estimates for Fokas formulas
In this section, we state the Strichartz estimates for Fokas method formulas representing solutions of the
simplified ibvp.

Theorem 3.5 (Dirichlet b.c.) Let s ≥ 0 , h ∈ H
2s+1

4
t (R) with supp h ⊂ [0, T ′) satisfying necessary compati-

bility conditions, and (λ, r) be Schrödinger admissible. Then, the Fokas method-based formula

u(x, t) ≡ 1

π

∫
∂D+

eikx−ik2tkh̃(k2, T ′)dk, (3.2)

defines a function u ∈ C([0, T ′];Hs
x(R+)) that satisfies the Strichartz estimate

|u|Lλ
t (0,T

′;Hs,r
x (R+)) ≲ |h|

H
2s+1

4
t (R)

, (3.3)

where the constant of the inequality depends on s .

Theorem 3.6 (Neumann b.c.) Let s ≥ 0 , h ∈ H
2s−1

4
t (R) with supp h ⊂ [0, T ′) satisfying necessary compat-

ibility conditions, and (λ, r) be Schrödinger admissible. Then, the function u defined by the Fokas method-based
formula

u(x, t) ≡ − i

π

∫
∂D+

eikx−ik2th̃(k2, T ′)dk (3.4)

satisfies the homogeneous Strichartz estimate

|u|Lλ
t (0,T

′;Ḣs,r
x (R+)) ≲ |h|

Ḣ
2s−1

4
t (R)

. (3.5)

for s ∈ N0 . If s ≥ 0 , then u ∈ C([0, T ′];Hs
x(R+)) and it satisfies the inhomogeneous Strichartz estimate:

|u|Lλ
t (0,T

′;Hs,r
x (R+)) ≲ cT ′ |h|

H
2s−1

4
t (R)

. (3.6)

In both estimates, the constant of the inequality depends on s .
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Remark 3.7 The Strichartz estimates in Theorem 3.6 for the Neumann problem are new to the best of our
knowledge. Note that the constant of the inhomogeneous estimate in Theorem 3.6 depends on T ′ while the
estimate in Theorem 3.5 is independent of T ′ . However, it is implied by the proof that the dependence of the
estimate on T ′ in Theorem 3.6 is nice in the sense that if one studies the corresponding nonlinear problem via
contraction, it will not cause any issues whatsoever.

Remark 3.8 Note that inhomogeneous Strichartz estimates in Theorem 3.6 cover both the high and low
regularity settings.

3.2.1. Splitting the solution of the ibvp

In order to prove the Strichartz estimates, we first split the ibvp solution u in two parts by using the definition
and relevant parametrization of the boundary of D+ . Thus, we have

u(x, t) =
1

π

∫
∂D+

eikx−ik2tkh̃(k2, T ′)dk

= − 1

π

∫ 0

∞
e−kx+ik2tkĥ(k2)dk +

1

π

∫ ∞

0

eikx−ik2tkĥ(−k2)dk

≡ u1(x, t) + u2(x, t).

(3.7)

Sometimes, we will write TB,i(t)h to denote ui(·, t) , i = 1, 2 .

Note that in the above decomposition, we, in addition, used the fact that h̃(k2, T ′) = ĥ(−k2) which
follows from the support condition supp h ⊂ [0, T ′) . This relation is of particular importance for relating the
estimates in the next two sections to the Sobolev norm of the boundary input.

3.2.2. Analysis on the imaginary axis: oscillatory kernel

In this section, we will prove Strichartz estimates for u1 . To this end, we set a function H1 which is defined to
be the inverse Fourier transform of the function below:

Ĥ1(k) ≡
{

1
πkĥ(k

2), if k ≥ 0;
0, otherwise. (3.8)

Then, upon changing the order of integrals, we can represent u1 as

u1(x, t) = − 1

π

∫ 0

∞
e−kx+ik2tkĥ(k2)dk =

∫ ∞

−∞
e−kx+ik2tĤ1(k)dk

= lim
b→∞

∫ b

0

e−kx+ik2t

∫ ∞

−∞
e−ikτH1(τ)dτdk

= lim
b→∞

∫ ∞

−∞
`(τ ;x, t, b)H1(τ)dτ,

(3.9)

where

`(τ ;x, t, b) =

∫ b

0

e−kx+ik2t−ikτdk =

∫ b

0

eiφ(k;τ,t)ψ(k;x)dk. (3.10)
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In the oscillatory integral (3.10), ψ(k;x) ≡ e−kx is the amplitude function and

ϕ(k; τ, t) ≡ k2t− kτ = tϕ(k)− kτ

is the phase function with ϕ(k) = k2 .

Definition 3.9 The function ` in (3.9) will be referred to as the kernel of the representation.

We first recall the following lemma from the oscillatory integral theory:

Lemma 3.10 ([18]) Let I(τ, t, k) =
∫ k

0
ei(tφ(k′)−k′τ)dk′ with ϕ(k′) = (k′)

2 . Then

|I(τ, t, k)| ≤ cφ|t|−1/2, τ, t, k ∈ R

where cφ > 0 is a constant independent of τ, t, k .

Now, we can state the following decay estimate for the kernel of the representation:

Lemma 3.11 The kernel defined by (3.10) satisfies the following dispersive estimate:

|`(τ ;x, t, b)| ≤ c√
|t|
, t 6= 0, uniformly in x, b ∈ R+, τ ∈ R.

Proof We set Φ(k; τ, t) ≡
∫ k

0
eiφ(k′;τ,t)dk′ . Then,

`(τ ;x, t, b) =

∫ b

0

[
d

dk
Φ(k; τ, t)

]
ψ(k;x)dk.

Integrating in the RHS, using Φ(0; τ, t) = 0 , and estimating |`(τ ;x, t, b)| , we get

|`(τ ;x, t, b)| ≤ |Φ(b; τ, t)ψ(b;x)|+
∫ b

0

|Φ(k; τ, t)|
∣∣∣∣ ddkψ(k;x)

∣∣∣∣ dk.
By Lemma 3.10, we have |Φ(k; τ, t)| ≤ c√

|t|
for all k ∈ [0, b] , where c only depends on ϕ and is independent of

free parameters and b . Moreover, we observe that |ψ(b;x)| ≤ 1 uniformly in x and b , and

∫ b

0

∣∣∣∣ ddkψ(k;x)
∣∣∣∣ dk = x

∫ b

0

e−kxdk = (1− e−bx) ≤ 1

uniformly in x and b . Hence, the result follows. 2

It is immediate from the definition of u1 and the above lemma that

|u1(·, t)|L∞
x (R+) ≲

1√
t
|H1|L1

t (R). (3.11)

The following estimate is due to the fact that the Laplace transform is a bounded operator from L2
k(0,∞) into

L2
k(0,∞) :

|u1(·, t)|L2
x(R+) ≲ |H1|L2

t (R). (3.12)
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Interpolating between (3.11) and (3.12) via the Riesz-Thorin Interpolation Theorem, we get

|u1(·, t)|Lr
x(R+) ≲ t−( 1

2−
1
r )|H1|Lr′

t (R), 2 ≤ r ≤ ∞. (3.13)

The above estimate plays the key role in establishing the Strichartz estimates. This is rather standard.
Indeed, (3.13), the admissibility condition (3.1) and the Riesz potential inequalities imply∣∣∣∣∣

∫ T ′

0

TB,1(t− s)θ(s)ds

∣∣∣∣∣
Lλ(0,T ′;Lr(R+))

≲ |θ|Lλ′ (0,T ′;Lr′ (R+)) (3.14)

for any θ ∈ Lλ′

t (0, T ′;Lr′

x (R+)) . Now, let ψ ∈ Cc([0, T
′);D(R+)) . Then,∣∣∣∣∫ ∞

−∞
(TB,1(t)h, ψ(t))L2(R+)dt

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
e−kx+ik2tĤ1(k)dkψ(x, t)dxdt

∣∣∣∣
= lim

b→∞

∣∣∣∣∣
∫ b

0

Ĥ1(k)

∫ T ′

0

∫ ∞

0

e−kx−ik2tψ(x, t)dxdtdk

∣∣∣∣∣
= lim

b→∞

∣∣∣∣∣
∫ ∞

−∞
H1(τ)

∫ T ′

0

∫ ∞

0

`(τ ;x, t, b)ψ(x, t)dxdtdτ

∣∣∣∣∣ .

(3.15)

We prove an auxiliary result now.

Lemma 3.12 If ψ ∈ Cc([0, T
′);D(R+)) and I(τ ; b) =

∫ T ′

0

∫∞
0
`(τ ;x, t, b)ψ(x, t)dxdt , then

|I(τ ; b)|L2
τ (R)

≤ c|ψ|Lλ′ (0,T ′;Lr′ (R+)). (3.16)

Proof We can rewrite the LHS of (3.16) as

|I(τ ; b)|L2
τ (R)

=

∫ T ′

0

∫ ∞

0

ψ(x, t)

∫ T ′

0

∫ ∞

0

ψ(y, s)L(x, y, t, s; b)dydsdxdt, (3.17)

where L(x, y, t, s; b) =
∫∞
−∞ `(τ ;x, t, b)`(τ ; y, s, b)dτ. By using the finite line Fourier transform, we have

L(x, y, t, s; b) =

∫ b

0

∫ ∞

−∞

∫ b

0

e−kx−ik2t+ikτe−k̃y+ik̃2s−ik̃τdkdk̃dτ

= 2π

∫ b

0

e−k(x+y)−ik2(t−s)dk.

(3.18)

By using the same arguments in Lemma 3.11, we deduce that

|L(x, y, t, s; b)| ≤ c√
|t− s|

, t 6= s, uniformly in x, y, b ∈ R+.

The above estimate and arguments used in the proof of (3.14) give the result. 2
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Using Lemma 3.12, we find that the RHS of (3.15) is bounded by

c|H1|L2(R)|ψ|Lλ′
t (0,T ′;Lr′

x (R+)). (3.19)

Hence, by duality, we establish the case s = 0 :

|TB,1(t)h|Lλ
t (0,T

′;Lr
x(R+)) ≤ c|H1|L2(R). (3.20)

Remark 3.13 The integral representation formula on ∂D+ obtained via the Fokas method has the remarkable
property that one can easily differentiate with respect to x and t .

In view of Remark 3.13, differentiating u1 in x merely brings a factor of a scalar multiple of k into the integrand.
Therefore, the above arguments can be repeated for ∂x[TB,1(t)h] , and one obtains

|∂xTB,1(t)h|Lλ
t (0,T

′;Lr
x(R+)) ≤ c|H̃1|L2(R), (3.21)

where H̃1(k) ≡ −kĤ1(k) for k ∈ R . From (3.20) and (3.21), we establish the s = 1 case:

|TB,1(t)h|Lλ
t (0,T

′;H1,r
x (R+)) ≤ c|H1|H1(R) (3.22)

Now, we interpolate between (3.20) and (3.22) and obtain

|TB,1(t)h|Lλ
t (0,T

′;Hs,r
x (R+)) ≤ c|H1|Hs(R) (3.23)

for 0 ≤ s ≤ 1 . Finally, we can iterate and derive the same estimate for all s ≥ 0 .
Returning to the original boundary input is easy. Namely, H1 and h are related via the estimate

|H1|2Hs(R) =

∫ ∞

−∞
(1 + k2)s|Ĥ1(k)|2dk

=
1

π2

∫ ∞

0

(1 + k2)sk2|ĥ(k2)|2dk =
1

2π2

∫ ∞

0

(1 + τ)s
√
τ |ĥ(τ)|2dτ

≤ c

∫ ∞

−∞
(1 + τ2)

2s+1
4 |ĥ(τ)|2dτ = c|h|2

H
2s+1

4
t (R)

.

(3.24)

It follows from (3.23) and (3.24) that |u1|Lλ
t (0,T

′;Hs,r
x (R+)) ≲ |h|

H
2s+1

4
t (R)

.

3.2.3. Analysis on the real axis: ibvp to Cauchy switch
Here, we set a function H2 as the inverse Fourier transform of

Ĥ2(k) ≡
{

2kĥ(−k2), if k ≥ 0;
0, otherwise. (3.25)

Then, u2 is rewritten as

u2(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tĤ2(k)dk, (3.26)
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where x ∈ R+. Observe that the above formula makes sense even for negative x . Therefore, extending (3.26)
to all x ∈ R and comparing it with (2.6), we see that u2 , denoted the same, becomes the solution of a Cauchy
problem which reads as

∂tu2 + Pu2 = 0, (x, t) ∈ R× (0, T ′), (3.27)

u2(x, 0) = H2(x). (3.28)

Although H2 originally depends on the time variable t , the above trick allows us to write a Cauchy
problem in which the dummy variable of H2 is switched with the spatial variable x . In some sense, the ibvp
with time dependent boundary input is translated into an initial value problem (ivp) on the whole line. The
advantage is that Strichartz estimates for the ivp are well-known. Indeed, by the Cauchy theory (see Theorem
3.1), we have

|u2|Lλ
t (0,T ;Hs,r

x (R)) ≲ |H2|Hs(R). (3.29)

Note also that H2 is controlled by h via

|H2|2Hs(R) =

∫ ∞

−∞
(1 + k2)s|Ĥ2(k)|2dk

=

∫ ∞

0

(1 + k2)s4k2|ĥ(−k2)|2dk =
1

2

∫ ∞

0

(1 + τ)s
√
τ |ĥ(−τ)|2dτ

≤ c

∫ ∞

−∞
(1 + τ2)

2s+1
4 |ĥ(τ)|2dτ = c|h|2

H
2s+1

4
t (R)

.

(3.30)

It follows from (3.29) and (3.30) and restricting u2 back to the half line that

|u2|Lλ
t (0,T ;Hs,r

x (R+)) ≲ |h|
H

2s+1
4

t (R)
.

3.3. Proof of Theorem 3.6
3.3.1. Homogeneous estimate

The solution splits as

u(x, t) = − i

π

∫
∂D+

eikx−ik2th̃(k2, T ′)dk

=
1

π

∫ 0

∞
e−kx+ik2tĥ(k2)dk − i

π

∫ ∞

0

eikx−ik2tĥ(−k2)dk

≡ u1(x, t) + u2(x, t).

(3.31)

We set

Ĥ1(k) ≡
{

− 1
π ĥ(k

2), if k ≥ 0;
0, otherwise (3.32)

and

Ĥ2(k) ≡
{

−2iĥ(−k2), if k ≥ 0;
0, otherwise. (3.33)
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From the arguments in the proof of Theorem 3.5 with Ĥi , i = 1, 2 as above, we have for s ∈ N0 that

|ui|Lλ
t (0,T ;Ḣs,r

x (R+)) ≲ |Hi|Ḣs(R), i = 1, 2. (3.34)

Observe that

|H1|2Ḣs(R) =

∫ ∞

−∞
k2s|Ĥ1(k)|2dk ≲

∫ ∞

0

k2s|ĥ(k2)|2dk

≲
∫ ∞

0

τs√
τ
|ĥ(τ)|2dτ ≲

∫ ∞

−∞
|τ |s− 1

2 |ĥ(τ)|2dτ = |h|2
Ḣ

2s−1
4

t (R)
.

(3.35)

A similar estimate also holds for H2 .

3.3.2. Inhomogeneous estimate

We first consider the case s > 1/2 . We define a new function he of mean zero with the properties he|[0,T ′) =

h|[0,T ′) , supphe ⊂ [0, 2T ′ + 1) , |he|
H

2s−1
4

t (R)
≲ |h|

H
2s−1

4
t (R)

so that H(t) ≡
∫ t

−∞ he(s)ds has also support in

[0, 2T ′+1) with |H|
H

2s+3
4

t (R)
≲ (1+T ′)|h|

H
2s−1

4
t (R)

, see for instance [3, Lemma 2.1] for such construction. Then,

we solve the Neumann problem with he over the interval [0, 2T ′ + 1) . The corresponding solution is given by

u(x, t) = − i

π

∫
∂D+

eikx−ik2th̃e(k
2, 2T ′ + 1)dk

=
1

π

∫ 0

∞
e−kx+ik2tĥe(k

2)dk − i

π

∫ ∞

0

eikx−ik2tĥe(−k2)dk

≡ u1(x, t) + u2(x, t).

(3.36)

We set

Ĥ1(k) ≡
{

− 1
π ĥe(k

2), if k ≥ 0;
0, otherwise (3.37)

and

Ĥ2(k) ≡
{

−2iĥe(−k2), if k ≥ 0;
0, otherwise. (3.38)

Now, we repeat the arguments in the proof of Theorem 3.5 by taking Ĥi , i = 1, 2 as in (3.37) and (3.38),
respectively. Namely, we have

|ui|Lλ
t (0,T ;Hs,r

x (R+)) ≲ |Hi|Hs(R), i = 1, 2. (3.39)

Observe that

|H1|2Hs(R) =

∫ ∞

−∞
(1 + k2)s|Ĥ1(k)|2dk ≲

∫ ∞

0

(1 + k2)s|ĥe(−k2)|2dk

≲
∫ ∞

0

(1 + τ)s√
τ

|ĥe(−τ)|2dτ ≲
∫ ∞

−∞
(1 + τ2)

s
2 |τ2|− 1

4 |ĥe(τ)|2dτ.
(3.40)
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Using d
dtH = he ⇒ |τ ||Ĥ(τ)| = |ĥe(τ)| , the term at the right hand side of (3.40) is estimated as∫ ∞

−∞
(1 + τ2)

s
2 |τ |− 1

2 |ĥe(τ)|2dτ ≤
∫ ∞

−∞
(1 + τ2)

s
2 |τ2| 34 |Ĥ(τ)|2dτ

= |H|2
H

2s+3
4

t (R)
≲ (1 + T ′)2|h|2

H
2s−1

4
t (R)

.

(3.41)

Hence, |H1|Hs(R) ≲ (1 + T ′)|h|
H

2s−1
4

t (R)
. A similar estimate also holds for H2 .

Next, we consider the case s < 1/2 . For s = 0 , 2s−1
4 = − 1

4 . We recall the following lemma.

Lemma 3.14 ([16]) Let θ ∈ C∞
0 (R) and 0 ≤ α < 1/2 . If h ∈ H−α then

|θh|Ḣ−α ≤ c(θ, α)|h|Ḣ−α ,

where the constant of inequality depends on α and the size of the support of θ .

We first prove (3.6) for s = 0 in which case, h ∈ H
− 1

4
t with supph ⊂ [0, T ′) . Then by the homogeneous

estimate (3.5) and Lemma 3.14, it follows that for a cutoff function θ which satisfies θ ≡ 1 on [0, T ′] , we have

|u|Lλ
t (0,T

′;Lr
x(R+)) ≲ |h|

Ḣt
− 1

4 (R)
= |θh|

Ḣt
− 1

4 (R)
≤ cT ′ |h|

H
− 1

4
t (R)

. (3.42)

For s = 1 , we already established inhomogeneous estimate (3.6) so we can interpolate to obtain the desired
result for s ∈ [0, 1] .

3.4. Temporal regularity of spatial traces for Cauchy problems
In this section, we overview two theorems regarding the time trace estimates of solutions of the homogeneous
and nonhomogeneous Cauchy problems, respectively.

Theorem 3.15 Let s ≥ 0 and y∗0 ∈ Hs
x(R) . Then v(t) = e−tP y∗0 defines a solution to (2.6) such that

∂xv ∈ C(Rx,H
2s−1

4
t (0, T )) for T ∈ (0,∞] and

sup
x∈R

|∂xv(x, ·)|
H

2s−1
4

t (0,T )
≤

√
2|y∗0 |Hs

x
. (3.43)

Proof By the solution representation of the homogeneous Cauchy problem, we have

∂xv(x, t) =
i

2π

∫
R
eiξx−iξ2tξŷ∗0(ξ)dξ

=
i

2π

∫ ∞

0

eiξx−iξ2tξŷ∗0(ξ)dξ +
i

2π

∫ 0

−∞
eiξx−iξ2tξŷ∗0(ξ)dξ

=: I(x, t) + II(x, t).

Firstly, we estimate II . By the change of variable ξ = −
√
τ , we rewrite II as

II(x, t) =
i

4π

∫ ∞

0

e−i
√
τx−iτtŷ∗0(−

√
τ)dτ. (3.44)
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Then II is the inverse (in time) Fourier transform of the function

ÎI
(t)
(x, τ) :=

i

2
χ[0,∞)(τ)e

−i
√
τxŷ∗0(−

√
τ). (3.45)

Thus, by the definition of the Sobolev norm,

|II(x, ·)|2
H

2s−1
4

t

≤
∫
R
(1 + τ2)

2s−1
4 |ÎI1

(t)
(x, τ)|2dτ

=
1

4

∫ ∞

0

(1 + τ2)
2s−1

4 |ŷ∗0(−
√
τ)|2dτ

=
1

2

∫ 0

−∞
(1 + ξ4)

2s−1
4 |ŷ∗0(ξ)|2ξdξ ≤

1

2
|y∗0 |2Hs . (3.46)

By a similar argument, one can show that

|I(x, ·)|
H

2s−1
4

t

≤ 1√
2
|y∗0 |Hs

x
. (3.47)

Then (3.46) and (3.47) together imply the desired result. 2

Next, we estimate time traces of the solution of the nonhomogeneous Cauchy problem.

Theorem 3.16 Let (λ, r) be Schrödinger admissible and m ∈ {0, 1} and z be defined by (2.7). Then, the
following properties hold:

1. Let f∗ ∈ Lλ′

t Ḣ
s,r′

x , s ∈ Z , then ∂mx z ∈ C(R; Ḣ
2s+1−2m

4
t (0, T )) for T ≤ ∞ and

sup
x

|∂mx z(x, ·)|
Ḣ

2s+1−2m
4

t (0,T )
≲ |f∗|

Lλ′
t Ḣs,r′

x
. (3.48)

2. Let f∗ ∈ Lλ′

t H
s,r′

x , s ∈ [0,∞) , then ∂mx z ∈ C(R;H
2s+1−2m

4
t (0, T )) for T <∞ and

sup
x

|∂mx z(x, ·)|
H

2s+1−2m
4

t (0,T )
≲ (1 + cT )|f∗|Lλ′

t Hs,r′
x

(3.49)

Remark 3.17 The homogeneous and inhomogeneous time trace estimates in the above theorem can be considered
extensions of estimates in [16] to a larger range of s . Here, we obtain the estimates for a large range of s by
making use of the relation between the spatial and temporal fractional derivatives of the solution. Moreover,
we refrain from differentiating the solution formula in time to obtain higher order time trace estimates. This
generally causes additional time trace terms appearing at the right hand side of (3.49), see for instance [5].
Instead, we use an iterative argument whose each step relies on boundedness of |∂mx z(x, ·)|

H
1
4
t (0,T )

.

Remark 3.18 Lλ′

t H
s,r′

x norms of f∗ at the right hand side of the estimates in Theorem 3.16 can be replaced
by Lλ′

t (0, T ;Hs,r′

x ) norms. The latter are more convenient for nonlinear applications.
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Lemma 3.19 ([17, 19]) For f ∈ D⊗ ≡
{
h |h(x, t) =

∑N
i=1 h

1
i (x)h

2
i (t), h

1
i , h

2
i ∈ C∞

0 (R)
}

,

2z(x, t) =

∫
R
e−(t−t′)P f(x, t′)dt′ − 2

∫ 0

−∞
e−(t−t′)P f(x, t′)dt′

− i

π

∫
R
eitτ
[
lim

ϵ→0+

∫
ϵ<|ξ2+τ |< 1

ϵ

eixξ
f̂(ξ, τ)

ξ2 + τ
dξ
]
dτ.

(3.50)

Proof This lemma is an analogue of a proposition that was given by Kenig et al. in [19] for the Korteweg-de
Vries equation. Its adaptation to the Schrödinger equation was given in Holmer [17] without proof. We give a
proof for completeness. We write the last term in (3.50) as

− i

π

∫
R
eixξ lim

ϵ↓0

∫
ϵ<|ξ2+τ |< 1

ϵ

eitτ
f̂(ξ, τ)

ξ2 + τ
dτdξ. (3.51)

Now by the Fourier transform of the signum function and a change of variable, we have∫
ϵ<|ξ2+τ |< 1

ϵ

eitτ
f̂(ξ, τ)

ξ2 + τ
dτ =

i

2

∫
ϵ<|ξ2+τ |< 1

ϵ

eitτ f̂(ξ, τ)
(∫

R
e−i(ξ2+τ)t′sgn(t′)dt′

)
dτ

=
i

2

∫
ϵ<|ξ2+τ |< 1

ϵ

eitτ f̂(ξ, τ)
(∫

R
e−i(ξ2+τ)(t−t′)sgn(t− t′)dt′

)
dτ

=
i

2

∫
ϵ<|ξ2+τ |< 1

ϵ

e−iξ2tf̂(ξ, τ)
(∫

R
ei(ξ

2+τ)t′sgn(t− t′)dt′
)
dτ

=
i

2

∫
R
e−iξ2(t−t′)sgn(t− t′)

∫
ϵ<|ξ2+τ |< 1

ϵ

eit
′τ f̂(ξ, τ)dτdt′

⇒ lim
ϵ↓0

∫
ϵ<|ξ2+τ |< 1

ϵ

eitτ
f̂(ξ, τ)

ξ2 + τ
dτ = πi

∫
R
e−iξ2(t−t′)sgn(t− t′)f̂ (x)(ξ, t′)dt′;

hence, (3.51) is equal to ∫
R
eixξ

∫
R
e−iξ2(t−t′)sgn(t− t′)f̂ (x)(ξ, t′)dξdt′

=

∫
R
sgn(t− t′)

∫
R
eixξ−iξ2(t−t′)f̂ (x)(ξ, t′)dξdt′

=

∫
R
sgn(t− t′)e−(t−t′)P f(·, t′)dt′

= 2

∫ t

−∞
e−(t−t′)P f(·, t′)dt′ −

∫
R
e−(t−t′)P f(·, t′)dt′

= 2

∫ 0

−∞
e−(t−t′)P f(·, t′)dt′ −

∫
R
e−(t−t′)P f(·, t′)dt′ + 2z(x, t).

2

Remark 3.20 D⊗ is dense in Lp
tL

p
x for any p, q ≥ 1 [19].
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Lemma 3.21 ([17]) Let x ∈ R . Then,

lim
ϵ↓0

∫
ϵ<|ξ2+τ |< 1

ϵ

eixξ
1

ξ2 + τ
dξ = −π sin(|x|

√
−τ)√

−τ
, τ < 0 (3.52)

and ∫
R
eixξ

1

ξ2 + τ
dξ = π

e−|x|
√
τ

√
τ

, τ > 0. (3.53)

Proof It is stated in [17] (for τ = 1) that two identities given above can be proven by making use of partial
fraction decomposition and delta function, respectively. We give an alternate and complex analytic proof here.
Let us first consider the case x > 0 and τ < 0 . Set the complex valued function f(z) = eixz 1

z2+τ over the

contour Γϵ shown in Figure 2. By the residue theorem
∫
Γϵ
f = 0 and since x > 0 , Jordan’s Lemma implies

limϵ↓0
∫
γϵ
f = 0 . We also have

∫
Dϵ

f = −iπRes(f,
√
−τ) = − iπ

2

eix
√
−τ

√
−τ

and
∫
Cϵ

f = −iπRes(f,−
√
−τ) = iπ

2

e−ix
√
−τ

√
−τ

. (3.54)

Thus, for x > 0 , we obtain

lim
ϵ↓0

∫
ϵ<|ξ2+τ |< 1

ϵ

eixξ
1

ξ2 + τ
dξ = −π sin(x

√
−τ)√

−τ
.

For x < 0 , we can repeat the same argument for the contour Γ′
ϵ in Figure 3 to obtain the same expression,

proving (3.52). (3.53) can be shown by using similar complex analytic arguments.

Figure 2. The contour Γϵ . Figure 3. The contour Γ′
ϵ .

2

The following lemma will be useful.

Lemma 3.22 ([4]) Suppose α ∈ R . Then for t 6= 0∣∣∣ ∫ ∞

0

eiαξ±iξ2tdξ
∣∣∣ ≲√|t|, (3.55)

where the constant of the inequality is independent of α and t .
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Now, we are ready to prove Theorem 3.16.

Proof [Proof of Theorem 3.16] The proof of this theorem is largely due to Holmer [17], here we only mention
necessary modifications to allow a larger range of s . In particular, we make an explicit use of the relation
between the spatial and temporal derivatives of the solution. Lemma 3.19 gives

D
2s+1

4
t z(x0, t) =

1

2
D

2s+1
4

t

∫
R
e−(t−t′)P f(x0, t

′)dt′ −D
2s+1

4
t

∫ 0

∞
e−(t−t′)P f(x0, t

′)dt′

− i

2π
lim
ϵ↓0

∫ ∫
ϵ<|ξ2+τ |< 1

ϵ

eitτ+iξx0 |τ |
2s+1

4
f̂(ξ, τ)

ξ2 + τ
dξdτ

= I + II + III.

(3.56)

In order to estimate I , let g ∈ L2 s.t. |g|L2 ≤ 1 , then

|Ix0 |L2
t
≂ sup

|g|L2≤1

∣∣∣ ∫
R
D

2s+1
4

t

(∫
R
e−(t−t′)P f(x0, t

′)dt′
)
g(t)dt

∣∣∣
= sup

|g|L2≤1

∣∣∣ ∫
R
D

s
2
t

(∫
R
e−(t−t′)P f(x0, t

′)dt′
)
D

1
4
t g(t)dt

∣∣∣.
By definition of e−(t−t′)P and Fourier transform characterization of fractional derivative, one has

D
s
2
t

∫
t′
e−(t−t′)P f(x0, t

′)dt′ ≂
∫
t′
e−(t−t′)PDs

xf(x, t
′)dt′.

Rewriting Ix0 in view of the above identity and using arguments similar to those in [17], one can prove
that |Ix0 |L2

t
≲ |Hx0 |L2 , where Hx0(x) =

∫
R e

t′PDs
xf(x0 − x, t′)dt′. Furthermore, |Hx0 |L2 ≲ |f |

Lλ′
t Ḣs,r′

x
. By

replacing the integrals where t′ ∈ R with integrals where t′ ∈ (0,∞) in the analysis of I , it also follows that
|IIx0 |L2

t
≲ |f |

Lλ′
t Ḣs,r′

x
. Next, we prove that |III|L2

t
≲ |f |

Lλ′
t Ḣs,r′

x
. We start with the case (λ, r) = (∞, 2) . By

Plancherel’s theorem and Minkowski’s inequality we have

|III|L2
t
≤
∫
t

(III1(t) + III2(t))dt,

where

III1(t) =

(∫
τ

|τ |s+ 1
2

∣∣∣ ∫ 0

−∞
eixξ

f̂(ξ, t)

ξ2 + τ
dξ
∣∣∣2) 1

2

and III2(t) =

(∫
τ

|τ |s+ 1
2

∣∣∣ ∫ ∞

0

eixξ
f̂(ξ, t)

ξ2 + τ
dξ
∣∣∣2) 1

2

.

Utilizing the fact that |τ |s+ 1
2 is an A2 weight (see e.g., [25, Chapter 5]), a change of variable and Plancherel’s

theorem, one gets
IIIi(t) ≲ |f(·, t)|Ḣs

x
, i = 1, 2.

Now we prove the case (λ, r) = (4,∞) for s ∈ Z . Let g denote the function with the Fourier transform
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ĝ(ξ, τ) = 1
ξ2+τ . We rewrite III as

III =

∫
τ

eitτ |τ |
2s+1

4

(∫
ξ

eix0ξFx

[
f̂ (t)(x, τ) ∗ ĝ(t)(x, τ)

]
(x0)dξ

)
dτ

= 2π

∫
τ

eitτ |τ |
2s+1

4

(∫
x

f̂ (t)(x0 − x, τ)ĝ(t)(x, τ)dx

)
dτ.

Now notice, from Lemma 3.21 that for τ 6= 0 , we have ∂sxĝ(x0, τ) ≂ |τ | s2 ĝ(x0, τ) whenever s ∈ N . Thus, by
integration by parts, we have

III ≂
∫
τ

eitτ |τ | 14
(∫

x

∂̂sxf
(t)
(x0 − x, τ)ĝ(t)(x, τ)dx

)
.

As for s ∈ Z− , the s -th antiderivative Ĝ(t)(x0, τ) of ĝ(x0, τ) satisfies

ĝ(x0, τ) ≂ ∂−s
x Ĝ(t)(x0, τ) = |τ |− s

2 Ĝ(t)(x0, τ).

Thus, for s ∈ Z− , we can write III as

III ≂
∫
τ

eitτ |τ | 14
(∫

x

f̂ (t)(x0 − x, τ)Ĝ(t)(x, τ)dx

)

=

∫
τ

eitτ |τ | 14
(∫

x

|τ |sf̂ (t)(x0 − x, τ)ĝ(t)(x, τ)dx

)

=

∫
τ

eitτ |τ | 14
(∫

x

D̂s
xf

(t)
(x0 − x, τ)ĝ(t)(x, τ)dx

)
.

(3.57)

It follows that, for s ∈ Z , III can be expressed as (3.57), where Ds is in the sense of fractional derivative for
negative s and in the sense of usual derivative for nonnegative s . By Plancherel’s theorem,

|III|2L2
t
≂ |ÎII|2L2

τ
≲
∫ ∞

0

√
τ

∣∣∣∣∣
∫
x

D̂s
xf

(t)
(x0 − x, τ)ĝ(t)(x, τ)dx

∣∣∣∣∣
2

dτ

+

∫ 0

−∞

√
τ

∣∣∣∣∣
∫
x

D̂s
xf

(t)
(x0 − x, τ)ĝ(t)(x, τ)dx

∣∣∣∣∣
2

dτ

= A1 +A2.

One can rewrite A1 as

A1 ≂
∫
x,t,x′,t′

K(x, t, x′, t′)Ds
xf(x0 − x, t)Ds

x′f(x0 − x′, t′)dxdtdx′dt′,

where K(x, t, x′, t′) =
∫∞
0
e−(|x|+|x′|)ξei(t

′−t)ξ2dξ. A similar argument also applies to A2 . We have K(x, t, x′, t′) ≲
1√

|t−t′|
, which implies through Hardy-Littlewood-Sobolev inequality that |III|2

L2
t
≲ |f |2

L
4
3
t Ḣs,1

x

. Now for fixed
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s ∈ Z , we can interpolate between the pairs (λ′, r′) = (1, 2) and ( 43 , 1) to reach the desired estimate for III ,
which proves (3.48) for the case m = 0 . For m = 1 , we can differentiate in x and repeat the same arguments
to obtain

|∂xz(x, ·)|
Ḣ

2s−1
4

t (0,T )
≲ |∂mx f |Lλ′

t Ḣs−1,r′
x

≤ |f |
Lλ′

t Ḣs,r′
x

for the same admissible pairs and s ∈ Z . Finally, we can interpolate over (λ, r) for fixed s ∈ Z proving (3.48).
If s ∈ N0 and s < m (which is only possible if s = 0 and m = 1), then 2s+1−2m

4 = − 1
4 < 0 ; hence,

|∂mx z(x, ·)|
H

2s+1−2m
4

t (0,T )
≤ |∂mx z(x, ·)|

Ḣ
2s+1−2m

4
t (0,T )

≲ |f |
Lλ′

t Hs,r′
x

.

Now suppose s ∈ N0 and s ≥ m . Then 2s+1−2m
4 ≥ 1

4 . Let θT be a smooth cut-off function such that
θT |[0,T ] ≡ 1 . Then we have

|∂mx z(x, ·)|
H

2s+1−2m
4

t (0,T )
≤|∂mx z(x, ·)|

Ḣ
2s+1−2m

4
t (0,T )

+ |∂mx z(x, ·)|L2

≲|f |Lλ′
t Ḣs,r

x
+ |θT∂mx z(x, ·)|

H
1
4
t (0,T )

≤|f |Lλ′
t Ḣs,r

x
+ cT |∂mx z(x, ·)|

Ḣ
1
4
t (0,T )

≲|f |Lλ′
t Ḣs,r

x
+ cT |f |Lλ′

t Ḣm,r
x

≤(1 + cT )|f |Lλ′
t Hs,r

x
.

Notice that the above argument need not hold when T = ∞ . We have proved (3.49) for all s ∈ N0 , so we can
interpolate and extend the estimate to all s ≥ 0 . 2

Remark 3.23 The constant cT in 3.49 is an increasing function of T . If T is assumed to be bounded by some
M > 0 , one can omit the term cT by taking θM instead of θT .

4. Nonlinear applications
We will prove local well-posedness of the NLS and the coupled system of NLS equations on the halfline utilizing
trace and Strichartz estimates given in previous sections. The local well-posedness of the Dirichlet and Neumann
problems for the single NLS were studied before in the high regularity setting in [11] and [15], respectively, via
Fokas method-based formulas. Dirichlet problem was studied in the low regularity setting with other methods
(see e.g., [5], [16]). Therefore, here we will prove the local well-posedness of only the Neumann problem in the
low regularity setting s ∈ [0, 12 ) using Theorem 3.6. Then we move on to the coupled system of NLS equations
and establish its well-posedness, too.

One should not expect a local well-posesness result for negative indices in light of the theory of Cauchy
problems. Indeed, let u be a solution of the NLS on the real line:

ut + Pu+ f(u) = 0. (4.1)

Then, uϵ(x, t)
.
= ε−

2
pu(ε−1x, ε−2t) is also a solution of the same eqution. Moreover, u solves (4.1) on (0, T )

iff uϵ solves (4.1) on (0, ε2T ) . The corresponding initial data satisfy |uϵ(0)|Ḣs
x
= ε

1
2−

2
p−s|u(0)|Ḣs

x
. It is clear
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that if s < s∗
.
= 1

2 − 2
p , then both |uϵ(0)|Ḣs

x
and the life span of uϵ tends to zero as ε → 0+ . This suggests

that the problem may be locally illposed for s < s∗ and locally well-posed otherwise. Illposedness is easier to
establish for 0 ≤ s < s∗ whenever s∗ > 0 (L2 -supercritical) or for s < s∗ = 0 (L2 -critical). For the focusing
problems, in the case s∗ ≥ 0 , one can construct solutions that blow up in given arbitrarily small time. However,
if p < 4 , then s∗ < 0 , in which case an explicit blow-up solution cannot be constructed. Therefore, the question
is what is the range of s for which local well-posedness fails when s∗ < 0 (L2 -subcritical). It was shown in [7]
that the solution operator is not uniformly continuous for s < max(0, s∗) . This motivates us to consider the
well-posedness problem for s ≥ max(0, s∗) also in the present context of an ibvp.

4.1. NLS with Neumann b.c.
In this section, we prove the local well-posedness of the following Neumann problem for 0 ≤ s < 1

2 .

iyt + yxx = κ|y|py =: f(y), (x, t) ∈ R+ × (0, T ),

y(x, 0) = y0(x) ∈ Hs
x(R+),

yx(0, t) = g(t) ∈ H
2s−1

4
t (0, T )

(4.2a)
(4.2b)

(4.2c)

where κ ∈ C and p ≤ 4
1−2s . Note that we have no compatibility conditions when s ∈ [0, 1/2) as traces are not

defined.

Theorem 4.1 Let T > 0 , s ∈ [0, 12 ) , 0 < p ≤ 4
1−2s , y0 ∈ Hs

x(R+) and g ∈ H
2s−1

4
t (0, T ) . Define Schrödinger

admissable pair λ = 4(p+2)
p(1−2s) , r =

p+2
1+sp . We assume y0 is small if p = 4/(1− 2s). Then 4.2 has the following

local well-posedness properties:

(i) Local existence and uniqueness. There is a unique local solution y ∈ Lλ
t (0, T0;H

s,r
x (R+))∩C([0, T0];Hs

x(R+))

for some T0 ∈ (0, T ] .

(ii) Continuous dependence. For any bounded subset B of Hs
x(R+) ×H

2s−1
4

t (0, T ) there is T0 > 0 such that
the map (y0, g) ∈ B 7→ y ∈ C([0, T0];H

s
x(R+)) is Lipschitz continuous.

(iii) Blow-up alternative. Let S be the set of T0 ∈ (0, T ] such that there is a unique local solution in
Lλ(0, T0;H

s,r(R+)) . Then Tmax ≡ supT0∈S T0 < T ⇒ limt→Tmax |y(t)|Hs(R+) = ∞.

Proof Existence. A solution of (4.2) is a fixed point of the operator

Θ[y](t) := v|R+×(0,T0) + z|R+×(0,T0) + u|(0,T0) (4.3)

≡ e−tP y∗0
∣∣
R+×(0,T0)

+

∫ t

0

e−(t−t′)P f∗(y)dt′
∣∣∣∣
R+×(0,T0)

+ TB(t)h|(0,T0)
, (4.4)

where y∗0 —spatially defined on R—is an extension of y0 and similarly f∗(y) is an extension of f(y) (can be
simply taken as f(y∗) where y∗ is an extension of y ; this is justified later through the estimates of the nonlinear
term). Here, by abuse of notation, we use (·)∗ to denote all extensions. Moreover, these extensions correspond
to fixed bounded regularity preserving extension operators. Therefore, in estimates, one can switch between
norms of y0, f and y∗0 , f

∗ , respectively.
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Here, h ∈ H
2s−1

4
t (R) with supph ⊂ [0, T ′) for some T ′ > T that is an extension (in the distributional

sense for small s) of the boundary input g − ∂xv(0, ·)− ∂xz(0, ·) which is defined on [0, T ] such that

|h|
H

2s−1
4

t (R)
≲ |g − ∂xv(0, ·)− ∂xz(0, ·)|

H
2s−1

4
t (0,T )

.

Indeed one can see that such h exists by first taking an extension to R and then multiplying this extension by
a suitable cut-off function (see e.g. [1] for construction of such extension). Now consider the space

XT0
:= {y ∈ Lλ

t (0, T0;H
s,r
x (R+)) : |y|Lλ

t (0,T0;H
s,r
x (R+)) ≤ R}

with the metric d(y1, y2) = |y1 − y2|Lλ
t (0,T0;Lr

x(R+)).

Remark 4.2 (XT0
, d) is a complete metric space, letting us to use Banach’s fixed point theorem. Although

XT0
is not a linear space we will still write |y|XT0

:= |y|Lλ
t (0,T0;H

s,r
x (R+)) to shorten the notation.

We claim that there are R, T0 > 0 such that Θ : XT0
→ XT0

is a contraction. We will first show that
Θ(XT0

) ⊆ XT0
for some R, T0 > 0 . Suppose y ∈ XT0

. Then, by the linear theory

|Θy|XT0
≲|y0|Hs

x(R+) + |f(y∗)|
Lλ′

t (0,T ;Hs,r′
x (R)) + |u|XT0

.

Again by the linear theory,

|u|XT0
≲ |h|

H
2s−1

4
t (R)

≤ |g − ∂xv(0, ·)− ∂xz(0, ·)|
H

2s−1
4

t (0,T0)

≤ |g|
H

2s−1
4

t (0,T0)
+ |y0|Hs

x(R+) + |f(y∗)|
Lλ′

t (0,T0;H
s,r′
x (R)).

Thus, we have
|Θy|XT0

≤ cT0(|y0|Hs
x(R+) + |f(y∗)|

Lλ′
t (0,T0;H

s,r′
x (R+))

+ |g|
H

2s−1
4

t (0,T0)
) (4.5)

where cT0
is a constant dependent on T0 . Now take R = 2cT0

|y0|Hs
x(R+) . Let (λ, r) be the particular admissible

pair λ := 4(p+2)
p(1−2s) , r :=

p+2
1+sp . Then by the fractional Leibniz and chain rules:

|f(y∗)|
Lλ′

t (0,T0;Ḣ
s,r′
x (R)) ≤ T θ

0 |y∗|
p+1

Lλ
t (0,T0;Ḣ

s,r
x (R)) ≤ T θ

0 |y|
p+1
XT0

,

|f(y∗)|Lλ′
t (0,T0;Lr′ (R)) ≤ T θ

0 |y∗|
p

Lλ
t (0,T0;Ḣ

s,r
x (R))|y

∗|Lλ
t (0,T0;Lr

x(R)) ≤ T θ
0 |y|

p+1
XT0

where θ := 1− p(1−2s)
4 . We have

|Θy|XT0
≤ R

2
+ cT0

(
T θ
0R

p+1 + |g|
H

2s−1
4

t (0,T0)

)
.

From the linear theory, cT0 is nonincreasing as T0 gets smaller. Thus, we can take T0 small such that

cT0

(
T θ
0R

p+1 + |g|
H

2s−1
4

t (0,T0)

)
≤ R

2
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so that we have Θy ∈ XT0 . Now we have to show that Θ is a contraction. Take y1, y2 ∈ XT0 . Then

d(Θy1,Θy2) ≲ |f(y∗1)− f(y∗2)|Lλ′
t (0,T0;H

s,r′
x (R))

≲ T θ
0

(
|y∗1 |

p

Lλ
t (0,T0;Ḣ

s,r
x (R)) + |y∗2 |

p

Lλ
t (0,T0;Ḣ

s,r
x (R))

)
|y∗1 − y∗2 |Lλ

t (0,T0;Lr
x(R))

≤ T θ
0

(
|y1|pXT0

+ |y2|pXT0

)
d(y1, y2). (4.6)

Thus, taking T0 small enough, we can make Θ a contraction. Then by Banach fixed point theorem Θ has a
unique fixed point y ∈ XT0

. From the linear theory, it also follows that y ∈ C([0, T0];H
s
x(R+)) .

Remark 4.3 Note that the above arguments apply in the subcritical case θ > 0 . For the critical case θ = 0

the term T θ
0 on the RHS is lost but one can still argue in a similar manner with the additional assumption that

initial data is small.

Uniqueness. Let y1, y2 ∈ Lλ
t ([0, T0],H

s,r
x (R+)) be two solutions. Then by (4.6), we have

d(y1, y2) = d(Θy1,Θy2) ≲ T θ
0 (|y1|

p
XT0

+ |y2|pXT0
)d(y1, y2)

Hence, T0 can be taken small enough to guarantee uniqueness for θ > 0 . For the critical case, a similar
argument applies for small initial data.

Continuous dependence. Let B be bounded subset of Hs
x(R+)×H

2s−1
4

t (0, T0) and let (y1, g1), (y2, g2) ∈ B

with corresponding solutions w1 and w2 in XT0
, respectively. Then w ≡ w1 −w2 is a solution to the following

problem

iwt + wxx = f(w1)− f(w2), (x, t) ∈ R+ × (0, T0),

w(x, 0) = (y1 − y2)(x) ∈ Hs
x(R+),

wx(0, t) = (g1 − g2)(t) ∈ H
2s−1

4
t (0, T0).

(4.7a)
(4.7b)

(4.7c)

Then we have

|w|XT0
≲|y∗1 − y∗2 |Hs

x(R+) + |f(w∗
1)− f(w∗

2)|Lλ′
t (0,T0;H

s,r′
x (R)) + cT0

|h1 − h2|
H

2s−1
4

t (R)

≲|y1 − y2|Hs(R+) + T θ
0

(
|w1|pXT0

+ |w2|pXT0

)
|w1 − w2|XT0

+ cT0 |g1 − g2|
H

2s−1
4

t (0,T0)
.

Then taking T0 small enough (provided θ > 0), we obtain |w1 −w2|YT0
≲ |(y1, g1)− (y2, g2)|B .A similar argu-

ment also applies to θ = 0 case by assuming initial data are small.
Blowup alternative. Let S be the set of T0 ∈ (0, T ] such that there is a unique local solution in
Lλ
t (0, T0;H

s,r
x (R+)) . We claim that if Tmax := supT0∈S T0 < T then |y(t)|Hs

x(R+) → ∞ as t → Tmax . Suppose
for contradiction that there is a sequence (tn) ⊂ S such that tn → T and |y(tn)|Hs

x(R+) ≤M for some M > 0 .
Given any n ∈ N , there is a unique solution y1 of the problem on [0, tn] . Now consider the following problem

iyt + yxx = κ|y|py (x, t) ∈ R+ × (tn, T ),

y(x, tn) = y0(x),

yx(0, t) = g(t)

(4.8a)
(4.8b)
(4.8c)
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Then (4.8) has a unique local solution y2 on some interval [tn, tn + δ] . Now choose n such that tn + δ > Tmax .
Define y such that y ≡ y1 on [0, tn) and y ≡ y2 on [tn, tn + δ] . Then y is a local solution on [0, tn + δ] which
is a contradiction. 2

4.2. Coupled system of NLS equations

In this section, we prove local well-posedness for the cubic coupled NLS ibvp on the half line. We consider the
following system:

ipt + pxx = a|q|2p, (x, t) ∈ R+ × (0, T ),

p(x, 0) = p0(x),

γmp(0, t) = g(t),

iqt + qxx = b|p|2q, (x, t) ∈ R+ × (0, T )

q(x, 0) = q0(x),

γnq(0, t) = h(t),

(4.9a)
(4.9b)
(4.9c)
(4.9d)
(4.9e)
(4.9f)

where a, b ∈ C and m,n ∈ {0, 1} .

Theorem 4.4 (Low regularity solutions) Let s ∈ [0, 1/2) , λ = 8
1−2s and r = 4

1+2s . Let p0, q0 ∈ Hs
x(R+)

and for m,n ∈ {0, 1} let g ∈ H
2s+1−2m

4
t (0, T ) and h ∈ H

2s+1−2n
4

t (0, T ) . Then there is T0 ∈ (0, T ] such that the
system (4.9) has a unique solution

(p, q) ∈ Lλ
t (0, T0;H

s,r
x (R+))

2 ∩ C([0, T0];Hs
x(R+))

2

Moreover, the data-to-solution map is locally Lipschitz continuous.

Proof We will again use a fixed point argument. Let Ψm[y0, g, f ] denote the solution operator of 2.1 for
B = γm . Then it is easy to see that a solution of (4.9) corresponds to a fixed point of the operator

Λ : (p, q) 7→
(
Ψm[p0, g, a|q|2p],Ψn[q0, h, b|p|2q]

)
(4.10)

We define the space XT0
for the sought-after solution as

XT0
:= {(p, q) ∈ Lλ

t (0, T0;H
s,r
x (R+))

2 : |p|Lλ
t (0,T0;H

s,r
x (R+)) + |q|Lλ

t (0,T0;H
s,r
x (R+)) ≤ R}

equipped with the metric

d((p1, q1), (p2, q2)) = |p1 − p2|Lλ
t (0,T0;Lr

x(R+)) + |q1 − q2|Lλ
t (0,T0;Lr

x(R+)).

So that (XT0
, d) is a complete metric space. We claim that there is T0 > 0 such that Λ has a fixed point in

XT0
. We have, similar to the proof of Theorem 4.1,

|Λ(p, q)|XT0
≤cT0

(
|p0|Hs

x(R+) + |a|q|2p|
Lλ′

t (0,T0;H
s,r′
x (R+))

+ |g|
H

2s+1−2m
4

t (0,T0)

+ |q0|Hs
x(R+) + |b|p|2q|

Lλ′
t (0,T0;H

s,r′
x (R+))

+ |h|
H

2s+1−2n
4

t (0,T0)

)
.
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Thus, for the invariance of XT0 , it will suffice to show the following estimate

||p|2q|Lλ′ (0,T0;Hs,r′ (R+) + ||q|2p|Lλ′ (0,T0;Hs,r′ (R+)) ≲ c(T0, R, θ) (4.11)

with c(T0, R, θ) getting smaller as T0 gets smaller. To prove that Λ is a contraction, it is enough to show that
for (p1, q1) and (p2, q2) in XT0 , we have

||q1|2p1 − |q2|2p2|Lλ′
t (0,T0;Lr′

x (R+)) + ||p1|2q1 − |p2|2q2|Lλ′
t (0,T0;Lr′

x (R+))

≲c(T0, R, θ)|(p1, q1)− (p2, q2)|Lλ
t (0,T0;Lr

x(R+)). (4.12)

We choose µ and ρ such that 1
λ′ = 1

µ + 2
λ ,

1
r′ = 2

ρ + 1
r . We have the Sobolev embedding Ḣs,r′ ↪−→ Lρ

and µ < λ . Let

θ :=
1

µ
− 1

λ
> 0 (4.13)

and let
1

j
:=

1

ρ
+

1

r
. (4.14)

Then given (p, q) ∈ XT0
, by the generalized Hölder inequality, we have

|Ds(|p∗(t)|2q∗(t))|Lr′
x

≲ |Ds(|p∗(t)|2)|Lj
x
|q∗(t)|Lρ

x
+ ||p∗(t)|2|

L
ρ
2
x

|Dsq∗(t)|Lr
x
.

The first term on the RHS is estimated as

|Ds(|p∗(t)|2)|Lj
x
≲ |Dsp∗(t)|Lr

x
|p∗(t)|Lρ

x
≤ |p∗(t)|2

Ḣs,r
x
. (4.15)

Thus, we have
|Ds(|p∗|2q∗)|Lr′

x
≲ |p∗|2

Ḣs,r
x

|q∗|Ḣs,r
x

≲ |p|2
Ḣs,r

x (R+)
|q|Ḣs,r

x (R+). (4.16)

Now applying Hölder’s inequality in time, using (4.16) and (4.13), we get

||p|2q|
Lλ′

t (0,T ;Ḣs,r′
x (R+))

≤ ||p∗|2q∗|
Lλ′

t (0,T ;Ḣs,r′
x )

≤
∣∣|p|2

Ḣs,r
x (R+)

∣∣
L

λ
2
t (0,T0)

∣∣|q|Ḣs,r
x (R+)

∣∣
Lµ

t (0,T0)

≤ T θ
0 |p|2Lλ

t (0,T0;Ḣ
s,r
x (R+)

|q|Lλ
t (0,T0;Ḣ

s,r
x (R+)) ≤ T θ

0R
3.

Using the same µ and ρ , applying Hölder inequality twice gives

||p|2q|Lλ′ (0,T ;Lr′ (R+)) ≤ T θ
0 |p|2Lλ(0,T0;Ḣs,r(R+))

|q|Lλ(0,T0;Lr(R+)) ≤ c2T
θ
0R

3.

Thus, we can choose T0 and R to enforce invariance of XT0
under Λ . Now observe that we have

|p1|2q1 − |p2|2q2 =
1

2
(q1 − q2)(|p1|2 + |p2|2)

+
1

2
(q1 + q2)

[
(p1 − p2)(p1 + p2) + (p1 + p2)(p1 − p2)

]
(4.17)
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from which we obtain

||p∗1|2q∗1 − |p∗2|2q∗2 |Lλ′
t (0,T0;Lr′

x ) ≲ |q1 − q2|Lµ
t (0,T0;Lr

x)
||p1|2 + |p2|2|

L
λ
2
t (0,T0;L

ρ
2
x )

+ |p1 − p2|Lµ
t (0,T0;Lr

x)
|(p1 + p2)(q1 + q2)|

L
λ
2
t (0,T0;L

ρ
2
x )

+ |p1 − p2|Lµ
t (0,T0;Lr

x)
|(p1 + p2)(q1 + q2)|

L
λ
2
t (0,T0;L

ρ
2
x )

≲ T θ
0R

2d((p1, q1), (p2, q2)).

Thus, we have proved (4.11) and (4.12). The uniqueness of the fixed point and the local Lipschitz continuity of
the data-to-solution map follows as in the proof of Theorem 4.1. 2

Now we will prove local well-posedness for high regularity solutions of (4.9). Throughout, we will assume the
necessary compatibility conditions between initial and boundary data.

Theorem 4.5 (High regularity solutions) Let s ∈ ( 12 ,
5
2 ) −

3
2 , p0, q0 ∈ Hs

x(R+) and for m,n ∈ {0, 1}

let g ∈ H
2s+1−2m

4
t (0, T ) and h ∈ H

2s+1−2n
4

t (0, T ) satisfying necessary compatibility conditions. Then there is
T0 ∈ (0, T ] such that the system (4.9) has a unique solution

(p, q) ∈ C([0, T0];H
s
x(R+))

2

and the data-to-solution map is locally Lipschitz continuous.

Proof We have to prove that the operator Λ in (4.10) is continuous from YT0 to itself for some T0, R > 0

where
YT0

:= {(p, q) ∈ C([0, T0];H
s(R+))

2 : |p|C([0,T0];Hs(R+)) + |q|C([0,T0];Hs(R+)) ≤ R}

equipped with the distance

d((p1, q1), (p2, q2)) = |p1 − p2|C([0,T0];Hs(R+)) + |q1 − q2|C([0,T0];Hs(R+))

From the proof of local well-posedness for the Neumann and Dirichlet problems for the NLS in the high regularity
case (see [11] for the Dirichlet problem), one can see that it will suffice to deal only with the nonlinear terms
a|q|2p and b|p|2q . This case will be much simpler than the low regularity case because we can make use of the
Banach algebra property. Firstly, we have the following proposition

Proposition 4.6 ([11]) Let f ∈ C([0, T ];Hs(R+)) , then

sup
t∈[0,T ]

|Ψ[0, 0, f ]|C([0,T ];Hs(R+)) ≲ T sup
t∈[0,T ]

|f |C([0,T ];Hs(R+)).

It follows from Proposition 4.6 and the submultiplicativity of the norm that

|Ψ[0, 0, a|p|2q]|YT0
≤ cT0(|p|2YT0

|q|YT0
+ |q|2YT0

|p|YT0
) ≤ cT0R

3,

where c does not depend on T0 or R . The same argument can be made for |Ψ[0, 0, b|q|2p]|YT0
. Thus, T0 and

R can be taken small enough to make YT0
invariant under Λ .
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It follows trivially from (4.17) and the algebra property that Λ can also be a contraction, exhibiting a
fixed point (p, q) ∈ YT0 . Uniqueness and continuous dependece of this local solution can be proven in the same
way as in the proof of Theorem 4.1. 2

Remark 4.7 The results in Theorems 4.4 and 4.5 can be extended to any positive integer power nonlinearity
by taking a|q|kp and b|p|kq where k ∈ N as the nonlinear term in 4.9a and 4.9d, respectively. In this case we
let λ and r be as in Theorem 4.1, and take µ and ρ such that 1

λ′ =
1
µ + k

λ ,
1
r′ =

k
ρ + 1

r . Then we can go over

the same arguments, iterating (4.15) k times to obtain the desired result.

Remark 4.8 (Global well-posedness with inhomogeneous boundary data) Global well-posedness for
the coupled system is a more difficult problem than it is for the single NLS due to the term a|q|2ppt that
arises upon multiplying equation (4.9a) by pt . It is not easy to control this term; however, it is possible to prove
global well-posedness for sufficiently small power indices. Consider, for example, the problem

ipt + pxx = a|q|αp (x, t) ∈ R+ × (0, T )

p(x, 0) = p0(x)

∂xp(0, t) = g(t)

iqt + qxx = b|p|αq (x, t) ∈ R+ × (0, T )

q(x, 0) = q0(x)

∂xq(0, t) = h(t)

(4.18a)
(4.18b)
(4.18c)
(4.18d)
(4.18e)
(4.18f)

with a, b ∈ R . Assuming a local solution (H1
x(R+) in space) exists, one can prove global well-posedness by

showing that H1 norm of the solution, that is |p(t)|H1
x(R+) + |q(t)|H1

x(R+) does not blow up in finite time. We
claim that it is controlled by the sum of H1 norms of initial and boundary inputs uniformly in t ∈ [0, T ] .

Upon multiplying (4.18a) with p , taking imaginary parts, integrating in space-time, using Sobolev trace
inequality and Cauchy-Schwarz inequality, one obtains:

|p(t)|2L2
x(R+) ≲ |p0|2L2

x(R+) + |g|L2
t (0,T )

(∫ t

0

|p(s)|2H1
x(R+)ds

)1/2

. (4.19)

Similar arguments applied to the second equation yield

|q(t)|2L2
x(R+) ≲ |q0|2L2

x(R+) + |h|L2
t (0,T )

(∫ t

0

|q(s)|2H1
x(R+)ds

)1/2

. (4.20)

Note that same multipliers also lead to the estimates∫ ∞

0

∂t|p(t)|2dx ≲ |g|H1
t (0,T )|p(t)|H1

x(R+)

and ∫ ∞

0

∂t|q(t)|2dx ≲ |h|H1
t (0,T )|q(t)|H1

x(R+).
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Multiplying (4.18a) by pt , taking real parts, integrating in space-time, using integration by parts, Sobolev
embedding H1

t (0, T ) ↪→ L∞
t (0, T ) , Sobolev trace theorem, and making use of the above inequalities, we get

|px(t)|2L2
x(R+) ≲|p′0|2L2

x(R+) + |g(0)| · |p0(0)|+ |g|H1
t (0,T )|p(t)|H1

x(R+)

+ |g|H1
t (0,T )

(∫ t

0

|p(s)|2H1
x(R+)ds

)1/2

+ |a| · |g|H1
t (0,T ) ·

∫ t

0

|q(s)|αH1
x(R+)|p(s)|H1

x(R+)ds. (4.21)

A similar estimate also holds for the second equation:

|qx(t)|2L2
x(R+) ≲|q′0|2L2

x(R+) + |h(0)| · |q0(0)|+ |h|H1
t (0,T )|q(t)|H1

x(R+)

+ |h|H1
t (0,T )

(∫ t

0

|q(s)|2H1
x(R+)ds

)1/2

+ |b| · |h|H1
t (0,T ) ·

∫ t

0

|p(s)|αH1
x(R+)|q(s)|H1

x(R+)ds. (4.22)

Set E(t) := |p(t)|2H1
x(R+) + |q(t)|2H1

x(R+) . Then, in view of above estimates, we get an inequality of the form

E(t) ≲ c1 + c2

∫ t

0

E(s)ds+ c3

∫ t

0

E
1+α
2 (s)ds,

with positive constants ci , i = 1, 2, 3, depending on fixed parameters such as a , b , T , |p0|H1
x(R+) , |q0|H1

x(R+) ,
|g|H1

t (0,T ) , and |h|H1
t (0,T ) . If α ≤ 1 , then this inequality reduces to

E(t) ≲ C1 + C2

∫ t

0

E(s)ds,

from which we obtain the desired uniform bound using Gronwall’s inequality. Hence, the global well-posedness
follows. Problem remains open for large α .
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