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Abstract: In this paper, we present some relationships between statistical boundedness and statistical monotonicity of
a given sequence and its subsequences. The results concerning statistical boundedness and monotonicity presented here
are also closely related to earlier results regarding statistical convergence and are dealing with the Lebesgue measure
and with the Baire category.
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1. Introduction
The convergence of sequences has undergone numerous generalizations in order to provide deeper insights into
summability theory. The convergence of sequences has different generalizations. One of the most important
generalizations is statistical convergence. This type of convergence has been introduced by Fast [9] by using
asymptotic density and has been studied by many authors in various directions.

Buck [5] has initiated the study of the relationship between the convergence of a given sequence and
the summability of its subsequences. Later Agnew [1], Buck [6], Buck and Pollard [7], Miller and Orhan [14],
Zeager [16] have studied this relation changing the concept of convergence. Also, Dawson [8] and Fridy [10]
have studied analogous results by replacing subsequences with stretching and rearrangements, respectively.

The concept of statistical boundedness was first introduced by Fridy and Orhan [12]. Theorems providing
insights into the properties of statistical boundedness and its relation to statistical convergence were proved by
Tripathy [15], and Bhardwaj and Gupta [3]. Additionally, in an analogous manner, the idea of statistical mono-
tonicity of sequences was discussed by Aytar and Pehlivan [2] and further connected to statistical boundedness
and statistical convergence.

In the present paper, we are concerned with the relationships between the statistical boundedness of a
given sequence and its subsequences in the sense of different measures, Lebesgue measure, and Baire category.
We also obtain a similar set of results regarding statistical monotonicity and subsequences.

Now let us recall some known notions. Let A ⊆ N. If n,m ∈ N, by A(n,m) we denote the cardinality of
the set of numbers i in A such that n ≤ i ≤ m. The numbers
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d(̲A) = lim inf
n→∞

A(1, n)

n
, d̄(A) = lim sup

n→∞

A(1, n)

n

are called the lower and the upper asymptotic density of the set A, respectively. If d(A) = d̄(A) then it is said
that d(A) =d̲(A) = d̄(A) is the asymptotic density of A.

The concept of statistical convergence has been introduced in [9] as follows: Let x = (xn) be a sequence
of real numbers. The sequence x is said to be statistically convergent to a real number L provided that for
every ε > 0 we have d(Aε) = 0, where Aε = {n ∈ N : |xn − L| ≥ ε} . If x = (xn) converges statistically to L,

then we write st− limx = L.

Miller [13] has shown that x = {xn} converges to L statistically if and only if ”almost all” of the
subsequences of x converge to L statistically, by establishing a one-to-one correspondence between the interval
(0, 1] and the collection of all subsequences of the sequence. Namely, if t ∈ (0, 1] , then t has a unique binary
expansion

t =

∞∑
n=1

en(x)2
−n, en(x) ∈ {0, 1} ,

with infinitely many ones. For each t ∈ (0, 1] , let x(t) denote the subsequence of t obtained by the following
rule: xn is in the subsequence if and only if en(t) = 1. Clearly the mapping t → x(t) is a one-to-one onto
mapping between (0, 1] and the collection of all subsequences of x. In [13] it is shown that x = {xn} converges
to L statistically if and only if the set of t ∈ (0, 1] , for which x(t) converges to L statistically has Lebesgue
measure 1 .

Let N denote the set of normal numbers in (0, 1] , i.e. the set of t ∈ (0, 1] , t = 0.t1t2...tn... (binary
representation with infinitely many 1’s) for which the asymptotic density of 1’s (0’s) is exactly 1

2 . It is well
known that m(N) = 1 (see [4]) .

2. Results on statistically bounded sequences

We say that a sequence of reals x = {xn} is statistically bounded if there exists L > 0 such that d({n, |xn| ≥
L}) = 0 . Tripathy [15] proved that x = {xn} is statistically bounded if and only if there exists a sequence
of positive integers n1 < n2 < . . . < nk < . . . for which d({nk : k ∈ N}) = 1 and {xnk

} is bounded. If
d({nk : k ∈ N}) = 1 , we say that {xnk

} is statistically dense in x = {xn} . Bhardwaj and Gupta [3] proved
that x = {xn} is statistically bounded if and only if all of its statistically dense subsequences are statistically
bounded.

Now we give the following theorem essentially showing that almost all subsequences of a statistically
bounded sequence are statistically bounded.

Theorem 2.1 Suppose x = {xn} is a sequence of reals and let X := {t ∈ (0, 1] : x(t) is statistically bounded} .
Then x is statistically bounded if and only if m(X) = 1 , where m denotes the Lebesgue measure.

Proof
First, suppose x is statistically bounded by some positive L . Suppose t ∈ (0, 1] is normal. For n natural

number, let n′ denote the index for which x(t)n coincides with xn′ . Then
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lim
n→∞

|{i, 1 ≤ i ≤ n : |x(t)i| ≥ L}|
n

= lim
n→∞

|{i, 1 ≤ i ≤ n : |x(t)i| ≥ L}|
n′ · n

′

n
≤

lim
n→∞

|{i, 1 ≤ i ≤ n′ : |xi| ≥ L}|
n′ · n

′

n
= 0 · 2 = 0

since x is statistically bounded by L and t is normal. Therefore x(t) is statistically bounded (by L),
whenever t is normal. Since m(N) = 1 , the first part of the theorem is proved.

Now suppose that X has measure 1 .
Since m(X) = 1 implies that m(1 − X) = 1 where 1 − X = {1 − t : t ∈ (0, 1]} , we can fix some

t ∈ X
∩
(1−X)

∩
N . We can now fix a positive L so that both x(t) and x(1− t) are statistically bounded by

L .
Now suppose n is arbitrarily fixed. Let n1 denote the number of 1’s among the first n indices of t , and

n2 the number of 0’s among the first n indices of t .
Then:

|{1 ≤ i ≤ n, |xi| ≥ L}|
n

=

|{1 ≤ i ≤ n1, |(x(t))i| ≥ L}|
n

+
|{1 ≤ i ≤ n2, |(x(1− t))i| ≥ L}|

n
=

|{1 ≤ i ≤ n1, |(x(t))i| ≥ L}|
n1

· n1

n
+

|{1 ≤ i ≤ n2, |(x(1− t))i| ≥ L}|
n2

· n2

n
.

Now if we let n → ∞ , we have that n1 → ∞ , n2 → ∞ , and that n1

n → 1
2 , n2

n → 1
2 .

Hence, since x(t) and x(1− t) are statistically bounded by L , from the above we can conclude that

lim
n→∞

|{1 ≤ i ≤ n, |xi| ≥ L}|
n

= 0

and hence x is statistically bounded. The proof is complete. 2

The following theorem is a consequence of Theorem 2.1.

Theorem 2.2 Suppose x = {xn} is a sequence of reals and let X := {t ∈ (0, 1] : x(t) is statistically bounded} .
Then x is not statistically bounded if and only if m(X) = 0 .

Proof
Since X is tail set, i.e. if t ∈ X and if t′ has the same digits as t except for finitely many, then t′ ∈ X ,

X is nonmeasurable or m(X) = 0 or 1. To show X is measurable:

X =
∪

M∈N

{t ∈ (0, 1] : lim
n→∞

|{i : 1 ≤ i ≤ n, |x(t)i| > M}|
n

= 0}

=
∪

M∈N

∩
j∈N

∪
N∈N

∞∩
n=N

{t ∈ (0, 1] :
|{i : 1 ≤ i ≤ n, |x(t)i| > M}|

n
<

1

j
}.
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But for any M, j, n each set

{t ∈ (0, 1] :
|{i : 1 ≤ i ≤ n, |x(t)i| > M}|

n
<

1

j
}

is of the form G \ S where G is an open set and S has Lebesgue measure 0. Therefore X is measurable so
m(X) = 0 or 1. Now by applying Theorem 2.1, the conclusion follows.

2

Now, given a sequence of reals x = {xn} , let us observe the size of the earlier defined X in terms of the
Baire category. The conclusion here is very different. If x is simply bounded, then clearly all of its subsequences
are bounded and therefore also statistically bounded. In every other case, we have the following theorem.

Theorem 2.3 Suppose x = {xn} is an unbounded sequence of reals and let
X := {t ∈ (0, 1] : x(t) is statistically bounded} . Then X is meager i.e. of the first Baire category.

Proof
Since x is unbounded, we can fix a sequence n1 < n2 < ... < ni < ... of integers in N such that xni

→ ∞
or −∞ . Without loss of generality, we can assume that the limit is ∞ .

For m, k ∈ N define

Am,k = {t ∈ (0, 1] : ∃n ≥ m,
|{i : 1 ≤ i ≤ n : |x(t)i| > k}|

n
>

1

2
}.

We will show that Am,k is comeager for m, k ∈ N .
Let m and k be fixed. We will show that Am,k is comeager. Let t = (t1, t2, ..., td) be an arbitrary fixed

finite sequence of 0′s and 1′s . It is sufficient to show that there exists a finite extension t∗ of t such that every
t ∈ [0, 1) starting with t∗ is in Am,k . Now fix i so that ni > d and xnj

> k for j ≥ i . Fix s such that s > ni

and s > m .
Consider the following extension of t

t∗ = (t1, t2, ..., td, ..., tni
, ..., tni+s

)

where for j > d : tj = 1 for j ∈ {ni, ni+1, ni+2..., ni+s} and tj = 0, otherwise . Then it is easy to see that
every t ∈ [0, 1) that extends t∗ is in Am,k . Hence Am,k is comeager.

Now we can conclude that
∩

k

∩
m Am,k is comeager. Also if t ∈

∩
k

∩
m Am,k , clearly x(t) is not

statistically bounded. Therefore X and
∩

k

∩
m Am,k are disjoint and consequently X is meager.

2

3. Results on statistically monotone sequences

A sequence x = {xn} will be called increasing (decreasing) if xn ≤ xn+1 ( for xn ≥ xn+1 ) for n ∈ N respectively.
The notion of statistical monotonicity of a sequence was discussed by Aytar and Pehlivan [2] as follows. We
will say that x = {xn} is statistically increasing (decreasing) if there exists a subsequence of x , x(t) , where
t = 0.t1t2 . . . ti . . . ∈ (0, 1] is such that x(t) is increasing (decreasing) and d({i : ti = 1}) = 1 . In this case,
we say that x is statistically monotone and that x(t) is statistically dense in x (as was mentioned earlier).
Now we give the following theorem essentially showing that almost all subsequences of a statistically increasing
(decreasing) sequence are statistically increasing (decreasing).
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Theorem 3.1 Suppose x = {xn} is a sequence of reals and let X := {t ∈ (0, 1] : x(t) is statistically increasing} .
Then x is statistically increasing if and only if m(X) = 1 , where m denotes the Lebesgue measure. The same
statement is true if we replace statistically increasing with statistically decreasing.

Proof
Suppose x is statistically increasing. Then we can fix n1 < n2 < . . . nk < nk+1 . . . so that xnk

is
increasing and d({nk : k ∈ N}) = 1 . Let N1 = {nk : k ∈ N} . Let N2 = N \N1 . Clearly d(N2) = 0 .

Suppose t ∈ (0, 1] is normal. For n natural number, let n′ denote the index for which x(t)n coincides
with xn′ . Then

lim
n→∞

|{i, 1 ≤ i ≤ n : i′ ∈ N2}|
n

= lim
n→∞

|{i, 1 ≤ i ≤ n : i′ ∈ N2}|
n′ · n

′

n
≤

lim
n→∞

|{i, 1 ≤ i ≤ n′ : i ∈ N2}|
n′ · n

′

n
= 0 · 2 = 0

since d(N2) = 0 and t is normal. Hence d({n : n′ ∈ N2}) = 0 , and consequently d({n : n′ ∈ N1}) = 1 . Since
x(t)n : n′ ∈ N1 is increasing, it follows that x(t) is statistically increasing. Now since the set N of all normal
t has measure 1 , it follows that m(X) = 1 .

Now suppose that X has Lebesgue measure 1 . Suppose, contrary to what we want to show that x is
not statistically increasing.

Similar to an earlier argument, since X has measure 1 , we can fix t ∈ (0, 1] , t normal such that
t, 1 − t ∈ X . Let y = ym denote the statistically dense subsequence of x(t) that is increasing and z = zn

denote the statistically dense subsequence of x(1 − t) that is increasing. Easily y and z are also normal as
subsequences of x i.e. they correspond to normal numbers in (0, 1] , and they are mutually disjoint. Without
loss of generality we can assume that y and z are complements of each other in x (i.e. y = x(t′), z = x(1− t′)

for some normal t′ ∈ (0, 1]), since we can replace x with a statistically dense subsequence and this will not
affect the course of the argument.

Now introduce the following notation. For m , let m′ be the index for which ym coincides with xm′ and
similarly for n , let n′′ be the index for which zn coincides with x′′

n .
We say that ym and zn are out of order in the first sense if m′ < n′′ and ym > zn and we say that ym

and zn are out of order in the second sense if m′ > n′′ and ym < zn .
Now let m1 be the smallest index such that there exists n , for which ym1

and zn are out of order in the
first sense. Let n1 be the smallest index n for which m′

1 < n′′ . Since z is increasing, automatically ym1
> zn1

.
Next, m2 be the smallest index such that there exists n > n1 , for which ym2 and zn are out of order in the first
sense. Let n2 be the smallest index n > n1 for which m′

2 < n′′ . Again automatically ym2 > zn2 . We continue
constructing m1 < m2 < < mk . . . , n1 < n2 < < nk . . . so that mk be the smallest index such that there
exists n > nk−1 , for which ymk

and zn are out of order in the first sense, and nk is the smallest n > nk−1 for
which m′

k < n′′ , and automatically ymk
> znk

.
Likewise we can construct p1 < p2 < < pk . . . , q1 < q2 < < qk . . . so that pk be the smallest index such

that there exists q > qk−1 , for which yq and zpk
are out of order in the second sense, and qk is the smallest

such index.
Easily, since y and z are increasing the sets

∪
k{ymk

, znk
} and

∪
k{zpk

, yqk} are disjoint. If we remove
the terms from

∪
k{ymk

, znk
} and

∪
k{zpk

, yqk} from x it is easy to see that the remaining subsequence of x
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is increasing. If both sets
∪

k{m′
k, n

′′
k} ,

∪
k{p′k, q′′k} have asymptotic density 0 then the remaining subsequence

of x would be statistically dense in x and be increasing so x would be statistically increasing, a contradiction.
Therefore, at least one of

∪
k{m′

k, n
′′
k} ,

∪
k{p′k, q′′k} has positive upper asymptotic density. Without loss of

generality assume that

d̄(
∪
k

{m′
k, n

′′
k}) > 0.

From the previous construction and the fact that y = x(t′), z = x(1 − t′) for some normal t′ ∈ (0, 1] , we can
easily conclude that there exist δ > 0 and N1 < N2 < < Nj . . . . such that

lim
j→∞

|{k : m′
k < n′′

k < Nj}|
Nj

= δ.

By the law of large numbers we can then conclude that for almost all t ∈ (0, 1] , x(t) satisfies

lim sup
i→∞

|{k : ymk
, znk

are contained among (x(t))1, (x(t))2, . . . (x(t))i}|
i

≥ δ

4
.

Let X ′ denote the set of such t , m(X ′) = 1.

Suppose t ∈ X ′ is fixed. Then there exist M1 < M2 < . . . < Mj . . . such that

lim
j→∞

|{k, ymk
, znk

are contained among (x(t))1, (x(t))2, . . . (x(t))Mj
}|

Mj
= ϵ ≥ δ

4
.

Suppose x(t)il is an increasing subsequence of x(t) . From the above,

lim inf
j→∞

The number of x(t)il contained in(x(t))1, (x(t))2, . . . (x(t))Mj

Mj
≤ 1− ϵ.

Hence d({i1, i2, . . . , il, . . .}) ≤ 1 − ϵ < 1 and we conclude that any increasing subsequence of x(t) is not
statistically dense in x(t) . Hence x(t) is not statistically increasing for t ∈ X ′ . But m(X ′) = 1 a contradiction
since m(X) = 1 . Therefore assuming that x is not statistically increasing leads to a contradiction in completing
the proof of the second part.

Since the argument for the statistically decreasing case is analogous, the proof is complete.
2

Now, given a sequence of reals x = {xn} , let us observe the size of the set X defined in Theorem 3.1 in
terms of Baire category. The conclusion here is similar to the one in Theorem 2.3. If x is simply increasing (or
decreasing) from some index on, then clearly all of its subsequences are increasing (or decreasing) from some
index on and therefore also statistically increasing (decreasing). In every other case, we have the following
theorem.

Theorem 3.2 Suppose x = {xn} is a sequence of reals that is not monotone from some index on and let
X := {t ∈ (0, 1] : x(t) is statistically monotone} . Then X is meager i.e. of the first Baire category.

Proof

3405



MILLER-VAN WIEREN/Turk J Math

Since x is not monotone from some index on and therefore not increasing from some point on, we can fix

n1 < n2 < . . . < n2k−1 < n2k . . .

, k ∈ N , such that xn2k−1
> xn2k

.
For m ∈ N define Am as the set of t ∈ (0, 1] for which:

There exists k, n2k−1 > m , such that for j , n2k−1 ≤ j ≤ n2(k+n2k−1) :
tj = 1 for j = n2i−1, j = n2i, k ≤ i ≤ k + n2k−1 and;
tj = 0 otherwise .

We will show that Am is comeager for m ∈ N .
Let m be fixed. Let t = (t1, t2, ..., td) be an arbitrary fixed finite sequence of 0′s and 1′s . It is sufficient

to show that there exists a finite extension t∗ of t such that every t ∈ [0, 1) starting with t∗ is in Am . Now fix
k so that n2k−1 > m, d .

Consider the following extension of t

t∗ = (t1, t2, ..., td, ..., tn2k−1
, ..., tn2k

, ..., tn2(k+n2k−1)−1
, ..., tn2(k+n2k−1))

where for d < j ≤ n2(k+n2k−1) :
tj = 1 for j = n2i−1, j = n2i, k ≤ i ≤ k + n2k−1 and;
tj = 0 otherwise .

Then it is easy to see that every t ∈ [0, 1) that extends t∗ is in Am . Hence Am is comeager. Now∩
m Am is comeager. It is easy to see that if t ∈

∩
m Am , x(t) cannot contain a statistically dense increasing

subsequence and hence is not statistically increasing. Therefore the set of t ∈ (0, 1] , x(t) is not statistically
increasing is comeager. In a similar manner, we can show that the set of t ∈ (0, 1] , x(t) is not statistically
decreasing is comeager. Consequently, the set of t ∈ (0, 1] , x(t) is not statistically monotone is comeager (as
an intersection of two comeager sets), so the theorem is proved.

2
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