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Abstract: Let A1 and A2 be an {α1, β1, γ1} -cubic matrix and an {α2, β2} -quadratic matrix, respectively, with
α1 ̸= β1 , β1 ̸= γ1 , α1 ̸= γ1 and α2 ̸= β2 . In this work, we characterize all situations in which the linear combination
A3 = a1A1 + a2A2 with the assumption A1A2 = A2A1 is an {α3, β3} -quadratic matrix, where a1 and a2 are unknown
nonzero complex numbers.
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1. Introduction
Let C be the field of all complex numbers and C∗ be the set of all nonzero complex numbers. The symbols
Cn , In , and 0 will denote the set of all n× n complex matrices, identity matrix (of size n), and zero matrix
of suitable size, respectively. When we do not want to emphasize the size of the identity matrix, we’ll use the
symbol I to indicate it. Moreover, the rank of a matrix A will be symbolized by rk(A) . On the other hand,
similarity and direct sum of two matrices A and B will be denoted by A ∼ B and A⊕B , respectively, where
two square matrices A and B are similar if there exists a nonsingular matrix S such that S−1AS = B .

We say that a matrix A is an {α, β, γ} -cubic matrix if the equality

(A− αIn)(A− βIn)(A− γIn) = 0 (1.1)

holds with α, β, γ ∈ C . It is easily seen that if {α, β, γ} = {1,−1, 0} is taken, then the matrix A in (1.1)
becomes a tripotent matrix, i.e. a matrix satisfying the equality A3 = A .

Recall that a matrix A is called a generalized {α, β} -quadratic matrix with respect to an idempotent
matrix P if there exist α, β ∈ C such that

(A− αP )(A− βP ) = 0 AP = PA = A[11, 18, 23]. (1.2)

In case P = I , it is called that the matrix A in (1.2) is an {α, β} -quadratic matrix. From now on, the set
of all {α, β} -quadratic matrices with α ̸= β , the set of all generalized {α, β} -quadratic matrices with respect
to an idempotent matrix P where α ̸= β , and the set of all {α, β, γ} -cubic matrices with α ̸= β , β ̸= γ , α ̸= γ

will be denoted by Ω(α, β) , L(P ;α, β) , and κ(α, β, γ) , respectively.
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Notice that any generalized {α, β} -quadratic matrix with respect to an idempotent matrix P satisfies
the equality A3 = (α + β)A2 − αβA . Similarly, any {α, β, γ} -cubic matrix A satisfies the equality A3 =

(α+ β + γ)A2 − (αβ + αγ + βγ)A+ αβγI . Thus, it is clear that any generalized {α, β} -quadratic matrix is a
special cubic matrix with γ = 0 .

On the other hand, we know from [11] that the set of all generalized quadratic matrices covers the sets
of all generalized involutive matrices, i.e. A2 = P and all generalized skew involutive matrices, i.e. A2 = −P ,
respectively, where P ̸= I . In addition, as we have explained above, the set of all cubic matrices covers the set
of all generalized quadratic matrices, and also, the set of all generalized quadratic matrices covers the set of all
quadratic matrices. Moreover, the set of all quadratic matrices contains the set of all idempotent matrices, i.e.
A2 = A , all involutive matrices, i.e. A2 = I , and all scalar-potent matrices, i.e. A2 = λA for some λ ∈ C .
Thus, the set of all cubic matrices covers all mentioned above.

In the last years, the problem of characterizing all situations, in which a linear combination of two special
types of matrices is again a special type of matrix, are widely considered in the literature, for example, [2–7, 9, 13–
15, 18–24]. The main purpose of this work is to characterize all situations in which a linear combination of
a quadratic matrix and a cubic matrix that commute is a quadratic matrix. In addition, some special results
derived from the main result obtained are given. From these results, it is seen that the main result covers many
of the results in the literature related to characterization of linear combinations of special types of matrices.

Now, we want to introduce two additional notations.

Firstly, we know that if A is an {α, β} -quadratic matrix with α ̸= β , then there exists an idempotent
matrix Q such that

A = (α− β)Q+ βI (1.3)

by Theorem 2.1 in [16]. Notice that the matrix (α−β)Q in (1.3) is an (α−β) -scalar-potent matrix. If we denote
this matrix by B , then we shall say that the matrix A in (1.3) is an {α, β} -quadratic matrix corresponding
to the scalar-potent matrix B . We shall denote the set of all such matrices by Ω(α, β,B) .

Secondly, we know that if A is an {α, β, γ} -cubic matrix with α ̸= β , β ̸= γ , and α ̸= γ , then there
exist two disjoint idempotent matrices X and Y such that

A = (α− γ)X + (β − γ)Y + γI (1.4)

by Lemma 1.1 in [21]. Let us denote the matrix (α − γ)X + (β − γ)Y by C . It is clear that the matrix C

is a generalized {α − γ, β − γ} -quadratic matrix with respect to the idempotent matrix X + Y := P in view
of the item (ii) of Theorem 1.1 in [18]. Thus, we shall say that the matrix A in (1.4) is an {α, β, γ} -cubic
matrix corresponding to the generalized quadratic matrix C . We shall denote the set of all such matrices by
κ(α, β, γ, C, P ) .

2. Results
As pointed out before, this section is designed in two stages. It first presents some auxiliary results which will
be used to get the main result. Next, the main result is given within the framework of these results.

Theorem 2.1 Let A1 ∈ κ(α1, β1, γ1, B1, P1) , A2 ∈ Ω(α2, β2, B2) with A1, A2 ∈ Cn and A1A2 = A2A1 . Then
there exists a nonsingular matrix S , an {α1 − γ1, β1 − γ1}-quadratic matrix K , and (α2 − β2)-scalar potent
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matrices X and T such that

B1 = S

(
K 0
0 0

)
S−1 and B2 = S

(
X 0
0 T

)
S−1

with rk(P1) = r , K,X ∈ Cr , and T ∈ Cn−r .

Proof According to the hypotheses, it can be written

A1 = B1 + γ1I and A2 = B2 + β2I. (2.1)

The commutativity of the matrices A1 and A2 leads to the commutativity of the matrices B1 and B2 in view
of (2.1). Moreover, since the matrix B1 is an {α1 − γ1, β1 − γ1} -generalized quadratic matrix with respect to
the idempotent matrix P1 , we have

(B1 − (α1 − γ1)P1) (B1 − (β1 − γ1)P1) = 0, B1P1 = P1B1 = B1. (2.2)

Similarly, since the matrix B2 is an (α − β) -scalar potent matrix, there exists an idempotent matrix W such
that

B2 = (α2 − β2)W. (2.3)

Now, because of the idempotency of the matrix P1 , there exists a nonsingular matrix S such that

P1 = S(Ir ⊕ 0)S−1 (2.4)

with r = rk(P1) . Let us write the matrix B1 as

B1 = S

(
K L
M N

)
S−1, K ∈ Cr. (2.5)

From the second equality of (2.2) and the equalities (2.4) and (2.5), we get L = 0 , M = 0 , and N = 0 . Thus,
we can write the matrix B1 as

B1 = S

(
K 0
0 0

)
S−1. (2.6)

If the equalities (2.4) and (2.6) are substituted into the first equality of (2.2), then the following equality is
obtained:

(K − (α1 − γ1)Ir) (K − (β1 − γ1)Ir) = 0. (2.7)

It is clearly seen from (2.7) that the matrix K is an {α1 − γ1, β1 − γ1} -quadratic matrix. Furthermore, the
matrix K is nonsingular because α1 ̸= γ1 and β1 ̸= γ1 .

Now, let us write the matrix B2 as

B2 = S

(
X Y
Z T

)
S−1, (2.8)

where X ∈ Cr and T ∈ Cn−r . Since B1B2 = B2B1 , from the equalities (2.6) and (2.8), the matrix B2 turns
into

B2 = S

(
X 0
0 T

)
S−1. (2.9)

Thus, the desired result is obtained. 2
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Theorem 2.2 Let X , T , and K be the matrices in Theorem 2.1. Then there exist idempotent matrices M1 ,
M2 , and Z1 such that

X = (α2 − β2)M1, T = (α2 − β2)M2, and K = (α1 − β1)Z1 + (β1 − γ1)I,

under the hypotheses of Theorem 2.1.

Proof From the equalities (2.3) and (2.9), the following can be written:

S−1WS =

( 1
α2−β2

X 0

0 1
α2−β2

T

)
.

If we denote the upper left corner element and lower right corner element of S−1WS by M1 and M2 ,
respectively, then we directly see that

X = (α2 − β2)M1 and T = (α2 − β2)M2. (2.10)

Since the matrices X and T are (α2−β2) -scalar potent, it is clear that the matrices M1 and M2 are idempotent.
In addition, since the matrix K is an {α1 − γ1, β1 − γ1} -quadratic matrix, from the item (iv) of Theorem 2.1
in [16], there exists an idempotent matrix Z1 such that

K = (α1 − β1)Z1 + (β1 − γ1)I. (2.11)

Thus, the proof is completed. 2

Now, consider a linear combination of the form

A3 = a1A1 + a2A2, (2.12)

where a1, a2 ∈ C∗ , the matrices A1 and A2 are as in Theorem 2.1. We will investigate necessary and sufficient
conditions for the {α3, β3} -quadraticity of the linear combination matrix A3 with α3, β3 ∈ C . The equality
(2.12) is equivalent to

A3 = a1B1 + a2B2 + (a1γ1 + a2β2)I. (2.13)

The matrix A3 of the form (2.13) is an {α3, β3} -quadratic matrix if and only if

(a1B1 + a2B2 + (a3 − α3)I) (a1B1 + a2B2 + (a3 − β3)I) = 0, (2.14)

where a3 = a1γ1 + a2β2 . From (2.14) and the commutativity of the matrices B1 and B2 , we obtain

a1
2B1

2 + 2a1a2B1B2 + a2
2B2

2 + a1 (2a3 − α3 − β3)B1

+a2 (2a3 − α3 − β3)B2 + (a3 − α3) (a3 − β3) I = 0.
(2.15)

Substituting the equalities (2.2) and B2
2 = (α2 − β2)B2 into (2.15) leads to

c1B1 + c2B2 + 2a1a2B1B2 + c3P1 + c4I = 0, (2.16)

where c1 = a21(α1+β1−2γ1)+a1(2a3−α3−β3) , c2 = a22(α2−β2)+a2(2a3−α3−β3) , c3 = −a21(α1−γ1)(β1−γ1) ,
and c4 = (a3 − α3)(a3 − β3) . If we substitute the equalities (2.4), (2.6), and (2.9) into (2.16), then we get the
following system.

c1K + c2X + 2a1a2KX + (c3 + c4)I = 0 and c2T + c4I = 0. (2.17)
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On the other hand, from (2.6) and (2.9), it is clear that KX = XK due to the fact that B1B2 = B2B1 .
Moreover, since α1 ̸= β1 and α2 ̸= β2 , from the first equality of (2.10) and the equality (2.11), it is obtained
that Z1M1 = M1Z1 . If we substitute the matrix X in (2.10) and the matrix K in (2.11) into the first equality
of (2.17), then the following equality is obtained:

c1 (α1 − β1)Z1 + (c2 (α2 − β2) + 2a1a2 (β1 − γ1) (α2 − β2))M1

+2a1a2 (α1 − β1) (α2 − β2)Z1M1 + (c1 (β1 − γ1) + c3 + c4) I = 0.
(2.18)

If we write the matrix T in the second equality of (2.10) into the second equality of (2.17), then we get

c2(α2 − β2)M2 + c4I = 0. (2.19)

Thus, we have the following corollary.

Corollary 2.3 Let A1 and A2 be as in Theorem 2.1. Then the linear combination A3 = a1A1 + a2A2 with
a1, a2 ∈ C∗ is an {α3, β3}-quadratic matrix with α3, β3 ∈ C if and only if the equalities (2.18) and (2.19) hold.

Now, we will investigate the cases in which the equalities (2.18) and (2.19) are satisfied. We first handle the
cases related to (2.19).

Theorem 2.4 Under the conditions of Theorem 2.1, the necessary and sufficient condition to hold the equality
(2.19) is that any one of the following sets of additional conditions holds, where M2 is the matrix in Theorem
2.2.

(i) c4 = 0 and M2 = 0 ,

(ii) c2(α2 − β2) + c4 = 0 and M2 = I ,

(iii) c2 = c4 = 0 and M2 ∼ I ⊕ 0 .

Proof Multiplying the equality (2.19) by M2 leads to

(c2(α2 − β2) + c4)M2 = 0.

Now, we have two possibilities: M2 = 0 or M2 ̸= 0 .

In the case M2 = 0 , from the equality (2.19), we get c4 = 0 , which is the item (i).

In the case M2 ̸= 0 , there are two possibilities for diagonal form of the idempotent matrix M2 : M2 ∼ I⊕I

( that is, M2 = I ) or M2 ∼ I ⊕ 0 . Thus, from the equality (2.19), we get c2(α2 − β2) + c4 = 0 or c2 = c4 = 0 ,
which are the items (ii) or (iii), respectively. Hence, the desired results are obtained. 2

Next, let us handle the cases related to (2.18).

Theorem 2.5 Under the conditions of Theorem 2.1, the necessary and sufficient condition to hold the equality
(2.18) is that any one of the following sets of additional conditions holds, where Z1 and M1 are the matrices
in Theorem 2.2.

(a) c1(β1 − γ1) + c2(α2 − β2) + 2a1a2(β1 − γ1)(α2 − β2) + c3 + c4 = 0,

Z1 = 0, and M1 = I,
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(b) c1(β1 − γ1) = −c3 − c4, c2 = −2a1a2(β1 − γ1), Z1 = 0, and M1 ∼ I ⊕ 0,

(c) c1(β1 − γ1) = −c3 − c4, Z1 = 0, and M1 = 0,

(d) c1(α1 − γ1) = −c3 − c4, Z1 = I, and M1 = 0,

(e) c1 = c3 + c4 = 0, Z1 ∼ I ⊕ 0, and M1 = 0,

(f) c3 + c4 = −c1(α1 − γ1)

= −c2(α2 − β2)− 2a1a2(β1 − γ1)(α2 − β2)− c1(β1 − γ1),

Z1 ∼ I ⊕ 0, and M1 ∼ 0⊕ I,

(g) c1 = 0, c2 = −2a1a2(β1 − γ1), c3 = −c4,

Z1 ∼ I ⊕ 0⊕ 0, and M1 ∼ 0⊕ I ⊕ 0,

(h) c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) + c3 + c4 = 0,

Z1 = I, and M1 = I,

(k) c1(α1 − γ1) = −c3 − c4, c2 = −2a1a2(α1 − γ1),

Z1 = I, and M1 ∼ I ⊕ 0,

(l) c1(β1 − γ1) = c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2)

= −c3 − c4, Z1 ∼ I ⊕ 0, and M1 ∼ I ⊕ 0,

(m) c1 = −2a1a2(α2 − β2), c2(α2 − β2) = −c3 − c4,

Z1 ∼ I ⊕ 0, and M1 = I,

(n) c1 = −2a1a2(α2 − β2), c1(α1 − γ1) = −c3 − c4, c2 = −2a1a2(α1 − γ1),

Z1 ∼ I ⊕ I ⊕ 0, and M1 ∼ I ⊕ 0⊕ I,

(p) c1 = 0, c2 = −2a1a2(α1 − γ1), c3 = −c4,

Z1 ∼ I ⊕ I ⊕ 0, and M1 ∼ I ⊕ 0⊕ 0,

(r) c1(β1 − γ1) = −c3 − c4, c2 = −2a1a2(β1 − γ1),

c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) + c3 + c4 = 0,

Z1 ∼ I ⊕ 0⊕ 0, and M1 ∼ I ⊕ I ⊕ 0.

Proof Premultiplying (2.18) by the idempotent matrix Z1 leads to the equality

(c1(α1 − γ1) + c3 + c4)Z1 + (c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2))Z1M1 = 0. (2.20)

If the equality (2.24) is postmultiplied by the idempotent matrix M1 , then the equality

(c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) + c3 + c4)Z1M1 = 0

is obtained.
Now, there are two possibilities: Z1M1 = 0 or Z1M1 ̸= 0 .
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Firstly, in the case Z1M1 = 0 , from (2.24), we get

(c1(α1 − γ1) + c3 + c4)Z1 = 0. (2.21)

There are two possibilities for the matrix Z1 from the equality (2.25): Z1 = 0 or Z1 ̸= 0 .
In the case Z1 = 0 , from the equality (2.18), the equality

(c2(α2 − β2) + 2a1a2(β1 − γ1)(α2 − β2))M1 + (c1(β1 − γ1) + c3 + c4) I = 0 (2.22)

is obtained. On the other hand, it is seen that, taking into account the diagonal forms of the idempotent matrix
M1 , all possibilities for the matrix M1 are as in the following:

M1 = I or M1 ∼ I ⊕ 0 or M1 = 0.

Thus, from the equality (2.26), the equalities
c1(β1 − γ1) + c2(α2 − β2) + 2a1a2(β1 − γ1)(α2 − β2) + c3 + c4 = 0 or
c1(β1 − γ1) = −c3 − c4, c2 = −2a1a2(β1 − γ1) or
c1(β1 − γ1) = −c3 − c4 ,

respectively, are obtained. Thus, we have the items (a), (b), and (c), respectively.

In the case Z1 ̸= 0 , from the equality (2.25), we get

c1(α1 − γ1) + c3 + c4 = 0. (2.23)

In addition, since Z1M1 = 0 , all possibilities for the pairs of the idempotent matrices Z1 and M1 are as in the
following:

Z1 = I and M1 = 0 or
Z1 ∼ I ⊕ 0 and M1 = 0 or M1 ∼ 0⊕ I or
Z1 ∼ I ⊕ 0⊕ 0 and M1 ∼ 0⊕ I ⊕ 0.

Thus, in view of the equality (2.27), from the equality (2.18), the following equalities are obtained:
c1(α1 − γ1) = −c3 − c4 or
c1 = c3 + c4 = 0 or
c3 + c4 = −c1(α1 − γ1) = −c2(α2 − β2)− 2a1a2(β1 − γ1)(α2 − β2)− c1(β1 − γ1) or
c1 = 0, c2 = −2a1a2(β1 − γ1), c3 = −c4.

Thus, we get the items (d), (e), (f), and (g), respectively.

Secondly, in the case Z1M1 ̸= 0 , the matrices Z1 and M1 are both nonzero. Thus, it is seen that all
possibilities for the pairs of the idempotent matrices Z1 and M1 are as in the following:

Z1 = I and M1 = I or
Z1 = I and M1 ∼ I ⊕ 0 or
Z1 ∼ I ⊕ 0 and M1 ∼ I ⊕ 0 or M1 = I or
Z1 ∼ I ⊕ I ⊕ 0 and M1 ∼ I ⊕ 0⊕ I or
Z1 ∼ I ⊕ I ⊕ 0 and M1 ∼ I ⊕ 0⊕ 0 or
Z1 ∼ I ⊕ 0⊕ 0 and M1 ∼ I ⊕ I ⊕ 0 .

If we write the pairs of matrices above in (2.18) in view of α1 ̸= β1 , α2 ̸= β2 , and c3 ̸= 0 , then we get the
following equalities, respectively:
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c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) + c3 + c4 = 0 or
c1(α1 − γ1) = −c3 − c4, c2 = −2a1a2(α1 − γ1) or
c1(β1 − γ1) = c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) = −c3 − c4 or
c1 = −2a1a2(α2 − β2), c2(α2 − β2) = −c3 − c4 or
c1 = −2a1a2(α2 − β2), c1(α1 − γ1) = −c3 − c4, c2 = −2a1a2(α1 − γ1) or
c1 = 0, c2 = −2a1a2(α1 − γ1), c3 = −c4 or
c1(β1−γ1) = −c3−c4, c2 = −2a1a2(β1−γ1), c1(α1−γ1)+c2(α2−β2)+2a1a2(α1−γ1)(α2−β2)+c3+c4 = 0.

Hence, the items (h), (k), (l), (m), (n), (p), and (r), respectively, are obtained. Thus, the proof is completed.
2

Considering Corollary 2.3, Theorem 2.4, and Theorem 2.6, now we can give the following theorem which
is the main result of the work. Next, let us handle the cases related to (2.18).

Theorem 2.6 Under the conditions of Theorem 2.1, the necessary and sufficient condition to hold the equality
(2.18) is that any one of the following sets of additional conditions holds, where Z1 and M1 are the matrices
in Theorem 2.2.

(a) c1(β1 − γ1) + c2(α2 − β2) + 2a1a2(β1 − γ1)(α2 − β2) + c3 + c4 = 0,

Z1 = 0, and M1 = I,

(b) c1(β1 − γ1) = −c3 − c4, c2 = −2a1a2(β1 − γ1), Z1 = 0, and M1 ∼ I ⊕ 0,

(c) c1(β1 − γ1) = −c3 − c4, Z1 = 0, and M1 = 0,

(d) c1(α1 − γ1) = −c3 − c4, Z1 = I, and M1 = 0,

(e) c1 = c3 + c4 = 0, Z1 ∼ I ⊕ 0, and M1 = 0,

(f) c3 + c4 = −c1(α1 − γ1)

= −c2(α2 − β2)− 2a1a2(β1 − γ1)(α2 − β2)− c1(β1 − γ1),

Z1 ∼ I ⊕ 0, and M1 ∼ 0⊕ I,

(g) c1 = 0, c2 = −2a1a2(β1 − γ1), c3 = −c4,

Z1 ∼ I ⊕ 0⊕ 0, and M1 ∼ 0⊕ I ⊕ 0,

(h) c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) + c3 + c4 = 0,

Z1 = I, and M1 = I,

(k) c1(α1 − γ1) = −c3 − c4, c2 = −2a1a2(α1 − γ1),

Z1 = I, and M1 ∼ I ⊕ 0,

(l) c1(β1 − γ1) = c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2)

= −c3 − c4, Z1 ∼ I ⊕ 0, and M1 ∼ I ⊕ 0,

(m) c1 = −2a1a2(α2 − β2), c2(α2 − β2) = −c3 − c4,

Z1 ∼ I ⊕ 0, and M1 = I,
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(n) c1 = −2a1a2(α2 − β2), c1(α1 − γ1) = −c3 − c4, c2 = −2a1a2(α1 − γ1),

Z1 ∼ I ⊕ I ⊕ 0, and M1 ∼ I ⊕ 0⊕ I,

(p) c1 = 0, c2 = −2a1a2(α1 − γ1), c3 = −c4,

Z1 ∼ I ⊕ I ⊕ 0, and M1 ∼ I ⊕ 0⊕ 0,

(r) c1(β1 − γ1) = −c3 − c4, c2 = −2a1a2(β1 − γ1),

c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) + c3 + c4 = 0,

Z1 ∼ I ⊕ 0⊕ 0, and M1 ∼ I ⊕ I ⊕ 0.

Proof Premultiplying (2.18) by the idempotent matrix Z1 leads to the equality

(c1(α1 − γ1) + c3 + c4)Z1 + (c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2))Z1M1 = 0. (2.24)

If the equality (2.24) is postmultiplied by the idempotent matrix M1 , then the equality

(c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) + c3 + c4)Z1M1 = 0

is obtained.
Now, there are two possibilities: Z1M1 = 0 or Z1M1 ̸= 0 .

Firstly, in the case Z1M1 = 0 , from (2.24), we get

(c1(α1 − γ1) + c3 + c4)Z1 = 0. (2.25)

There are two possibilities for the matrix Z1 from the equality (2.25): Z1 = 0 or Z1 ̸= 0 .
In the case Z1 = 0 , from the equality (2.18), the equality

(c2(α2 − β2) + 2a1a2(β1 − γ1)(α2 − β2))M1 + (c1(β1 − γ1) + c3 + c4) I = 0 (2.26)

is obtained. On the other hand, it is seen that, taking into account the diagonal forms of the idempotent matrix
M1 , all possibilities for the matrix M1 are as in the following:

M1 = I or M1 ∼ I ⊕ 0 or M1 = 0.

Thus, from the equality (2.26), the equalities
c1(β1 − γ1) + c2(α2 − β2) + 2a1a2(β1 − γ1)(α2 − β2) + c3 + c4 = 0 or
c1(β1 − γ1) = −c3 − c4, c2 = −2a1a2(β1 − γ1) or
c1(β1 − γ1) = −c3 − c4 ,

respectively, are obtained. Thus, we have the items (a), (b), and (c), respectively.

In the case Z1 ̸= 0 , from the equality (2.25), we get

c1(α1 − γ1) + c3 + c4 = 0. (2.27)

In addition, since Z1M1 = 0 , all possibilities for the pairs of the idempotent matrices Z1 and M1 are as in the
following:

Z1 = I and M1 = 0 or
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Z1 ∼ I ⊕ 0 and M1 = 0 or M1 ∼ 0⊕ I or
Z1 ∼ I ⊕ 0⊕ 0 and M1 ∼ 0⊕ I ⊕ 0.

Thus, in view of the equality (2.27), from the equality (2.18), the following equalities are obtained:
c1(α1 − γ1) = −c3 − c4 or
c1 = c3 + c4 = 0 or
c3 + c4 = −c1(α1 − γ1) = −c2(α2 − β2)− 2a1a2(β1 − γ1)(α2 − β2)− c1(β1 − γ1) or
c1 = 0, c2 = −2a1a2(β1 − γ1), c3 = −c4.

Thus, we get the items (d), (e), (f), and (g), respectively.

Secondly, in the case Z1M1 ̸= 0 , the matrices Z1 and M1 are both nonzero. Thus, it is seen that all
possibilities for the pairs of the idempotent matrices Z1 and M1 are as in the following:

Z1 = I and M1 = I or
Z1 = I and M1 ∼ I ⊕ 0 or
Z1 ∼ I ⊕ 0 and M1 ∼ I ⊕ 0 or M1 = I or
Z1 ∼ I ⊕ I ⊕ 0 and M1 ∼ I ⊕ 0⊕ I or
Z1 ∼ I ⊕ I ⊕ 0 and M1 ∼ I ⊕ 0⊕ 0 or
Z1 ∼ I ⊕ 0⊕ 0 and M1 ∼ I ⊕ I ⊕ 0 .

If we write the pairs of matrices above in (2.18) in view of α1 ̸= β1 , α2 ̸= β2 , and c3 ̸= 0 , then we get the
following equalities, respectively:

c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) + c3 + c4 = 0 or
c1(α1 − γ1) = −c3 − c4, c2 = −2a1a2(α1 − γ1) or
c1(β1 − γ1) = c1(α1 − γ1) + c2(α2 − β2) + 2a1a2(α1 − γ1)(α2 − β2) = −c3 − c4 or
c1 = −2a1a2(α2 − β2), c2(α2 − β2) = −c3 − c4 or
c1 = −2a1a2(α2 − β2), c1(α1 − γ1) = −c3 − c4, c2 = −2a1a2(α1 − γ1) or
c1 = 0, c2 = −2a1a2(α1 − γ1), c3 = −c4 or
c1(β1−γ1) = −c3−c4, c2 = −2a1a2(β1−γ1), c1(α1−γ1)+c2(α2−β2)+2a1a2(α1−γ1)(α2−β2)+c3+c4 = 0.

Hence, the items (h), (k), (l), (m), (n), (p), and (r), respectively, are obtained. Thus, the proof is completed.
2

Considering Corollary 2.3, Theorem 2.4, and Theorem 2.6, now we can give the following theorem which
is the main result of the work.

Theorem 2.7 Let A1 ∈ κ(α1, β1, γ1, B1, P1) , A2 ∈ Ω(α2, β2, B2) , A1, A2 ∈ Cn , a1, a2 ∈ C∗ , and
A1A2 = A2A1 . Then A3 = a1A1 + a2A2 is an {α3, β3}-quadratic matrix with α3, β3 ∈ C if and only if
any one of the following cases holds:

(a1) c1(ωi − γ1) + c2(α2 − β2) + c3 + 2a1a2(ωi − γ1)(α2 − β2) = 0, c4 = 0,

B1 = (ωi − γ1)P1, B2 = (α2 − β2)P1, i = 1 or 2, (ω1, ω2) = (α1, β1),

(a2) c2 = −2a1a2(ωi − γ1), c3 = −c1(ωi − γ1), c4 = 0,

B1 = (ωi − γ1)P1, B1B2 = (ωi − γ1)B2, i = 1 or 2, (ω1, ω2) = (α1, β1),

(a3) c3 = −c1(ωi − γ1), c4 = 0,

B1 = (ωi − γ1)P1, B2 = 0, i = 1 or 2, (ω1, ω2) = (α1, β1),
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(a4) c1 = −2a1a2(α2 − β2), c2 = −2a1a2(ωi − γ1),

c3 = 2a1a2(ωi − γ1)(α2 − β2), c4 = 0,

B1B2 + (ωi − γ1) ((α2 − β2)P1 −B2) = (α2 − β2)B1,

i = 1 or 2, (ω1, ω2) = (α1, β1),

(a5) c1(ωi − γ1) + c3 = 0, c2(α2 − β2) + c1(ωj − γ1)

+ 2a1a2(ωj − γ1)(α2 − β2) + c3 = 0, c4 = 0,

(α2 − β2)B1 + (ωi − ωj)B2 = (ωi − γ1)(α2 − β2)P1,

B1B2 = (ωj − γ1)B2, (i, j) = (1, 2) or (2, 1), (ω1, ω2) = (α1, β1),

(a6) c1 = −2a1a2(α2 − β2), c3 = −c2(α2 − β2), c4 = 0, B2 = (α2 − β2)P1,

(a7) c1(ωi − γ1) + c3 + 2a1a2(ωi − γ1)(α2 − β2) = 0, c2(α2 − β2) + c4 = 0,

B1 = (ωi − γ1)P1, B2 = (α2 − β2)I, i = 1 or 2, (ω1, ω2) = (α1, β1),

(a8) c2 = −2a1a2(ωi − γ1), c3 = −(ωi − γ1) (c1 + 2a1a2(α2 − β2)) ,

c4 = 2a1a2(ωi − γ1)(α2 − β2),

B1 = (ωi − γ1)P1, B1B2 + (ωi − γ1) ((α2 − β2)I −B2 − (α2 − β2)P1) = 0,

i = 1 or 2, (ω1, ω2) = (α1, β1),

(a9) c1(ωi − γ1) + c3 = c2(α2 − β2) = −c4,

B1 = (ωi − γ1)P1, B2 + (α2 − β2)(P1 − I) = 0, i = 1 or 2, (ω1, ω2) = (α1, β1),

(a10) c1 = 0, c2 = −2a1a2(ωi − γ1), c3 = −2a1a2(ωi − γ1)(α2 − β2) = −c4,

B1B2 + (ωi − γ1) ((α2 − β2)I −B2 − (α2 − β2)P1) = 0,

i = 1 or 2, (ω1, ω2) = (α1, β1),

(a11) c1(ωi − γ1) + c3 + c4 = 0, c2(α2 − β2) + c4 = 0,

c1(ωj − γ1) + 2a1a2(ωj − γ1)(α2 − β2) + c3 = 0,

(ωi − ωj) (B2 − (α2 − β2)I) + (α2 − β2) (B1 − (ωj − γ1)P1) = 0,

(ωi − ωj)B1B2 + (ωj − γ1)(α2 − β2) (B1 − (ωi − γ1)P1) = 0,

(i, j) = (1, 2) or (2, 1), (ω1, ω2) = (α1, β1),

(a12) c1 = 0, c2(α2 − β2) = c3 = −c4, B2 + (α2 − β2)(P1 − I) = 0,

(a13) c1(ωi − γ1) + c3 + 2a1a2(ωi − γ1)(α2 − β2) = 0, c2 = 0, c4 = 0,

B1 = (ωi − γ1)P1, B1B2 = (ωi − γ1)(α2 − β2)P1,

i = 1 or 2, (ω1, ω2) = (α1, β1),
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(a14) c1(ωi − γ1) + c3 = 0, c2 = c4 = 0, B1 = (ωi − γ1)P1, B1B2 = 0,

i = 1 or 2, (ω1, ω2) = (α1, β1),

(a15) c1(ωj − γ1) + 2a1a2(ωj − γ1)(α2 − β2) + c3 = 0,

c2 = c4 = 0, c3 + c1(ωi − γ1) = 0,

(ωi − ωj)B1B2 + (ωj − γ1)(α2 − β2) (B1 − (ωi − γ1)P1) = 0,

(i, j) = (1, 2) or (2, 1), (ω1, ω2) = (α1, β1),

where c1 = a21(α1+β1−2γ1)+a1(2a3−α3−β3) , c2 = a22(α2−β2)+a2(2a3−α3−β3) , c3 = −a21(α1−γ1)(β1−γ1) ,
c4 = (a3 − α3)(a3 − β3) , and a3 = a1γ1 + a2β2 .

Proof Let K represent the item (i) or (ii) or (iii) in Theorem 2.4, and L represent the item (a) or (b) or (c) or
…(r) in Theorem 2.6. Mutual intersections of the items K and L easily lead to the coefficients included in the
items of the theorem. To obtain the matrix equalities included in the items of the theorem, it is enough to put
these equalities of coefficients into (2.16) taking into account the diagonal forms of the matrices B1 and B2 ,
and also, considering that c3 ̸= 0 , α1 ̸= β1 , β1 ̸= γ1 , α1 ̸= γ1 , and α2 ̸= β2 . Which intersection corresponds
to which item of the theorem is given in Table. 2

Note that some intersections of the items K and L are naturally not included in the table because they
contradict the corresponding hypotheses of the theorem.

Table . Summary of the intersections of the items K and L, and the corresponding items of the Theorem 2.7.

The items of Theorem 2.7 Intersecting situations of K and L

a1 when i = 2 (when i = 1) (i) and (a) ( (i) and (h))
a2 when i = 2 (when i = 1) (i) and (b) ((i) and (k) )
a3 when i = 2 (when i = 1) (i) and (c) ( (i) and (d) )
a4 when i = 2 (when i = 1) (i) and (r) ( (i) and (n) )
a5 when (i, j) = (1, 2) ( when (i, j) = (2, 1) ) (i) and (f) ( (i) and (l))
a6 (i) and (m)
a7 when i = 2 (when i = 1) (ii) and (a) ( (ii) and (h) )
a8 when i = 2 (when i = 1) (ii) and (b)( (ii) and (k) )
a9 when i = 2 (when i = 1) (ii) and (c) ( (ii) and (d))
a10 when i = 2 (when i = 1) (ii) and (g) ( (ii) and (p) )
a11 when (i, j) = (1, 2) (when (i, j) = (2, 1)) (ii) and (f)( (ii) and (l) )
a12 (ii) and (e)
a13 when i = 2 (when i = 1) (iii) and (a) ( (iii) and (h))
a14 when i = 2 (when i = 1) (iii) and (c) ( (iii) and (d) )
a15 when (i, j) = (1, 2) (when (i, j) = (2, 1)) (iii) and (f) ( (iii) and (l))

Observe that if (α1, β1, γ1) ∈ {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)} and (α2, β2) ∈
{(1, 0), (0, 1)} , and (α3, β3) ∈ {(1, 0), (0, 1)} , we get the following result which gives a detailed analysis of The-
orem 2 in [24] in case where the matrices involved in linear combination are commutative.
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Corollary 2.8 (Theorem 2.4, [19]) Let A1, A2 ∈ Cn\{0} be a tripotent and an idempotent matrix, respec-
tively, with the assumption A1A2 = A2A1 , and let A = a1A1 + a2A2 where a1, a2 ∈ C∗ . Then the matrix A is
idempotent if and only if any of the following sets of conditions holds:

(a) (a1, a2) = (1, 1) and one of the following matrix equalities:

(a1) A1
2 = A1, A1 +A2 = I ,

(a2) A1
2 = A1, A1A2 = 0 ,

(a3) A1
2 = I, A2 = 1

2 (I −A1) ,

(a4) A2 = 1
2 (A1

2 −A1) ,

(a5) A1
2 = −A1 = −A1A2 ,

(a6) −A1A2 = 1
2 (A1

2 −A1) ,

(b) (a1, a2) = (−1, 1) and one of the following matrix equalities:

(b1) A1
2 = −A1,−A1 +A2 = I ,

(b2) A1
2 = −A1, A1A2 = 0 ,

(b3) A1
2 = I, A2 = 1

2 (I +A1) ,

(b4) A2 = 1
2 (A1

2 +A1) ,

(b5) A1
2 = A1 = A1A2 ,

(b6) A1A2 = 1
2 (A1

2 +A1) ,

(c) (a1, a2) = (−1,−1) and one of the following matrix equalities:

(c1) A1 = −I ,

(c2) A1
2 = −A1, A1A2 = −A2 ,

(d) (a1, a2) = (1,−1) and one of the following matrix equalities:

(d1) A1 = I ,

(d2) A1
2 = A1, A1A2 = A2 ,

(e) (a1, a2) = (−1, 2) and one of the following matrix equalities:

(e1) A1
2 = I, A2=

1
2 (I +A1) ,

(e2) A2=
1
2 (A1

2 +A1) ,
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(f) (a1, a2) = (1, 2) and one of the following matrix equalities:

(f1) A1
2 = I, A2=

1
2 (I −A1) ,

(f2) A2=
1
2 (A1

2 −A1) ,

(g) (a1, a2) ∈
{
( 12 ,

1
2 ), (−

1
2 ,

1
2 )
}

and A2
1 = A2 ,

(h) a1, a2 ∈ C∗ with a1 + a2 = 0 or a1 + a2 = 1 ; A1 = A2 ,

(i) a1, a2 ∈ C∗ with a1 − a2 = 0 or a1 − a2 = −1 ; A1 = −A2 .

If we consider the matrix identities that satisfy the condition A2
1 ̸= ±A1 in Corollary 2.8, then we immediately

get the following result.

Corollary 2.9 (Corollary 2.5, [19], The item (a) of Theorem 1, [3]) Let A1 be an essentially tripotent
matrix and let A2 be a nonzero idempotent matrix such that A1A2 = A2A1 . The linear combination of the
form a1A1 + a2A2 is an idempotent matrix if and only if any of the following sets of conditions holds:

(i) (a1, a2) = (1, 1) and A1A2 = 1
2 (A1 −A2

1) ,

(ii) (a1, a2) = (1, 2) and A2 = 1
2 (A

2
1 −A1) ,

(iii) (a1, a2) = (−1, 1) and A1A2 = 1
2 (A1 +A2

1) ,

(iv) (a1, a2) = (−1, 2) and A2 = 1
2 (A

2
1 +A1) ,

(v) (a1, a2) ∈ {( 12 ,
1
2 ), (−

1
2 ,

1
2 )} and A2 = A2

1 .

If we consider the matrix identities that satisfy the conditions A2
1 = A1 and A1 ̸= A2 in Corollary 2.8,

then we simply obtain the following result.

Corollary 2.10 (Theorem (i), [2]) Let A1 and A2 be two different nonzero idempotent matrices that com-
mute. Let A3 be their linear combination of the form A3 = a1A1 + a2A2 with a1, a2 ∈ C∗ . Then there are
exactly three situations, where A3 is an idempotent matrix:

(i) (a1, a2) = (1, 1) , A1A2 = 0 ,

(ii) (a1, a2) = (1,−1) , A1A2 = A2 ,

(iii) (a1, a2) = (−1, 1) , A1A2 = A1 .

If (α1, β1, γ1) ∈ {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)} , (α2, β2) ∈ {(1,−1), (−1, 1)} ,
and (α3, β3) ∈ {(1, 0), (0, 1)} in Theorem 2.7, then we easily get the following result.

Corollary 2.11 Let A1, A2 ∈ Cn be a tripotent and an involutive matrix, respectively, such that A1A2 = A2A1 ,
and let A = a1A1 + a2A2 where a1, a2 ∈ C∗ . Then A is idempotent if and only if any of the following sets of
conditions holds:
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(a) (a1, a2) = (1, 1) and one of the following matrix equalities:

(a1) A2
1 = A1 = 1

2 (I −A2) ,

(a2) A2
1 = −A1 , A2 = I ,

(a3) A1 +A2 = I +A1A2 , A1A2 = −A2
1 ,

(a4) A2
1 +A1 = I −A2 ,

(a5) A2
1 = A1 , 2A1 +A2 = I ,

(a6) A1 +A2 = I +A1A2 ,

(b) (a1, a2) = (−1, 1) and one of the following matrix equalities:

(b1) A2
1 = −A1 = 1

2 (I −A2) ,

(b2) A2
1 = A1 , A2 = I ,

(b3) −A1 +A2 = I −A1A2 , A1A2 = A2
1 ,

(b4) A2
1 −A1 = I −A2 ,

(b5) A2
1 = −A1 , 2A1 −A2 = −I ,

(b6) −A1 +A2 = I −A1A2 ,

(c) (a1, a2) = (1,−1) and one of the following matrix equalities:

(c1) A2
1 = A1 = 1

2 (I +A2) ,

(c2) A2
1 = −A1 , A2 = −I ,

(c3) A1 −A2 = I −A1A2 , A1A2 = A2
1 ,

(c4) A2
1 +A1 = I +A2 ,

(c5) A2
1 = A1 , 2A1 −A2 = I ,

(c6) A1 −A2 = I −A1A2 ,

(d) (a1, a2) = (−1,−1) and one of the following matrix equalities:

(d1) A2
1 = −A1 = 1

2 (I +A2) ,

(d2) A2
1 = A1 , A2 = −I ,

(d3) −A1 −A2 = I +A1A2 , A1A2 = −A2
1 ,

(d4) A2
1 −A1 = I +A2 ,
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(d5) A2
1 = −A1 , 2A1 +A2 = −I ,

(d6) −A1 −A2 = I +A1A2 ,

(e) (a1, a2) = (2, 1) and one of the following matrix equalities:

(e1) A2
1 = A1 = 1

2 (I −A2) ,

(e2) A1A2 = −A2
1 ,

(e3) A2
1 = A1 , 2A1 +A2 = I ,

(f) (a1, a2) = (−2, 1) and one of the following matrix equalities:

(f1) A2
1 = −A1 = 1

2 (I −A2) ,

(f2) A1A2 = A2
1 ,

(f3) A2
1 = −A1 , 2A1 −A2 = −I ,

(g) (a1, a2) = (2,−1) and one of the following matrix equalities:

(g1) A2
1 = A1 = 1

2 (I +A2) ,

(g2) A1A2 = A2
1 ,

(g3) A2
1 = A1 , 2A1 −A2 = I ,

(h) (a1, a2) = (−2,−1) and one of the following matrix equalities:

(h1) A2
1 = −A1 = 1

2 (I +A2) ,

(h2) A1A2 = −A2
1 ,

(h3) A2
1 = −A1 , 2A1 +A2 = −I ,

(i) (a1, a2) = ( 12 ,
1
2 ) and one of the following matrix equalities:

(i1) A2
1 = I , I +A1A2 = A1 +A2 ,

(i2) A2
1 = A2 = I ,

(j) (a1, a2) = (− 1
2 ,

1
2 ) and one of the following matrix equalities:

(j1) A2
1 = I , I −A1A2 = −A1 +A2 ,

(j2) A2
1 = A2 = I ,

(k) (a1, a2) = ( 12 ,−
1
2 ) and one of the following matrix equalities:

(k1) A2
1 = I , I −A1A2 = A1 −A2 ,
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(k2) A2
1 = −A2 = I ,

(l) (a1, a2) = (− 1
2 ,−

1
2 ) and one of the following matrix equalities:

(l1) A2
1 = I , I +A1A2 = −A1 −A2 ,

(l2) A2
1 = −A2 = I ,

(m) a1, a2 ∈ C∗ with a1 + a2 = 0 ; A1 = A2 ,

(n) a1, a2 ∈ C∗ with a1 − a2 = 0 ; A1 = −A2 .

If we consider the matrix identities that satisfy the conditions A2
1 = I and A1 ̸= ±A2 in Corollary 2.11,

then we get the following result.

Corollary 2.12 (Theorem 2.2 (i), [20]) Let A1 and A2 be two involutive matrices with A1 ̸= ±A2 and
A1A2 = A2A1 . Consider linear combination A3 = a1A1 + a2A2 with a1, a2 ∈ C∗ . The matrix A3 is an
idempotent matrix if and only if any of the following sets of additional conditions holds:

(i) (a1, a2) = (− 1
2 ,−

1
2 ) and −A1 −A2 = I +A1A2 ,

(ii) (a1, a2) = ( 12 ,
1
2 ) and A1 +A2 = I +A1A2 ,

(iii) (a1, a2) = (− 1
2 ,

1
2 ) and −A1 +A2 = I −A1A2 ,

(iv) (a1, a2) = ( 12 ,−
1
2 ) and A1 −A2 = I −A1A2 .

If (α1, β1, γ1) ∈ {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)} , (α2, β2) ∈ {(1, 0), (0, 1)} ,
and (α3, β3) ∈ {(1,−1), (−1, 1)} in Theorem 2.7, and we consider the matrix identities that satisfy A2

1 = A1 ,
then we get Corollary 2.5 (i) in [18].

If (α1, β1, γ1) ∈ {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)} , (α2, β2) ∈ {(1,−1), (−1, 1)} ,
and (α3, β3) ∈ {(1,−1), (−1, 1)} in Theorem 2.7, then we get Corollary 2 in [9].

If (α1, β1, γ1) ∈ {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)} , (α2, β2) ∈ {(1, 0), (0, 1)} ,
and (α3, β3) ∈ {(1,−1), (−1, 1)} in Theorem 2.7, and we consider the matrix identities that satisfy A2

1 = −A1

and A1 ̸= ±A2 , then we get Corollary 3 in [9].
If (α1, β1, γ1) ∈ {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)} , (α2, β2) ∈ {(1, 0), (0, 1)} ,

and (α3, β3) ∈ {(1,−1), (−1, 1)} in Theorem 2.7, and we consider the matrix identities that satisfy A2
1 = I and

A1 ̸= ±A2 , then we get Corollary 4 in [9].
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