Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: 3069 - 3082
© TÜBİTAK
doi:10.55730/1300-0098.3320

Oscillation of third-order neutral differential equations with oscillatory operator

Miroslav BARTUŠEK (ㅁ
Department of Mathematics and Statistics, Faculty of Sciences, Masaryk University, Brno, Czech Republic

Received: 18.01.2022 • Accepted/Published Online: 11.05.2022 • Final Version: 09.11.2022

Abstract

A third-order damped neutral sublinear differential equation for which its differential operator is oscillatory is studied. Sufficient conditions are given under which every solution is either oscillatory or the derivative of its neutral term is oscillatory (or it tends to zero).

Key words: Third order, neutral, delay differential equation, oscillation

1. Introduction

Consider the third-order nonlinear differential equation

$$
\begin{equation*}
z^{\prime \prime \prime}+q(t) z^{\prime}+r(t) \mid x\left(\left.\sigma(t)\right|^{\lambda} \operatorname{sgn} x(\sigma(t))=0, \quad t \geq 0\right. \tag{1.1}
\end{equation*}
$$

with

$$
\begin{equation*}
z(t)=x(t)+a(t) x(\tau(t)) \tag{1.2}
\end{equation*}
$$

where $\lambda \in(0,1], q \in C\left(\mathbb{R}_{+}\right), r \in C\left(\mathbb{R}_{+}\right), a \in C\left(\mathbb{R}_{+}\right), \sigma \in C(\mathbb{R}), \tau \in C(\mathbb{R}), \mathbb{R}_{+}=[0, \infty), \mathbb{R}=(\infty, \infty)$, $q(t) \geq 0, r(t)>0, a(t) \geq 0$ for $t \in \mathbb{R}_{+}$and $\lim _{t \rightarrow \infty} \sigma(t)=\lim _{t \rightarrow \infty} \tau(t)=\infty$.

Throughout the paper the following hypotheses are assumed.
$\left(H_{1}\right) \quad \sigma \in C^{1}(\mathbb{R}), \tau \in C^{1}(\mathbb{R}), \sigma(t) \leq \tau(t) \leq t$ for $t \in \mathbb{R}$ and constants σ_{1} and τ_{0} exist such that $0<\sigma^{\prime}(t) \leq \sigma_{1}$ and $0<\tau_{0} \leq \tau^{\prime}(t)$ for $t \in \mathbb{R}$;
$\left(H_{2}\right)$ the associated linear equation $h^{\prime \prime}+q(t) h=0, t \geq 0$ is oscillatory.
Sometimes, the following hypothesis is assumed:
$\left(H_{3}\right)$ numbers a_{0} and a_{1} exist such that $0<a_{0} \leq a(t) \leq a_{1}$ holds for $t \in \mathbb{R}_{+}$.

Definition 1.1 Let $T \in \mathbb{R}_{+}$and $T_{0}=\sigma(T)$. Then a function x is said to be a solution of (1.1) on $[T, \infty)$ if x is defined and continuous on $\left[T_{0}, \infty\right), z \in C^{3}[T, \infty)$ and (1.1) is satisfied on $[T, \infty)$, where z is given by (1.2). A solution x is said to be nonoscillatory if $x(t) \neq 0$ for large t; otherwise it is said to be oscillatory.

[^0]A continuous function $v \in C[T, \infty)$ is said to be oscillatory if there exists an increasing sequence of its zeros tending to the infinity.

We need to define some types of (1.1) which are studied below.

Definition 1.2 Equation (1.1) is said to have Property A if every solution is either oscillatory or $z(t) z^{\prime}(t)<0$ for large t and $\lim _{t \rightarrow \infty} z(t)=0$. It is said to have Property A^{0} if every solution x is either oscillatory or $\lim _{t \rightarrow \infty} z(t)=0$ or z^{\prime} oscillates. It is said to have Property A^{*} if every solution x is either oscillatory or z^{\prime} oscillates.

In all the paper, if we study a solution x of (1.1), z is given by (1.2) without mentioned it.
The oscillation and the asymptotic behavior of solutions of third order differential equations are still of an intensive investigation. Some equations have applications in the mathematical modelling in biology and physics, see e.g., [6], the study of entry-flow phenomenon [10], the regulation of a stream turbine [16], the propagation of electrical pulses in the nerve of a squid [14] and the feedback nuclear reactor problem [18].

Most of oscillation results, connected with (1.1) and its special cases, are written on the equations taken the form either

$$
\begin{equation*}
x^{\prime \prime \prime}(t)+q(t) x^{\prime}(t)+r(t)|x(\sigma(t))|^{\lambda} \operatorname{sgn} x(\sigma(t))=0 \tag{1.3}
\end{equation*}
$$

or, more generally,

$$
\begin{equation*}
\left(r_{2}(t)\left(r_{1}(t) x^{\prime}(t)\right)^{\prime}\right)^{\prime}+Q(t) x^{\prime}(t)+R(t)|x(\sigma(t))|^{\lambda} x(\sigma(t))=0 \tag{1.4}
\end{equation*}
$$

with $r_{i} \in C\left(\mathbb{R}_{+}\right), Q \in C\left(\mathbb{R}_{+}\right), R \in C\left(\mathbb{R}_{+}\right), r_{i}(t)>0, Q(t) \geq 0, R(t)>0$ for $t \in \mathbb{R}_{+}$and $i=1,2$. The most results are devoted to equations for which

$$
\begin{equation*}
h^{\prime \prime}+q(t) h=0 \quad\left(\left(r_{2}(t)\left(r_{1}(t) h\right)^{\prime}\right)^{\prime}+Q(t) h=0\right) \tag{1.5}
\end{equation*}
$$

is nonoscillatory in case of (1.3) (of (1.4)). Mainly, sufficient conditions have been studied under which equation (1.3) ((1.4)) has Property A, see e.g., [1], [2], [5], [6] and the references therein.

In the recent years, the above given results are generalized for the neutral equation of the form either (1.1) (see e.g., [3]) or

$$
\begin{equation*}
\left(r_{2}(t)\left(r_{1}(t) z^{\prime}\right)^{\prime}\right)^{\prime}+R(t)|x(\sigma(t))|^{\lambda} \operatorname{sgn} x(\sigma(t))=0 \tag{1.6}
\end{equation*}
$$

see e.g., [7], [8], [13], [15], [17] and the references therein.
Notice that the investigation of (1.1) or (1.3) or (1.4) (if (1.5) holds) consists in the very known equivalent transformation into the two-term equation with quasiderivatives (1.6) or (1.4) (with $Q \equiv 0$) or (1.4) (with $Q \equiv 0)$, respectively. Moreover, any nonoscillatory solution x of (1.6) satisfies

$$
\begin{equation*}
z(t) z^{\prime}(t) \neq 0 \quad \text { for large } t \tag{1.7}
\end{equation*}
$$

If equation $h^{\prime \prime}+q(t) h=0$ is oscillatory, a transformation of (1.1) into (1.6) does not exist in a neighborhood of ∞ and (1.7) does not hold for (1.1) as a nonoscillatory solution x, satisfying $z(t) \neq 0$ for large t and z^{\prime} oscillates, may exist, see e.g., [11] for equation (1.3). This is the reason why Property A^{0} is studied instead of Property A, see e.g., [1] for equation (1.3) or [2] for (1.4).

BARTUŠEK/Turk J Math

If r is large with respect to q, then, under some hypotheses on λ, σ and τ, solutions satisfying (1.7) of the equation

$$
\begin{equation*}
z^{(4)}+q(t) z^{\prime \prime}+r(t)|x(\sigma(t))|^{\lambda} x(\sigma(t))=0 \tag{1.8}
\end{equation*}
$$

do not exist (z is given by (1.2)), see also [4]. Moreover, in [9] sufficient conditions are given for every nontrivial solution x of (1.8) to have $z^{\prime \prime}$ oscillating.

To the best of our knowledge, nothing is known regarding Property A* for (1.1). Hence, our goal is to study either Property A^{0} or Property A^{*} for (1.1) if $\left(H_{2}\right)$ holds.

In all the paper, $\sigma^{-1}\left(\tau^{-1}\right)$ denotes the inverse function to $\sigma(\tau)$. For a sake of brevity, we define

$$
\begin{aligned}
h(t) & =\sigma^{-1}(\tau(t)), \quad h_{1}(t)=\tau^{-1}(\sigma(t)) \\
J(t) & =\left[h_{1}(t), \sigma^{-1}(t)\right], r^{*}(t)=\min \left(r\left(\sigma^{-1}(t)\right), r(h(t))\right) \\
\bar{r}(t) & =\max _{s \in J(t)} r(s), \bar{q}(t)=\max _{s \in J(t)} q(s) \\
\Delta(t) & =\sigma^{-1}(t)-h_{1}(\tau(t)), t \in \mathbb{R}_{+}
\end{aligned}
$$

Notice, that according to $\left(H_{1}\right), h$ and h_{1} are increasing.

2. Preliminaries

To prove our main results, we first present some lemmas to be used in the process.

Lemma 2.1 ([12] Lemma 5.2) Let $[a, b] \subset \mathbb{R}, m \geq 2$ be integer, $u \in C^{m}[a, b]$ and $\varrho_{i}=\max _{a \leq t \leq b}\left|u^{(i)}(t)\right|$, $i=0,1, \ldots, m$. Then

$$
\begin{aligned}
\varrho_{i} \leq & 2^{-1} m!m^{m}(b-a)^{-i} \varrho_{0}+2^{(i-1 / m)(m-i)}(m!)^{(m-i) / m} m^{m-i} \\
& \times \varrho_{0}^{(m-i) / m} \varrho_{m}^{i / m}, \quad i=0,1, \ldots, m
\end{aligned}
$$

Lemma 2.2 Let $[a, b] \subset \mathbb{R}, u \in C[a, b],(-1)^{i} u^{(i)}(t) \geq 0$ for $t \in[a, b], i=0,1,2$ and let $u^{\prime \prime}(b)=\min _{a \leq s \leq b} u^{\prime \prime}(s)$. Then $u(a) \geq \frac{1}{2}(b-a)^{2} u^{\prime \prime}(b)$.

Proof As

$$
-u^{\prime}(s) \geq-u^{\prime}(s)+u^{\prime}(b)=\int_{s}^{b} u^{\prime \prime}(t) d t \geq u^{\prime \prime}(b)(b-s)
$$

for $a \leq s \leq b$, the integration implies

$$
u(a) \geq u(a)-u(b)=-\int_{a}^{b} u^{\prime}(s) d s \geq \int_{a}^{b} u^{\prime \prime}(b)(b-a) d s=\frac{1}{2}(b-a)^{2} u^{\prime \prime}(b)
$$

Lemma 2.3 Let $\lambda=1,0 \leq a<b<\infty$, there exist a_{0} such that $0<a_{0} \leq a(t)$ for $t \in\left[h_{1}(a), h_{1}(b)\right]$ and let x be a solution of (1.1), defined on $\left[h_{1}(a), \infty\right)$, satisfying

$$
\begin{equation*}
x(\sigma(t))>0 \text { for } t \in[a, b], z^{\prime}(t)<0 \quad \text { for } t \in\left[h_{1}(a), b\right] . \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|z^{\prime \prime}(t)\right| \leq K z\left(h_{1}(a)\right) \quad \text { for } \quad t \in[a, b] \tag{2.2}
\end{equation*}
$$

where $q_{0}=\max _{a \leq t \leq b} q(t), r_{0}=\max _{a \leq t \leq b} r(t)$ and

$$
\begin{equation*}
K=\max \left\{\frac{162}{(b-a)^{2}}+72\left[\left(\frac{4 q_{0}}{b-a}\right)^{2 / 3}+\left(\frac{r_{0}}{a_{0}}\right)^{2 / 3}\right], 3456 \sqrt{2} q_{0}\right\} \tag{2.3}
\end{equation*}
$$

Proof Let x be a solution of (1.1) (with $\lambda=1$) satisfying (2.1). Put $c_{0}=\frac{4}{b-a}, c_{1}=4, c_{2}=\frac{81}{(b-a)^{2}}$, $c_{3}=4 \cdot 3^{4 / 3}, \varrho_{i}=\max _{a \leq t \leq b}\left|z^{(i)}(t)\right|, i=0,1,2,3$ and $\varrho_{*}=z\left(h_{1}(a)\right)$. Hence, using (2.1), $\varrho_{0} \leq \varrho_{*}$. Applying Lemma 2.1 with $u=z, m=2$, we get

$$
\begin{equation*}
\varrho_{1} \leq c_{0} \varrho_{0}+c_{1}\left(\varrho_{0} \varrho_{2}\right)^{1 / 2} \tag{2.4}
\end{equation*}
$$

Similarly, Lemma 2.1 with $u=z, m=3$ implies

$$
\begin{equation*}
\varrho_{2} \leq c_{2} \varrho_{0}+c_{3} \varrho_{0}^{1 / 3} \varrho_{3}^{2 / 3} \tag{2.5}
\end{equation*}
$$

Now we estimate ϱ_{3} using (1.2) and (2.1):

$$
x(\sigma(t)) \leq\left(a\left(h_{1}(t)\right)\right)^{-1} z\left(h_{1}(t)\right) \leq \frac{1}{a_{0}} z\left(h_{1}(a)\right)=\frac{\varrho_{*}}{a_{0}}
$$

for $t \in[a, b]$. From this and from (1.1)

$$
\begin{equation*}
\varrho_{3} \leq q_{0} \varrho_{1}+r_{0} \max _{a \leq t \leq b} x(\sigma(t)) \leq q_{0} \varrho_{1}+\frac{r_{0}}{a_{0}} \varrho_{*} \tag{2.6}
\end{equation*}
$$

Furthermore, (2.4), (2.5) and (2.6) imply

$$
\begin{align*}
\varrho_{2} & \leq c_{2} \varrho_{0}+c_{3} \varrho_{0}^{1 / 3}\left[c_{0} q_{0} \varrho_{0}+c_{1} q_{0} \varrho_{0}^{1 / 2} \varrho_{2}^{1 / 2}+\frac{r_{0}}{a_{0}} \varrho_{*}\right]^{2 / 3} \\
& \leq c_{2} \varrho_{*}+3^{2 / 3} c_{3} \varrho_{*}^{1 / 3}\left[\left(c_{0} q_{0} \varrho_{0}\right)^{2 / 3}+\left(c_{1} q_{0}^{2 / 3}\right) \varrho_{*}^{1 / 3} \varrho_{2}^{1 / 3}+\left(\frac{r_{0}}{a_{0}}\right)^{2 / 3} \varrho_{*}^{2 / 3}\right] \\
& \leq \varrho_{*}^{2 / 3}\left[c_{4} \varrho_{1}^{1 / 3}+c_{5} \varrho_{2}^{1 / 3}\right] \tag{2.7}
\end{align*}
$$

with $c_{4}=c_{2}+3^{2 / 3} c_{3}\left[\left(c_{0} q_{0}\right)^{2 / 3}+\left(\frac{r_{0}}{a_{0}}\right)^{2 / 3}\right], c_{5}=3^{2 / 3} c_{3}\left(c_{1} q_{0}\right)^{2 / 3}$. If $c_{4} \varrho_{*}^{1 / 3} \geq c_{5} \varrho_{2}^{1 / 3}$, then (2.7) implies $\varrho_{2} \leq 2 c_{4} \varrho_{*}$. If $c_{4} \varrho_{*}^{1 / 3}<c_{5} \varrho_{2}^{1 / 3}$, then (2.7) implies $\varrho_{2} \leq 2 c_{5} \varrho_{*}^{2 / 3} \varrho_{2}^{1 / 3}$; hence $\varrho_{2} \leq\left(2 c_{5}\right)^{3 / 2} \varrho_{*}$. Thus, in both cases

$$
\varrho_{2} \leq \max \left(2 c_{4},\left(2 c_{5}\right)^{3 / 2}\right) \varrho_{*}=K z\left(h_{1}(a)\right)
$$

and (2.2) holds.

BARTUŠEK/Turk J Math

Lemma 2.4 Suppose $\left(H_{3}\right)$ with $a_{0}>1$ and x is a solution of (1.1) such that

$$
\begin{equation*}
x(\sigma(t))>0, z^{\prime}(t)<0 \quad \text { on } \quad[T, \infty) \subset \mathbb{R}_{+} \tag{2.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
x(\sigma(t)) \geq \frac{a_{0}-1}{a_{0} a_{1}} z\left(h_{1}(t)\right) \quad \text { for } \quad t \geq h(T) \tag{2.9}
\end{equation*}
$$

Proof It follows from [5, Lemma 1] and $a(t) \leq a_{1}$.

Lemma 2.5 Suppose $\lambda=1, q \in C^{1}\left(\mathbb{R}_{+}\right)$, (H_{3}) with $a_{0}>1, x$ is a solution of (1.1) satisfying (2.8) and

$$
\begin{equation*}
\frac{a_{0} a_{1}}{2\left(a_{0}-1\right)} q^{\prime}(t) \leq r(t) \tag{2.10}
\end{equation*}
$$

for $t \geq T$. Then

$$
\begin{equation*}
F(t):=-2 z^{\prime \prime}(t) z(t)-q(t) z^{2}(t)+\left(z^{\prime}(t)\right)^{2} \leq 0 \tag{2.11}
\end{equation*}
$$

for $t \geq T$ and

$$
\begin{equation*}
\int_{T}^{\infty}\left[2 \frac{a_{0}-1}{a_{0} a_{1}} r(t)-q^{\prime}(t)\right] z^{2}\left(h_{1}(t)\right) d t<\infty . \tag{2.12}
\end{equation*}
$$

Proof Let x be a solution of (1.1) with (2.8). Then

$$
\begin{equation*}
F^{\prime}(t)=2 r(t) z(t) x(\sigma(t))-q^{\prime}(t) z^{2}(t), \quad t \geq T \tag{2.13}
\end{equation*}
$$

According to (2.10), (2.13) and Lemma 2.4

$$
\begin{align*}
F^{\prime}(t) & \geq 2 \frac{a_{0}-1}{a_{0} a_{1}} r(t) z(t) z\left(h_{1}(t)\right)-q^{\prime}(t) z^{2}(t) \\
& \geq\left[2 \frac{a_{0}-1}{a_{0} a_{1}} r(t)-q(t)\right] z^{2}\left(h_{1}(t)\right) \geq 0 \tag{2.14}
\end{align*}
$$

for $t \geq h(T)$. Case $z^{\prime \prime}(t) \leq 0$ for large t is impossible as, otherwise, z becomes negative due to (2.8). Hence, either
$1^{\circ} \quad z^{\prime \prime}(t) \geq 0$ for large t, or
$2^{\circ} \quad z^{\prime \prime}$ changes its sign infinitely many times.
Let us choose an increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $t_{1} \geq h(T), \lim _{k \rightarrow \infty} t_{k}=\infty$ and t_{k} is arbitrary in case $1^{\circ}\left(z^{\prime \prime}\left(t_{k}\right)=0\right.$ and z^{\prime} has local maxima at $t_{k}, k=1,2, \ldots$ in case $\left.2^{\circ}\right)$. It is easy to see that $\lim _{k \rightarrow \infty} z^{\prime}\left(t_{k}\right)=0$ as, otherwise, z becomes negative for large t and that contradicts (2.8). Hence, $\lim _{k \rightarrow \infty} F\left(t_{k}\right) \leq 0$ and (2.11) follows from this and from (2.14). Finally, (2.11) and (2.14) yield (2.12).

3. Property A^{0}

The following theorems show the possible types of nonoscillatory solutions of (1.1).

Theorem 3.1 Any nonoscillatory solution x of (1.1) either satisfies

$$
\begin{equation*}
z(t) z^{\prime}(t)<0 \quad \text { for large } t \tag{3.1}
\end{equation*}
$$

or z^{\prime} oscillates.
Proof It is similar as the one of Theorem 2.1 in [1] given for (1.3).

Remark 3.2 Notice that Theorem 3.1 is valid without hypotheses $\left(H_{1}\right)$ and $q \geq 0$.
Theorem 3.3 Suppose $q \in C^{1}\left(\mathbb{R}_{+}\right)$, $\left(H_{3}\right)$ holds with $a_{0}>1$ and

$$
\begin{equation*}
\int_{0}^{\infty}\left[2 \frac{a_{0}-1}{a_{0} a_{1}} r(t)-q^{\prime}(t)\right] d t=\infty \quad \text { in case } \lambda=1 \tag{3.2}
\end{equation*}
$$

and for any $K>0$

$$
\begin{equation*}
\int_{0}^{\infty}\left[K r(t)-q^{\prime}(t)\right] d t=\infty \quad \text { in case } \lambda<1 \tag{3.3}
\end{equation*}
$$

Equation (1.1) has Property A^{0}.
Proof Let x be a nonoscillatory solution of (1.1) which is positive for large t (case $x<0$ can be studied similarly). Suppose that (1.1) has not Property A^{0}. Then Theorem 3.1 implies the existence of $T_{0} \geq 0$ and $c>0$ such that $x(\sigma(t))>0, z(t)>0, z^{\prime}(t)<0$ for $t \geq T_{0}$ and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z(t)=c \tag{3.4}
\end{equation*}
$$

At first, suppose $\lambda=1$. There exists $T \geq T_{0}$ such that (3.2) and $z(t) \leq 2 c$ hold for $t \geq T$. From this, (2.10) is valid, and Lemma 2.5, (2.12) and (3.4) imply

$$
\int_{T}^{\infty}\left[2 \frac{a_{0}-1}{a_{0} a_{1}} r(t)-q^{\prime}(t)\right] d t<\infty
$$

This contradicts (3.2).
Now, let $0<\lambda<1$. Then x is the solution of the equation

$$
\begin{equation*}
z^{\prime \prime \prime}+q(t) z^{\prime}+R(t) x(\sigma(t))=0 \tag{3.5}
\end{equation*}
$$

on $\left[T_{0}, \infty\right)$ with $R(t)=x^{\lambda-1}(\sigma(t)) r(t)$. According to (3.4), $T \geq T_{0}$ exists such that $z(t) \leq 2 c$ for $t \geq T$. From Lemma 2.4 and (2.9)

$$
R(t) \geq\left(\frac{a_{0}-1}{a_{0} a_{1}}\right)^{\lambda-1} z^{\lambda-1}\left(h_{1}(t)\right) r(t) \geq\left(2 c \frac{a_{0}-1}{a_{0} a_{1}}\right)^{\lambda-1} r(t)
$$

for $t \geq T_{1}=h(t) \geq T$. Hence, using (3.3),

$$
\int_{T}^{\infty}\left[2 \frac{a_{0}-1}{a_{0} a_{1}} R(t)-q^{\prime}(t)\right] d t \geq \int_{T}^{\infty}\left[2^{\lambda}\left(\frac{a_{0}-1}{a_{0} a_{1}}\right)^{\lambda} c^{\lambda} r(t)-q^{\prime}(t)\right] d t=\infty
$$

Thus, (3.2) is valid for (3.5) and according to proved part of the theorem for $\lambda=1, \lim _{t \rightarrow \infty} z(t)=0$. This contradicts (3.4).

Theorem 3.4 Suppose $q \in C^{1}\left(\mathbb{R}_{+}\right), q^{\prime}(t) \leq 0$ for large t and $\int_{0}^{\infty} r(t) d t=\infty$. Then (1.1) has Property A^{0} and for any nonoscillatory solution x of (1.1)

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} x(t)=0 \tag{3.6}
\end{equation*}
$$

Proof Let x be a nonoscillatory solution of (1.1) such that $x(\sigma(t))>0$ and $q^{\prime}(t) \leq 0$ for $t \geq T \geq 0$ (case $x(\sigma(t))<0$ can be studied similarly). With respect to Theorem 3.1 it is necessary to prove (3.6). Suppose, contrarily, that $c>0$ exists such that $x(\sigma(t)) \geq c$ for $t \geq T$. If F is given by (2.11), then

$$
F^{\prime}(t)=2 r(t) z(t) x^{\lambda}(\sigma(t))-q^{\prime}(t) z^{2}(t) \geq 2 c^{\lambda+1} r(t)>0
$$

for $t \geq T$; hence,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} F(t)=F(t)+2 c^{\lambda+1} \int_{T}^{\infty} r(t) d t=\infty \tag{3.7}
\end{equation*}
$$

Suppose (3.1) is valid. Then z is bounded and $\limsup _{t \rightarrow \infty} z^{\prime}(t)=0$ (otherwise z becomes negative). Case $z^{\prime \prime}<0$ for large t is impossible as, otherwise, z becomes negative. Let $\left\{t_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence such that $t_{1} \geq T, \lim _{k \rightarrow \infty} t_{k}=\infty$ and $z^{\prime \prime}\left(t_{k}\right)=0$ in case $z^{\prime \prime}$ oscillates (t_{k} is arbitrary if $z^{\prime \prime}>0$ for large t). From this, $\left\{F\left(t_{k}\right)\right\}_{k=1}^{\infty}$ is bounded which contradicts (3.7).

Suppose z^{\prime} oscillates. Then an increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ exists such that $t_{1} \geq T, \lim _{k \rightarrow \infty} t_{k}=\infty$ and $z^{\prime \prime}\left(t_{k}\right) \geq 0, k=1,2, \ldots$ Then (2.11) implies $\left\{F\left(t_{k}\right)\right\}_{k=1}^{\infty}$ is bounded which contradicts (3.7).

Remark 3.5 (i) Notice that Theorem 3.4 is valid without the hypothesis $\left(H_{1}\right)$.
(ii) In [1, Theorem 4.1 and Corollary 4.3] equation (1.3) is investigated under the hypotheses $q \in C^{1}\left(\mathbb{R}_{+}\right)$, $q(t) \geq q_{0}>0, q^{\prime}(t) \leq 0$ for large t. It is proved that $\int_{0}^{\infty} r(t) d t=\infty$ is necessary and sufficient condition for (3.6). Hence, Theorem 3.4 generalizes this result even for (1.3) and hypothesis $\int_{0}^{\infty} r(t) d t=\infty$ cannot be weaken.

4. Property A*

In this paragraph, Property A* is studied for (1.1). Notice that nothing is known even for its special case (1.3). At first, two results are formulated for the linear equation.

Theorem 4.1 Suppose $\lambda=1,\left(H_{3}\right), \tau^{-1}(\sigma(t))<\tau(t)<t$,

$$
\begin{equation*}
\left(M \int_{\tau(t)}^{t} r^{*}(s) d s-\bar{q}(t)\right)(h(\tau(t))-t)^{2}>1 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M \int_{\tau(t)}^{t} r^{*}(s) d s-72\left(\frac{\bar{r}(t)}{a_{0}}\right)^{2 / 3}>H(t)+\bar{q}(t) \tag{4.2}
\end{equation*}
$$

for large t, where $M=\min \left(\frac{1}{\sigma_{1}}, \frac{\tau_{0}}{a_{1} \sigma_{1}}\right)$ and

$$
\begin{equation*}
H(t)=\max \left\{\frac{162}{\Delta^{2}(t)}+72\left(\frac{4}{\Delta(t)} \bar{q}(t)\right)^{2 / 3}, 3456 \sqrt{2} \bar{q}(t)\right\} \tag{4.3}
\end{equation*}
$$

Then (1.1) has Property A^{*}.
Proof According to Theorem 3.1, it is sufficient to prove that a solution x of (1.1), satisfying (3.1), does not exist. Hence, suppose, contrarily, that there is a solution x of (1.1) such that the hypothesies of Theorem 4.1 hold for $t \geq T$ and

$$
\begin{equation*}
x(\sigma(t))>0, z(t)>0, z^{\prime}(t)<0 \quad \text { for } t \geq T \geq 0 \tag{4.4}
\end{equation*}
$$

(case $x(\sigma(t))<0$ can be studied similarly). Put $v(t)=z^{\prime \prime}(t)$ and notice that ${ }^{\prime}=\frac{d}{d t}$. Then (1.1) implies

$$
\begin{align*}
(v(h(t)))^{\prime} & +q(h(t))(z(h(t)))^{\prime}+\frac{\tau_{0}}{\sigma_{1} a_{1}} r(h(t)) a(t) x(\tau(t)) \\
\leq & h^{\prime}(t)\left[\frac{(v(h(t)))^{\prime}}{h^{\prime}(t)}+q(h(t)) \frac{(z(h(u t)))^{\prime}}{h^{\prime}(t)}\right. \tag{4.5}\\
& +r(h(t)) x(\tau(t))]=0
\end{align*}
$$

for $t \geq T$. Similarly,

$$
\begin{equation*}
\left(v\left(\sigma^{-1}(t)\right)\right)^{\prime}+q\left(\sigma^{-1}(t)\right)\left(z\left(\sigma^{-1}(t)\right)^{\prime}+\frac{1}{\sigma_{1}} r\left(\sigma^{-1}(t)\right) x(t) \leq 0\right. \tag{4.6}
\end{equation*}
$$

for $t \geq T$. Now, (4.5) and (4.6) imply

$$
\begin{align*}
& -\left(v\left(\sigma^{-1}(t)+v(h(t))\right)^{\prime} \geq q\left(\sigma^{-1}(t)\right)\left(z\left(\sigma^{-1}(t)\right)\right)\right. \tag{4.7}\\
& +q(h(t))(z(h(t)))^{\prime}+M r^{*}(t) z(t)
\end{align*}
$$

for $t \geq T$. Notice that $\left(H_{1}\right)$ yields

$$
\begin{equation*}
t<h(\sigma(t))<h(t)<\sigma^{-1}(t), \quad t \geq T \tag{4.8}
\end{equation*}
$$

The integration of (4.7) from $\tau(t)$ to t, (4.4) and (4.8) imply

$$
\begin{align*}
-\left(v \left(\sigma^{-1}(t)\right.\right. & +v(h(\tau(t))) \geq \bar{q}(t)\left(z\left(\sigma^{-1}(t)\right)-z(h(t))\right)^{\prime} \\
& +\bar{q}(t)(z(h(t))-z(h(\tau(t))))+M \int_{\tau(t)}^{t} r^{*}(s) z(s) d s \tag{4.9}\\
\geq & z(t)\left[M \int_{\tau(t)}^{t} r^{*}(s) d s-\bar{q}(t)\right]
\end{align*}
$$

for $t \geq T$. To estimate $v\left(\sigma^{-1}(t)\right)$, we apply Lemma 2.3 with $a=h(t)$ and $b=\sigma^{-1}(t)$. From this, (2.3) and from (4.3)

$$
\begin{equation*}
\left|v\left(\sigma^{-1}(t)\right)\right| \leq H_{1}(t) z(t) \tag{4.10}
\end{equation*}
$$

BARTUŠEK/Turk J Math
for $t \geq T$, where $H_{1}(t)=H(t)+72\left(\frac{\bar{r}(t)}{a_{0}}\right)^{2 / 3}$. To estimate $v(h(\tau(t)))$, two possibilities are considered:
1° There exists an increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $T \leq t_{1}, \lim _{k \rightarrow \infty} t_{k}=\infty$ and

$$
\begin{equation*}
v\left(h\left(\tau\left(t_{k}\right)\right)\right) \leq 0 \quad k=1,2, \ldots \tag{4.11}
\end{equation*}
$$

2°

$$
v(t)>0 \quad \text { for } \quad t \geq T^{*} \geq T
$$

Case 1°. Due to (4.9), (4.10) and (4.11)

$$
H_{1}\left(t_{k}\right) z\left(t_{k}\right) \geq\left[M \int_{\tau\left(t_{k}\right)}^{t_{k}} r^{*}(s) d s-\bar{q}\left(t_{k}\right)\right] z\left(t_{k}\right)
$$

$k=1,2, \ldots$ that contradicts (4.2) for $k \rightarrow \infty$.
Case 2°. We have $\liminf _{t \rightarrow \infty} v(t)=0$ as, otherwise, z^{\prime} becomes positive; it contradicts (4.4). Hence, an increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ exists such that $t_{1} \geq T^{*}, \lim _{k \rightarrow \infty} t_{k}=\infty$ and

$$
v\left(h\left(\tau\left(t_{k}\right)\right)\right)=\min _{t_{k} \leq s \leq h\left(\tau\left(t_{k}\right)\right)} v(s), \quad k=1,2, \ldots
$$

Hence, Lemma 2.2 (with $\left.a=t_{k}, b=h\left(\tau\left(t_{k}\right)\right), u=z\right)$ implies

$$
z\left(t_{k}\right) \geq \frac{1}{2}\left(h\left(\tau\left(t_{k}\right)\right)-t_{k}\right)^{2} v\left(h\left(\tau\left(t_{k}\right)\right)\right)
$$

From this and from (4.9)

$$
2\left(h\left(\tau\left(t_{k}\right)\right)-t_{k}\right)^{-2} z\left(t_{k}\right) \geq z\left(t_{k}\right)\left[M \int_{\tau\left(t_{k}\right)}^{t_{k}} r^{*}(s) d s-\bar{q}\left(t_{k}\right)\right]
$$

that contradicts (4.2) for large k.

Theorem 4.2 Suppose $\lambda=1, q \in C^{1}\left(\mathbb{R}_{+}\right)$, ($\left.H_{3}\right)$ with $a_{0}>1, \eta \in C\left(\mathbb{R}_{+}\right)$exists such that

$$
\begin{gather*}
h_{1}(t)<\eta(t)<t \tag{4.12}\\
\left(\frac{a_{0}-1}{a_{0} a_{1}} \int_{\eta(t)}^{t} r(s) d s-q^{*}(t)\right)\left(\eta(t)-h_{1}(t)\right)^{2}>2 \tag{4.13}
\end{gather*}
$$

and

$$
\begin{equation*}
r(t) \geq \frac{a_{0} a_{1}}{a_{0}-1} \max \left(q^{3 / 2}(t), \frac{q^{\prime}(t)}{2}\right) \tag{4.14}
\end{equation*}
$$

for large t, where $q^{*}(t)=\max _{\eta(t) \leq s \leq t} q(s)$. Then (1.1) has Property A^{*}.

Proof Due to Theorem 3.1, it is sufficient to prove the nonexistence of a solution x of (1.1) satisfying (3.1). Hence, let, contrarily, there exist $T \geq 0$ and a solution x of (1.1) such that (4.12), (4.13), (4.14) and

$$
\begin{equation*}
x(\sigma(t))>0, z(t)>0, z^{\prime}(t)<0 \tag{4.15}
\end{equation*}
$$

hold for $t \geq T$. Put $c=\frac{a_{0}-1}{a_{0} a_{1}}>0$. There are three possibilities:
(i) $z^{\prime \prime} \leq 0$ for large t;
(ii) $\quad z^{\prime \prime} \geq 0$ for large t;
(iii) $z^{\prime \prime}$ changes its sign infinitely many times.

Case (i). It is impossible as, otherwise, z becomes negative for large t, see (4.15).
Case (ii). Equation (1.1), (4.15) and Lemma 2.4 imply

$$
\begin{aligned}
& z^{\prime \prime \prime}+q(t) z^{\prime}(t)+\operatorname{cr}(t) z\left(h_{1}(t)\right) \leq z^{\prime \prime \prime}+q(t) z^{\prime}(t) \\
& \quad+r(t) x(\sigma(t))=0
\end{aligned}
$$

for $t \geq T_{2}=h\left(T_{1}\right)$. From this, from (4.15) and by the integration from $\eta(t)$ to $t, t \geq T_{2}$

$$
\begin{aligned}
& -z^{\prime \prime}(\eta(t))+q^{*}(t)(z(t)-z(\eta(t)))+c z\left(h_{1}(t)\right) \int_{\eta(t)}^{t} r(s) d s \\
& \leq z^{\prime \prime}(t)-z^{\prime \prime}(\eta(t))+\int_{\eta(t)}^{t} q(s) z^{\prime}(s) d s+c \int_{\eta(t)}^{t} r(s) z\left(h_{1}(s)\right) d s \leq 0
\end{aligned}
$$

hence,

$$
\begin{align*}
z^{\prime \prime}(\eta(t)) & \geq-q^{*}(t) z(\eta(t))+c z\left(h_{1}(t)\right) \int_{\eta(t)}^{t} r(s) d s \\
& \geq\left[c \int_{\eta(t)}^{t} r(s) d s-q^{*}(t)\right] z\left(h_{1}(t)\right) \tag{4.16}
\end{align*}
$$

As $\liminf _{t \rightarrow \infty} z^{\prime \prime}(t)=0$ (otherwise z^{\prime} becomes positive for large t, see (4.15)), an increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ exists such that $t_{1} \geq T_{2}, \lim _{k \rightarrow \infty} t_{k}=\infty$ and $z^{\prime \prime}\left(t_{k}\right)=\min _{h_{1}\left(t_{k}\right) \leq s \leq t_{k}} z^{\prime \prime}(s), k=1,2, \ldots$. From this and from Lemma 2.2 (with $\left.a=h_{1}\left(t_{k}\right), b=\eta\left(t_{k}\right)\right)$ we get

$$
z\left(h\left(t_{k}\right)\right) \geq \frac{1}{2}\left(\eta\left(t_{k}\right)-h_{1}\left(t_{k}\right)\right)^{2} z^{\prime \prime}\left(\eta\left(t_{k}\right)\right), \quad k=1,2, \ldots
$$

The application to (4.16) for $t=t_{k}$ implies

$$
2 \geq\left[c \int_{\eta\left(t_{k}\right)}^{t} r(s) d s-q^{*}\left(t_{k}\right)\right]\left(\eta\left(t_{k}\right)-h_{1}\left(t_{k}\right)\right)^{2}, \quad k=1,2, \ldots
$$

which contradicts (4.13) for large k.

Case (iii). If $F_{1}(t)=-z^{\prime \prime}(t) z^{\prime}(t)$, then

$$
F_{1}^{\prime}(t)=q(t)\left(z^{\prime}(t)\right)^{2}+r(t) z^{\prime}(t) x(\sigma(t))-\left(z^{\prime \prime}(t)\right)^{2}, \quad t \geq T
$$

As $z^{\prime}(t)<0, F_{1}$ changes its sign infinitely many times and an increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ exists such that $t_{1} \geq T, \lim _{k \rightarrow \infty} t_{k}=\infty, z^{\prime \prime}\left(t_{k}\right)=0$ and $F_{1}(t)<0$ in a left neighborhood of $t_{k}, k=1,2, \ldots$ From this and from $F_{1}\left(t_{k}\right)=0$

$$
\begin{equation*}
0 \leq F_{1}^{\prime}\left(t_{k}\right)=q\left(t_{k}\right)\left(z^{\prime}\left(t_{k}\right)\right)^{2}+r\left(t_{k}\right) z^{\prime}\left(t_{k}\right) x\left(\sigma\left(t_{k}\right)\right) \tag{4.17}
\end{equation*}
$$

$k=1,2, \ldots$ Furthermore, (4.17) and Lemma 2.4 yield

$$
\begin{equation*}
\left|z^{\prime}\left(t_{k}\right)\right| \geq \frac{r\left(t_{k}\right)}{q\left(t_{k}\right)} x\left(\sigma\left(t_{k}\right)\right) \geq c \frac{r\left(t_{k}\right)}{q\left(t_{k}\right)} z\left(h_{1}\left(t_{k}\right)\right)>c \frac{r\left(t_{k}\right)}{q\left(t_{k}\right)} z\left(t_{k}\right) \tag{4.18}
\end{equation*}
$$

$t_{k} \geq h(T)$. On the other side, Lemma 2.5 implies

$$
q\left(t_{k}\right) z^{2}\left(t_{k}\right)+\left(z^{\prime}\left(t_{k}\right)\right)^{2} \leq 0, \quad k=1,2, \ldots
$$

Hence, from this and using (4.18)

$$
c \frac{r\left(t_{k}\right)}{q\left(t_{k}\right)} z\left(t_{k}\right)<q^{1 / 2}\left(t_{k}\right) z\left(t_{k}\right)
$$

that contradicts (4.14) for large k.
The next theorem is devoted to the sublinear case.
Theorem 4.3 Suppose that $\lambda<1, \varepsilon \in(0,2), \varepsilon_{1}>0, q \in C^{1}\left(\mathbb{R}_{+}\right),\left(H_{3}\right)$ with $a_{0}>1, \eta \in C^{0}\left(\mathbb{R}_{+}\right)$are such that for large t

$$
\begin{gather*}
h_{1}(t)<\eta(t)<t \tag{4.19}\\
\left(\frac{a_{0}-1}{a_{0} a_{1}} \int_{\eta(t)}^{t} r(s) d s-q^{*}(t)\right)\left(\eta(t)-h_{1}(t)\right)^{2}>\varepsilon \tag{4.20}\\
r(t) \geq \varepsilon_{1} q^{3 / 2}(t) \tag{4.21}
\end{gather*}
$$

and for any $K>0$

$$
\begin{equation*}
\int_{0}^{\infty}\left[K r(t)-q^{\prime}(t)\right] d t=\infty \tag{4.22}
\end{equation*}
$$

where $q^{*}(t)=\max _{\eta(t) \leq s \leq t} q(s)$. Then (1.1) has Property A^{*}.
Proof Similarly to the proof of Theorem 4.2, suppose, contrarily, that there exist $T \geq 0$ and a solution x (1.1) such that (4.19), (4.20), (4.21) and

$$
\begin{equation*}
x(\sigma(t))>0, z(t)>0, z^{\prime}(t)<0 \tag{4.23}
\end{equation*}
$$

hold for $t \geq T$. Then Theorem 3.3 and (4.22) imply

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} z(t)=0 \tag{4.24}
\end{equation*}
$$

Furthermore, x is the solution of the equation

$$
\begin{equation*}
z^{\prime \prime \prime}+q(t) z^{\prime}+R(t) x(\sigma(t))=0 \tag{4.25}
\end{equation*}
$$

for $t \geq T$ with

$$
\begin{equation*}
R(t)=r(t) x^{\lambda-1}(\sigma(t)) \tag{4.26}
\end{equation*}
$$

Put $a^{*}=\frac{a_{0} a_{1}}{a_{0}-1}>0$. In virtue of (4.24), there exists $T_{1} \geq T$ such that

$$
\begin{equation*}
x^{\lambda-1}(\sigma(t)) \geq \max \left(\frac{2}{\varepsilon}, \frac{a^{*}}{\varepsilon_{1}}\right) \tag{4.27}
\end{equation*}
$$

Now, we apply Theorem 4.2 to equation (4.25). Then (4.20), (4.26) and (4.27) imply

$$
\begin{gathered}
\left(\frac{1}{a^{*}} \int_{\eta(t)}^{t} R(s) d s-q^{*}(t)\right)\left(\eta(t)-h_{1}(t)\right)^{2} \geq\left(\frac{1}{a^{*}} \int_{\eta(t)}^{t} \frac{2}{\varepsilon} r(s) d s\right. \\
\left.-\frac{2}{\varepsilon} q^{*}(t)\right)\left(\eta(t)-\tau^{-1}(\sigma(t))\right)^{2}>2
\end{gathered}
$$

hence, (4.13) is valid for (4.25). Furthermore, using (4.21), (4.26) and (4.27) we get

$$
\begin{equation*}
R(t)=r(t) x^{\lambda-1}(\sigma(t)) \geq \frac{a^{*}}{\varepsilon_{1}} r(t) \geq a^{*} q^{3 / 2}(t) \tag{4.28}
\end{equation*}
$$

Moreover, according to (4.22), $T_{2} \geq T_{1}$ exists such that

$$
q^{\prime}(t) \leq q^{\prime}(t)+\frac{K}{t} \leq \frac{2}{\varepsilon_{1}} r(t), \quad t \geq T_{2}
$$

From here and from the first inequality in (4.28)

$$
\begin{equation*}
R(t) \geq \frac{a^{*}}{\varepsilon_{1}} r(t) \geq a^{*} q^{\prime}(t) / 2 \tag{4.29}
\end{equation*}
$$

Thus, (4.28) and (4.29) imply the validity of (4.14) for (4.25). As all hypotheses of Theorem 4.2, applied to (4.25), are satisfied, z^{\prime} oscillates and it contradicts (4.23).

5. Special case

Remark 5.1 Theorems 4.2 and 4.3 can be applied to Equation (1.3) as it is equivalent with

$$
z^{\prime \prime \prime}+q(t) z^{\prime}+(1+a) r(t)\left|x^{\lambda}(\sigma(t))\right|^{\lambda} \operatorname{sgn} x(\sigma(t))=0
$$

where $\tau(t) \equiv t, a(t) \equiv a>0$ and $z(t)=(1+a) x(t)$.

Consider a special type of (1.1) with constant delays,

$$
\begin{equation*}
z^{\prime \prime \prime}+q(t) z^{\prime}+r(t)\left|x\left(t-c_{1}\right)\right|^{\lambda} \operatorname{sgn} x\left(t-c_{1}\right)=0 \tag{5.1}
\end{equation*}
$$

with $\lambda \in(0,1], a>0,0 \leq c_{0}<c_{1}$ and $z(t)=x(t)+a x\left(t-c_{0}\right)$.

Corollary 5.2 Let $a>1, q \in C^{1}\left(\mathbb{R}_{+}\right), v \geq 0, w \in \mathbb{R}$, either $s>-2$ or $s=-2$ and $q_{0}>\frac{1}{4}, r_{0}>0, q_{0}>0$, $q_{0}^{\prime} \in \mathbb{R}$ and

$$
r(t) \geq r_{0} t^{v}, q(t) \leq q_{0} t^{s}, q^{\prime}(t) \leq q_{0}^{\prime} t^{w} \quad \text { for large } t
$$

where $v \geq 0, v>\frac{3}{2} s, v>w$, and $r_{0}>\frac{27 a^{2}}{2(a-1)\left(c_{1}-c_{0}\right)^{3}}$ in case $\lambda=1$ and $v=0$. Then (5.1) has Property A^{*}.
Proof Let $\eta(t)=t-c_{2}$, where $c_{2} \in\left(0, c_{1}-c_{0}\right)$. The proof follows from Theorems 4.2 and 4.3. As $\eta(t)-\tau^{-1}(\sigma(t))=c_{1}-c_{0}-c_{2}>0$ is constant, a necessary condition for validity of either (4.13) or (4.20) is $\liminf _{t \rightarrow \infty} \int_{\eta(t)}^{t} r(s) d s>0$, i.e. $v \geq 0$. Similarly, necessary conditions for either (4.14) or (4.21) to be valid are $v \geq \frac{3}{2} s$ and $v \geq w$. In case $\lambda=1$ and $v=0$ we obtain the condition $r_{0}>\frac{2 a^{2}}{(a-1) c_{2}\left(c_{1}-c_{0}-c_{2}\right)^{2}}$ and the optimal value of c_{2} is $c_{2}=\frac{c_{1}-c_{0}}{3}$. We use $\varepsilon=\frac{1}{2}\left(\frac{a-1}{a^{2}} r_{0} c_{2}-q_{0}\right)\left(c_{1}-c_{0}-c_{2}\right)^{2}$ and $\varepsilon_{1}=r_{0} q_{0}^{-3 / 2}$ when Theorem 4.3 is applied.

Corollary 5.3 Let $\lambda=1, a \leq 1,0<2 c_{0}<c_{1}, r_{0}>0, r_{1}>0, q_{0}>0, \varepsilon \in(0,1)$ either $s>-2$ or $s=-2$ and $q_{0}>\frac{1}{4}, v \geq 0, v>s, r_{0}>\frac{1}{c_{0}}\left[\frac{162}{\left(c_{1}-c_{0}\right)^{2}}+72\left(\frac{r_{1}}{a}\right)^{2 / 3}\right]$ in case $v=0$ and

$$
r_{0} t^{v} \leq r(t) \leq r_{1} t^{(3-\varepsilon) v / 2}, q(t) \leq q_{0} t^{s} \quad \text { for large } t
$$

Then (5.1) has Property A^{*}.
Proof It follows from Theorem 4.1.

Acknowledgement

The paper was supported by the Grant GA 20-11846S of the Czech Grant Agency.

References

[1] Bartušek M, Cecchi M, Došlá Z, Marini M. Oscillation for third-order differential equation with deviating argument. Abstract and Applied Analysis 2010; 2010: 278962.
[2] Bartušek M, Cecchi M, Došlá Z, Marini M. Positive solutions of third order damped nonlinear differential equations. Mathematica Bohemica 2011; 136 (2): 205-213.
[3] Bartušek M. Oscillation of third-order neutral damped differential equations. Electronic Journal of Differential Equations 2021; 2021 (81): 1-13.
[4] Bartušek M, Došlá Z. Oscillation of fourth-order neutral differential equations with oscillatory operator. Functional Differential Equation. To appear.
[5] Chatzarakis GE, Džurina J, Jadlovská I. Oscillatory properties of third-order neutral delay differential equations with noncanonical operators. Mathematics MDPI 2019; 7 (12): 1177. doi: 103390/math7121177
[6] Džurina J, Baculíková B, Jadlovská I. Integral oscillation criteria for third order differential equations with delay argument. International Journal of Pure Applied Mathematics 2016; 108 (1): 169-183. doi: 10.12732/ijpam.v108i1.15
[7] Džurina J, Grace SR, Jadlovská I. On nonexistence of Kneser solution of third-order neutral delay differential equations. Applied Mathematics Letters 2019; 88: 193-200. doi: 10.1016/j.aml.2018.08.016
[8] Grace SR, Jadlovská I, Tunç E. Oscillatory and asymptotic behavior of third-order nonlinear differential equations with a superlinear neutral term. Turkish Journal of Mathematics 2020; 44 (4): 1317-1329. doi: 10.3906/mat-2004-85
[9] Grace SR, Zafer A. Oscillation criteria for the n th-order nonlinear delay differential equations with a midle term. Mathematical Methods in the Applied Sciences 2016; 39 (5):1150-1158. doi: 10.1002/mma3559
[10] Jayaraman G, Padmanabhan N, Mehrotra R. Entry flow into a circular tube of slowly varying cross section. Fluid Dynamics Research 1986; 1 (2): 131-144.
[11] Kiguradze IT. An oscillation criterion for a class of ordinary differential equations. Differential Equations 1992; 28 (2): 180-190.
[12] Kiguradze IT, Chanturia TA. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Dordrecht, The Nethelands: Kluwer, 1993.
[13] Li T, Rogovchenko YV. On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Applied Mathematics Letters 2020; 105: 106293. doi: 10.1016/j.aml.2020.106293
[14] Mckean HP. Nagumo's equations. Advances in Mathematics 1970; 4: 209-223.
[15] Moaaz O, Baleanu D, Muhib A. New aspects for non-existence of Kneser solutions of neutral differential equations with odd-order. Mathematics MDPI 2020; 2020, 8 (4): 494. doi: 10.3390/math8040494
[16] Munoz-Hernandez GA, Jones D. Modelling and Controlling Hydropower Plants. London, Great Britain: Springer Science \& Business Media, 2013.
[17] Vidhyaa KS, Graef JR, Thandapani E. New oscillation results for third-order half-linear neutral differential equations. Mathematics MDPI 2020; 2020, 8 (3): 325. doi:10.3390/math8030325
[18] Vreeke SD, Sundquist GM. Phase plane analysis of reactor kinetics. Nuclear Sciences in Engineering 1970; 42: 259-305.

[^0]: 2010 AMS Mathematics Subject Classification: 34C10, 34K11

