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Abstract: In the present paper, we consider the semigroup On,p of all order-preserving full transformations α on an
n-elements chain Xn , where p ∈ Xn is the only fixed point of α . The nilpotent semigroup On,p was first studied by
Ayik et al. in 2011. Moreover, On,1 is the maximal nilpotent subsemigroup of the Catalan Monoid Cn . Its rank is
the difference of the (n − 1)th and the (n − 2)th Catalan number. The aim of the present paper is to provide further
fundamental information about the nilpotent semigroup On,p . We will calculate the rank of On,p for p > 1 and provide
a semigroup presentation for On,1 .
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1. Introduction
The full transformation semigroup Tn on an n -elements set Xn = {1, 2, . . . , n} is the set of all transformations
(i.e. self maps) Xn → Xn of Xn with composition of transformations as multiplication. It is well known
that every finite semigroup is isomorphic to a subsemigroup of a suitable finite transformation semigroup (the
analogue of the Cayley’s theorem for finite groups). Hence, the transformation semigroups have an important
role in semigroup theory, as the symmetric groups in group theory. Various properties of Tn are known and
many subsemigroups of Tn are studied. Among the most studied subsemigroups of Tn is the monoid On of
all order-preserving transformations on the chain Xn = {1 < 2 < · · · < n} . A transformation α ∈ Tn is called
order-preserving if x < y implies xα ≤ yα . The monoid On has long been considered in the literature. In
particular, the rank of monoid On is n (see [7]). The rank of a semigroup S is the minimal size of a generating
set for S , i.e. rank(S) = min{|G| : 〈G〉 = S} . Aĭzenštat (1962) exhibited presentations for On (see [1]). If
Y is a set then we denote by Y + the free semigroup on Y . If R ⊆ Y + × Y + , then we denote by R# the
congruence on Y + generated by R . To say that a semigroup S has semigroup presentation 〈Y | R〉 is to
say that S ∼= Y +/R# or, equivalently, that there is a semigroup epimorphism φ : Y + → S with kernel R#

(i.e. kerφ = {(x, y) ∈ Y + × Y + : xφ = yφ} = R# ). If φ is such an epimorphism, then we say that S has
presentation 〈Y | R〉 via φ . The elements of Y are called generators and the elements of R are called relations.
In practice, a relation (x, y) ∈ R will be written as x ≈ y .
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Besides the already mentioned fundamental paper by Aĭzenštat [1], in 2010, East has given a presentation
for the singular part of Tn , i.e. for Tn \Sn , where Sn is the symmetric group on Xn [4]. In the literature, one
can find presentations for several semigroups of partial transformations (see, e.g., [5, 6]).

A subset A ⊆ Xn is called invariant for a transformation α ∈ Tn if Aα = {xα : x ∈ A} ⊆ A . In
1966, Magill Jr. has considered the monoid Tn(A) = {α ∈ Tn : Aα ⊆ A} [12]. However, the elements
in A do not have to be included in the set Fix(α) = {x ∈ Xn : xα = x} of all fixed points of α . The
number |{α ∈ On : |Fix(α)| = r}| of all transformations on On with r fixed points, for a fixed positive integer
r , was given by Higgins in 1993 in [9]. Honyam and Sanwong have studied the semigroup Fix(Xn, a) of all
α ∈ Tn such that A ⊆ Fix(α) , for a fixed set A ⊆ Xn [10]. They have shown that Fix(Xn, a) is a regular
monoid. Chinram and Yonthanthun have given a necessary and sufficient condition that Fix(Xn, a) is left-
regular and right-regular, respectively [3]. If we restrict ourselves to the case that Fix(α) = A , we miss that
the corresponding semigroup is a monoid, whence A 6= Xn . In [2], the cardinality of the semigroup

On,A = {α ∈ On : Fix(α) = A}

was determined by Ayik et al.. This paper extends the considerations about the cardinalities of semigroups of
order-preserving transformations on a finite set in [9]. We will write On,p instead of On,A , whenever A is the
singleton set {p} (A = {p}) for some p ∈ Xn . However, in [9], algebraic properties of On,A are not studied.
The study of the nilpotent semigroup On,p gives more information about the subsemigroups of the well studied
monoid On . In the present paper, we will study algebraic properties of On,p . We will calculate the ranks and
give a presentation for On,1 . The transformations in On,p can be described as follows:

Proposition 1.1 ([2], Proposition 4) Let p ∈ Xn and let α ∈ On,p .
i) If 1 ≤ x < p , then x+ 1 ≤ xα .
ii) If p < x ≤ n , then xα ≤ x− 1 .

By Proposition 1.1, it is easy to verify that (p− 1)α = p (whenever p > 1) and (p+ 1)α = p (whenever
p < n).

An element a of a finite semigroup S with 0 is called nilpotent if am = 0 for some positive integer
m . The set of all nilpotent elements of S is denoted by N(S) . The semigroup S with 0 is called nilpotent if
Sm = {0} for some positive integer m . It is a well known fact that S is nilpotent if and only if N(S) = S (see
[8]). In the present paper, we deal with nilpotent semigroups. Let cx be the constant map to x , for x ∈ Xn .

In particular, the semigroup On,1 is already well studied because it is the maximal nilpotent subsemigroup
of the Catalan Monoid Cn . A transformation α ∈ Tn is called order-deceasing if xα ≤ x for all x ∈ Xn .
The set of all order-decreasing transformations in Tn is a denoted by Dn , which is a subsemigroup of Tn .
The subsemigroup Cn = On ∩ Dn is called Catalan Monoid since its cardinality is the nth Catalan number

Cn = 1
n+1

(
2n
n

)
= 1

n

(
2n
n− 1

)
, where C0 = 1 (see [14]). We observe that c1 is the zero element in Cn .

Moreover, an element α ∈ Cn is nilpotent if and only if Fix(α) = {1} (see [11], Lemma 2.2). From [2],
Proposition 4, we have the fact On,1 = N(Cn) .

Lemma 1.2 On,p is a nilpotent semigroup.
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Proof Since On,1 is equal to the nilpotent semigroup N(Cn) , it is enough to consider the case p ≥ 2 . Let
α ∈ On,p . By Proposition 1.1, using 1α ≥ 2 and (p−1)α = (p+1)α = p , we can conclude that xαp−1 = p for all
x ∈ {1, . . . , p−2} and xαn−p = p for all x ∈ {p+2, . . . , n} . This shows that xαm = p for m = max{p−1, n−p} .
Consequently, we have αm = cp . We obtain N(On,p) = On,p , i.e. On,p is a nilpotent semigroup with zero
element cp . 2

It is easy to verify that On,r and On,n−r+1 are isomorphic for r ∈ {1, . . . ,
⌊
n
2

⌋
} . In particular, On,1 and

On,n are isomorphic. Thus, we get

Lemma 1.3 ([2]) |On,1| = |On,n| = Cn−1 .

In general, it holds:

Lemma 1.4 ([2], Lemma 6) |On,p| = Cp−1Cn−p .

Using the fact that On,1 = N(Cn) , where rank(N(Cn)) = Cn−1 − Cn−2 ([15], Theorem 2), we obtain

Proposition 1.5 ([15]) rank(On,1) = rank(On,n) = Cn−1 − Cn−2 .

As On,1 and On,n , we can show that On,2 and On−1,1 are isomorphic.

Lemma 1.6 On,2 and On−1,1 are isomorphic.

Proof Let φ : On,2 → On−1,1 with x(αφ) = (x + 1)α − 1 for all x ∈ {1, . . . , n − 1} = Xn−1 and α ∈ On,2 .
Firstly, we show that φ maps into On−1,1 . Let α ∈ On,2 . Then 1(αφ) = (1 + 1)α− 1 = 2− 1 = 1 . Moreover,
for x < y ∈ Xn−1 , we have x(αφ) = (x + 1)α − 1 ≤ (y + 1)α − 1 = y(αφ) ≤ n − 1 . Further, we have
x(αφ) = (x+ 1)α− 1 < x+ 1− 1 = x for all x ∈ {2, 3, 4, . . . , n− 1} . This shows that αφ ∈ On−1,1 .

On the other hand, for α ∈ On−1,1 , let α ∈ Tn with 1α = 2 and xα = (x − 1)α + 1(≤ n) for all
x ∈ {2, . . . , n} . We have 2α = (2 − 1)α + 1 = 1 + 1 = 2 . It is routine to show that α is order-preserving and
xᾱ < x for x ∈ {2, . . . , n} , so α ∈ On,2 . Further, we have x(αφ) = (x+ 1)α− 1 = (x+ 1− 1)α+ 1− 1 = xα

for x ∈ Xn−1 , i.e. αφ = α , which provides that φ is surjective. Next, we verify that φ is injective. Let α, β ∈
On,2 with αφ = βφ . For x ∈ Xn−1 , the assumption xαφ = xβφ implies (x+ 1)α = (x+ 1)β . Moreover, we
have 1α = 2 = 1β , which completes the argumentation that α = β .

Finally, let α, β ∈ On,2 . Then for x ∈ Xn−1 , we have x((αβ)φ) = (x+1)αβ−1 = (((x+1)α−1)+1)β−1 =

((x+ 1)α− 1)(βφ) = (x(αφ))(βφ) . This shows that (αβ)φ = (αφ)(βφ) , which completes the proof. 2

2. Rank of On,p

As already mentioned, the rank of On,1 as well as the rank of On,n is Cn−1 − Cn−2 . Since On,2 is isomorphic
to both On−1,1 and On,n−1 , we can conclude that rank(On,2) = rank(On,n−1) = Cn−2 − Cn−3 . Since On,p is
a nilpotent semigroup, we have rank(On,p) =

∣∣On,p \O2
n,p

∣∣ (see [13], Lemma 2.1). Let

Gn,p = {α ∈ On,p : |xα− x| = 1 for at least one x ∈ Xn \ {p− 1, p+ 1}}

and we will show that On,p \O2
n,p = Gn,p . For this, we show first that O2

n,p ∩Gn,p = ∅ .
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Lemma 2.1 If α, β ∈ On,p , then αβ /∈ Gn,p .

Proof Assume that there are α, β ∈ On,p such that αβ ∈ Gn,p . Then there is x ∈ Xn\{p− 1, p, p+ 1} such
that |xαβ − x| = 1 .

If x < p−1 , then xα ≥ x+1 by Proposition 1.1, where x+1 < p . This implies xαβ ≥ (x+1)β ≥ x+2 .
Thus, xαβ − x ≥ x+ 2− x = 2 , a contradiction.

If x > p+ 1 , then xα ≤ x− 1 by Proposition 1.1, where x− 1 > p . Thus, xαβ ≤ (x− 1)β ≤ x− 2 , i.e.
xαβ − x ≤ x− 2− x = −2 , a contradiction. 2

Proposition 2.2 On,p \O2
n,p = Gn,p .

Proof By Lemma 2.1, we can conclude that On,p \O2
n,p ⊇ Gn,p . In order to show the converse inclusion, we

verify that α ∈ O2
n,p for all α ∈ On,p \Gn,p . Let α ∈ On,p\Gn,p . We define α∗ : Xn → Xn by

xα∗ =

 xα− 1 for x ≤ p− 2;
xα+ 1 for x ≥ p+ 2;
p otherwise .

Since α /∈ Gn,p implies |x− xα| ≥ 2 for all x ∈ Xn\{p− 1, p, p+1} , it is easy to see that α∗ ∈ On,p . We show
that α = α∗γ , where

γ =

(
1 2 3 · · · p− 2 p− 1 p p+ 1 p+ 2 · · · n
2 3 4 · · · p− 1 p p p p+ 1 · · · n− 1

)
.

It is clear that γ ∈ On,p . Let x ∈ Xn . Suppose that x ≤ p − 2 . We have xα∗γ = (xα − 1)γ , where
xα ≤ p since α is order-preserving. If xα = p , then (xα − 1)γ = (p − 1)γ = p = xα . If xα < p , then
(xα− 1)γ = (xα− 1)+1 = xα . Thus, xα∗γ = xα . If x ∈ {p− 1, p, p+1} , then xα = p = pγ = xα∗γ . Suppose
that x ≥ p + 2 . Then xα∗γ = (xα + 1)γ . Since α is order-preserving, we have xα ≥ p . If xα = p , then
xα∗γ = (xα+1)γ = (p+1)γ = p = xα . If xα > p , then xα+1 > p+1 and xα∗γ = (xα+1)γ = (xα+1−1) = xα .

2

Proposition 2.2 shows that α ∈ O2
n,p if and only if |xα− x| ≥ 2 for all x ∈ Xn \ {p − 1, p, p + 1} . We

will use this fact for the calculation of the size of O2
n,p .

Lemma 2.3
∣∣O2

n,p

∣∣ = |On−2,p−1| .

Proof Let α ∈ O2
n,p . We define α∗ ∈ Tn−2 by

xα∗ =

{
xα− 1 for x ≤ p− 1;

(x+ 2)α− 1 for p ≤ x ≤ n− 2.

Clearly, xα∗ ≤ n−1 for all x ∈ Xn−2 . Since |xα− x| ≥ 2 for all x ∈ Xn\{p−1, p, p+1} , we have |xα∗ − x| ≥ 1

for all x ∈ {1, . . . , p−2, p, . . . , n−2} . Moreover, (p−1)α = p implies (p−1)α∗ = (p−1)α−1 = p−1 . Obviously,
α∗ is order-preserving. Hence, we can conclude that α∗ ∈ On−2,p−1 . We define a mapping φ : O2

n,p → On−2,p−1

by αφ = α∗ . It is easy to verify that φ is a bijection, i.e.
∣∣O2

n,p

∣∣ = |On−2,p−1| . 2

Now we are able to calculate the rank of the nilpotent semigroup On,p .
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Theorem 2.4 rank(On,p) = Cp−1Cn−p − Cp−2Cn−p−1 .

Proof Note that rank(On,p) =
∣∣On,p \O2

n,p

∣∣ = |On,p| −
∣∣O2

n,p

∣∣ = |On,p| − |On−2,p−1| by Lemma 2.3. Because

of |On,p| = Cp−1Cn−p and |On−2,p−1| = Cp−2Cn−p−1 by Lemma 1.4, we get rank(On,p) =
∣∣On,p \O2

n,p

∣∣ =

Cp−1Cn−p − Cp−2Cn−p−1 . 2

3. Presentations for On,1

The goal of this section is to give a presentation for On,1 . Let An be set of all mappings g ∈ {0, 1, . . . , n−1}Xn

with 1g = 0 , xg ≥ 1 for x ∈ {2, . . . , n} , where lg = 1 for some l ∈ {3, . . . , n} , and either (x + 1)g ≤ xg or
(x+ 1)g = xg + 1 for all x ∈ {1, . . . , n− 1} .

Lemma 3.1 Let g ∈ An . Then x− xg ≥ 1 for all x ∈ Xn .

Proof We have 1 − 1g = 1 − 0 = 1 . Suppose that x − xg ≥ 1 for some x ∈ Xn and we will show
that (x + 1) − (x + 1)g ≥ 1 . We have (x + 1)g ≤ xg or (x + 1)g = xg + 1 . If (x + 1)g ≤ xg , then
1 ≤ x− xg < x+1− xg ≤ (x+1)− (x+1)g . If (x+1)g = xg+1 , then (x+1)− xg = (x+1)− (x+1)g+1 ;
thus, 1 ≤ x− xg = (x+ 1)− (x+ 1)g . 2

For each g ∈ An , let αg ∈ Tn with

xαg = x− xg for all x ∈ Xn.

Lemma 3.2 Gn,1 = {αg : g ∈ An} .

Proof Let g ∈ An and we will show that αg ∈ Gn,1 . Clearly, 1αg = 1−1g = 1−0 = 1 and |x−xαg| = xg ≥ 1

for all x ∈ {2, 3, . . . , n} . Note that there is l ∈ {3, . . . , n} such that lg = 1 . This provides lαg = l− lg = l− 1 ;
thus, |l − lαg| = 1 .

Next, we show that αg ∈ On,1 , i.e. αg is order-preserving. Let x < y ∈ Xn . Then y = x + k for
some k ∈ Xn . Firstly, we verify that xαg ≤ (x + 1)αg . We have xg ≥ (x + 1)g or (x + 1)g = xg + 1 . If
xg ≥ (x + 1)g , then xαg = x − xg ≤ x − (x + 1)g < (x + 1) − (x + 1)g = (x + 1)αg . If (x + 1)g = xg + 1 ,
then xαg = x − xg = x − (x + 1)g + 1 = (x + 1) − (x + 1)g = (x + 1)αg . By the same arguments, we obtain
xαg ≤ (x+ 1)αg ≤ (x+ 2)αg ≤ · · · ≤ (x+ k)αg , i.e. xαg ≤ yαg .

Therefore, αg ∈ Gn,1 . Altogether, we have shown that {αg : g ∈ An} ⊆ Gn,1 .

For the converse inclusion, let β ∈ Gn,1 and we define gβ ∈ {0, 1, . . . , n− 1}Xn by

xgβ = x− xβ for all x ∈ Xn.

We will show that gβ ∈ An . Clearly, 1gβ = 1 − 1β = 1 − 1 = 0 and xgβ = x − xβ ≥ 1 for all x ∈ {2, . . . , n}
by Proposition 1.1. Further, there is p ∈ {3, . . . , n} such that 1 = p − pβ = pgβ . Let x ∈ {1, . . . , n − 1} with
(x+1)gβ > xgβ . This implies (x+1)−(x+1)β > x−xβ and so 1−(x+1)β > −xβ , i.e. (x+1)β−1 < xβ . Since
β is order-preserving, (x+1)β− 1 < xβ is only possible if (x+1)β = xβ , i.e. (x+1)− (x+1)β = x− xβ+1 .
This shows (x+ 1)gβ = xgβ + 1 . Consequently, gβ ∈ An .
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Finally, since xαgβ = x − xgβ = x − (x − xβ) = xβ , for all x ∈ Xn , we can conclude that β = αgβ ∈
{αg : g ∈ An} . Consequently, we have shown the converse inclusion Gn,1 ⊆ {αg : g ∈ An} , which completes
the proof. 2

Together with Proposition 2.2 we obtain:

Corollary 3.3 {αg : g ∈ An} is a generating set of On,1 .

For g, h ∈ An , let g ⊕ h ∈ {0, 1, 2, . . . , n − 1}Xn with 1(g ⊕ h) = 0, 2(g ⊕ h) = 1 and x(g ⊕ h) =

(x− xg)h+ xg − 1 for x ∈ {3, 4, . . . , n} . Note that 2g = 1 for all g ∈ An .

Lemma 3.4 Let g, h ∈ An . Then g ⊕ h ∈ An .

Proof For x ∈ {3, 4, . . . , n} , we have xg ≥ 1 . If xg = 1 , then x − xg ≥ 2 ; thus, (x − xg)h ≥ 1 . This
provides (x − xg)h + xg − 1 ≥ 1 . If xg > 1 , then xg − 1 ≥ 1 ; thus (x − xg)h + xg − 1 ≥ 1 . We take x = 3 .
Then 3g ∈ {1, 2} by Lemma 3.1. If 3g = 1 , then 3(g ⊕ h) = (3 − 1)h + 1 − 1 = 2h = 1 . If 3g = 2 , then
3(g ⊕ h) = (3− 2)h+ 2− 1 = 1h+ 2− 1 = 1 . Let x ∈ {2, 3, 4, . . . , n− 1} such that (x+ 1)(g ⊕ h) > x(g ⊕ h) .
We show that (x+ 1)(g ⊕ h) = x(g ⊕ h) + 1 .

If xg > (x + 1)g , then xg = r + (x + 1)g for some r ∈ {1, 2, . . . , n} . Then (x + 1)(g ⊕ h) =

(x+1−(x+1)g)h+(x+1)g−1 and x(g⊕h) = (x−xg)h+xg−1 = (x−(r+(x+1)g))h+r+(x+1)g−1 , that is
(x+1−(x+1)g)h > (x−(r+(x+1)g))h+r . Thus, (x+1−(x+1)g)h ≥ (x−(r+(x+1)g))h+r+1 . On the other
hand, we can calculate that (x+1−(x+1)g)h ≤ (x+1−(x+1)g−(r+1))h+(r+1) = (x−(x+1)g−r)h+(r+1) .
This implies (x + 1 − (x + 1)g)h = (x − r − (x + 1)g)h + r + 1 . We get (x + 1 − (x + 1)g)h + (x + 1)g − 1 =

(x− r − (x+ 1)g)h+ r + (x+ 1)g = (x− r − (xg − r))h+ r + xg − r = (x− xg)h+ xg − 1 + 1 = x(g ⊕ h) + 1 .
This implies (x+ 1)(g ⊕ h) = x(g ⊕ h) + 1 .

If xg = (x+ 1)g , then (x+ 1)(g ⊕ h) = (x+ 1− xg)h+ xg − 1 > (x− xg)h+ xg − 1 = x(g ⊕ h) . This
gives (x+1−xg)h > (x−xg)h , i.e. (x+1−xg)h = (x−xg)h+1 . This provides (x+1)(g⊕h) = x(g⊕h)+1 .

If xg < (x + 1)g , i.e. (x + 1)g = xg + 1 , then we can calculate (x + 1)(g ⊕ h) = (x + 1 − (x + 1)g)h +

(x+ 1)g − 1 = (x+ 1− xg − 1)h+ xg + 1− 1 = ((x− xg)h+ xg − 1) + 1 = x(g ⊕ h) + 1 . 2

Let us put ω ∈ {0, 1, 2, . . . , n− 1}Xn with 1ω = 0 and xω = 1 for x ∈ {2, 3, 4, . . . , n} . Clearly, ω ∈ An .

It is useful to determine the product of any transformation in Gn,1 with αω =

(
1 2 3 · · · n
1 1 2 · · · n− 1

)
.

Let us define a mapping f : Xn ∪ {0} → Xn by f(0) = 1 and f(x) = x for x ∈ Xn . In this case, we
write the argument right of the mapping for convenient.

Lemma 3.5 Let g ∈ An . Then

αgαω =

(
1 2 3 4 · · · n
1 1 f(2− 3g) f(3− 4g) · · · f((n− 1)− ng)

)
.

Proof We have 1αgαω = 1αω = 1, 2αgαω = 1αω = 1 , and

xαgαω =

{
x− xg − 1 if x− xg > 1;
1 if x− xg = 1,
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i.e. xαgαω = f(x− xg − 1) , for all x ∈ {3, 4, 5, . . . , n} . 2

For g ∈ An let ĝ ∈ {0, 1, 2, . . . , n − 1}Xn with 1ĝ = 0, 2ĝ = 1 , and xĝ = x − 1 − f(f(x − 1 − xg) − 1)

for x ∈ {3, 4, . . . , n} .

Lemma 3.6 ĝ ∈ An for all g ∈ An .

Proof Let g ∈ An . We have 1ĝ = 0 and 2ĝ = 1 . If x ≥ 3 , then we obtain xĝ = x−1−f(f(x−1−xg)−1) =

x − 1 − x + 1 + xg + 1 = xg + 1 ≥ 1 , whenever f(x − 1 − xg) ≥ 2 and xĝ = x − 1 − 1 ≥ 3 − 2 =

1 , whenever f(x − 1 − xg) = 1 . Further, 3g ∈ {1, 2} implies f(2 − 3g) = 1 and 3ĝ = 2 − f(f(2 −
3g) − 1) = 2 − f(1 − 1) = 2 − 1 = 1 , i.e. 2ĝ = 3ĝ . Let x ∈ {3, . . . , n − 1} with (x + 1)ĝ > xĝ .

Since αĝαω =

(
1 2 3 4 · · · n
1 1 f(f(2− 3g)− 1) f(f(3− 4g)− 1) · · · f(f((n− 1)− ng)− 1)

)
∈ On,1 , we obtain

f(f(x − 1 − xg) − 1) ≤ f(f(x − (x + 1)g) − 1) , −f(f(x − (x + 1)g) − 1) ≤ −f(f(x − 1 − xg) − 1) ; thus,
(x+ 1)ĝ = x− f(f(x− (x+ 1)g)− 1) ≤ x− f(f(x− 1− xg)− 1) = x− 1− f(f(x− 1− xg)− 1) + 1 = xĝ + 1 .
On the other hand, xĝ < (x+ 1)ĝ implies xĝ + 1 ≤ (x+ 1)ĝ . Therefore, we have xĝ + 1 = (x+ 1)ĝ . 2

Now we define an alphabet set Yn = {xg : g ∈ An} and define two sets of relations on Y +
n . Let

R1 = {xgx
2
ω ≈ xĝxω : g ∈ An} and

R2 = {xgxh ≈ xg⊕hxω : g, h ∈ An}.

It is easy to see that |R1| = |An| and |R2| = |An|2 . Since R1 ∩R2 = ∅ , we have

|R1 ∪R2| = |An|+ |An|2 = (1 + |An|) · |An| = (1 + |Gn,1|)|Gn,1| = (1 + Cn−1 − Cn−2)(Cn−1 − Cn−2)

using Lemma 3.2 and Proposition 2.2.
We write ∼ for the congruence on Y +

n generated by R1 ∪ R2 . Note that {αg : g ∈ An} is a generating
set of On,1 (see Corrollary 3.3). We define an epimorphism φ : Yn → On,1 by xgφ = αg for g ∈ An . We aim
to show that kerφ =∼ , so that On,1 has presentation 〈Yn|R1 ∪R2〉 via φ .

Lemma 3.7 We have the inclusion ∼⊆ kerφ .

Proof It is sufficient to show that the relations in R1 ∪R2 hold as equations in On,1 when the variables are

replaced by their images under φ . Note that xωφ = αω =

(
1 2 3 4 · · · n
1 1 2 3 · · · n− 1

)
.

Let g ∈ An , where ĝ ∈ An by Lemma 3.6. Then αgαω =

(
1 2 3 · · · n
1 1 f(2− 3g) · · · f((n− 1)− ng)

)
by Lemma 3.5 and it is easy to verify that αgαω = αh with 1h = 0, 2h = 1 and xh = x − f(x − 1 − xg) for
x ∈ {3, 4, . . . , n} . Now we have

(αgαω)αω = αhαω =

(
1 2 3 · · · n
1 1 f(2− 3 + f(2− 3g)) · · · f(n− 1− n+ f((n− 1)− ng))

)

=

(
1 2 3 4 · · · n
1 1 f(f(2− 3g)− 1) f(f(3− 4g)− 1) · · · f(f((n− 1)− ng)− 1)

)
. On the other hand, Lemma
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3.5 gives

αĝαω =

(
1 2 3 · · · n
1 1 f(2− 2 + f(f(2− 3g)− 1)) · · · f((n− 1)− (n− 1) + f(f((n− 1)− ng)− 1))

)

=

(
1 2 3 4 · · · n
1 1 f(f(2− 3g)− 1) f(f(3− 4g)− 1) · · · f(f((n− 1)− ng)− 1)

)
using f(f(x)) = f(x) for x ∈

Xn . Hence, αgαωαω = αĝαω and we obtain xgx
2
ωφ = xgφxωφxωφ = αgαωαω = αĝαω = xĝφxωφ = xĝxωφ .

Let g, h ∈ An , where g ⊕ h ∈ An by Lemma 3.4. Then we can easily calculate

αgαh =

(
1 2 3 · · · n
1 1 3− 3g − (3− 3g)h · · · n− ng − (n− ng)h

)
.

For x ∈ {3, 4, 5, . . . , n} , we have x − xg − (x − xg)h ≥ 1 since x − xg − (x − xg)h is in the image of
αgαh ∈ On,1 ; thus, f(x− xg − (x− xg)h) = x− xg − (x− xg)h . Hence, xg⊕hxωφ = xg⊕hφxωφ = αg⊕hαω

=

(
1 2 3 · · · n
1 1 f(3− 3g − (3− 3g)h+ 1− 1) · · · f(n− ng − ((n− ng)h) + 1− 1)

)

=

(
1 2 3 4 · · · n
1 1 3− 3g − (3− 3g)h 4− 4g − (4− 4g)h · · · n− ng − (n− ng)h

)
= αgαh = xgφxhφ = (xgxh)φ.

2

Now, we want to show the converse inclusion kerφ ⊆∼ .

Lemma 3.8 Let v1, v2, . . . , vr ∈ {xg : g ∈ An}, r ≥ 2 . Then there is h ∈ An such that v1v2 · · · vr ∼ xhxω .

Proof We prove by induction on r . If r = 2 , then the statement is satisfied by R2 . Suppose that for
v1, v2, . . . , vr ∈ {xg : g ∈ An} , for some integer r ≥ 2 , there is h ∈ An such that v1v2 · · · vr ∼ xhxω .
Let v1, v2, . . . , vr+1 ∈ {xg : g ∈ An} . Then v1(v2v2 · · · vrvr+1) ∼ v1(xhxω) for some h ∈ An . Further,

(v1xh)xω ∼ (xĥxω)xω by R2 , for some ĥ ∈ An . By R1 , there is h̃ ∈ An such that xĥxωxω ∼ xh̃xω , i.e.
v1v2 · · · vrvr+1 ∼ xh̃xω . 2

We put now Ân = {g ∈ An : |x− xg| > 1 for all x ∈ {3, 4, 5, . . . , n}} .

Lemma 3.9 For all h ∈ An , there is g ∈ Ân such that xgxω ∼ xhxω .

Proof Let h ∈ An . Suppose that i − ih = 1 for some i ∈ {3, 4, 5, . . . , n} . Let Q = {x ∈ {3, 4, 5, . . . , n} :

x− xh = 1} 6= ∅ . Then xh ≥ 2 for all x ∈ Q . We put

xg =

{
xh if x /∈ Q;
xh− 1 if x ∈ Q.

We have to show that g ∈ An .
We have 1g = 1h = 0 and for x ∈ {2, . . . , n} ,

xg =

{
xh 6= 0 if x /∈ Q;
xh− 1 ≥ 2− 1 = 1 6= 0 if x ∈ Q.
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There is l ∈ {3, 4, 5, . . . , n} such that lh = 1 , i.e. |l − lh| 6= 1 and l /∈ Q . Thus, lg = lh = 1 . Let
x ∈ {2, 3, 4, . . . , n− 1} such that (x+ 1)g > xg . Then we have the following cases:
Case a: xg = xh . Assume that (x+ 1)g = (x+ 1)h− 1 . Then (x+ 1)h− 1 = (x+ 1)g > xg = xh . This gives
(x+1)h > (x+1)h−1 > xh , i.e. (x+1)h = xh+1 . However, (x+1)h = (x+1)h−1+1 > xh+1 = (x+1)h .
This is a contradiction. Hence, (x + 1)g = (x + 1)h . Thus, (x + 1)h > xh , i.e. (x + 1)h = xh + 1 ; therefore,
(x+ 1)g = (x+ 1)h = xh+ 1 = xg + 1 .
Case b: (x + 1)g = (x + 1)h and xg = xh − 1 , i.e. (x + 1)h ≥ xh . This implies that (x + 1)h = xh or
(x + 1)h = xh + 1 . If (x + 1)h = xh + 1 , then 1 = x + 1 − (x + 1)h = x + 1 − xh − 1 = x − xh ≥ 2 ,
a contradiction. Thus, we have (x + 1)h = xh . This means that (x + 1)g = (x + 1)h = xh and then
(x+ 1)g = xg + 1 .
Case c: xg = xh−1 and (x+1)g = (x+1)h−1 . Then (x+1)g > xg implies (x+1)h > xh , i.e. (x+1)h = xh+1 ,
(x+ 1)h− 1 = xh− 1 + 1 ; thus, (x+ 1)g = xg + 1 .

Altogether, this shows that g ∈ An .

Let x ∈ {3, 4, 5, . . . , n} . If x /∈ Q , then x−xg = x−xh > 1 . If x ∈ Q , then x−xg = x−xh+1 = 2 > 1 .

This means that x− xg > 1 for all x ∈ {3, 4, 5, . . . , n} . Therefore, g ∈ Ân .

Next, we show that xgxω ∼ xhxω . We have xhxω ≈ xh⊕ωxω ∈ R2 and xgxω ≈ xg⊕ωxω ∈ R2 . If x ∈ Q ,
then x−xh = 1 and x−xg = x−xh+1 = 2 . This gives (x−xh)ω+xh−1 = 0+xh−1 = xh−1 = 1+xh−1−1 =

1 + xg − 1 = (x− xg)ω + xg − 1 . If x /∈ Q , then xh = xg and (x− xh)ω + xh− 1 = (x− xg)ω + xg − 1 . This
provides xh⊕ωxω = xg⊕ωxω . Then we obtain xhxω ∼ xgxω by transitivity. 2

We define a function µ : Ân → On,1 by g 7→ αgαω for all g ∈ Ân .

Lemma 3.10 µ is an injection from Ân into On,1 \Gn,1 .

Proof We show that µ is a function from Ân to On,1\Gn,1 . For this, we take g ∈ Ân such that
gµ = αgαω ∈ On,1 . This shows that αgαω /∈ Gn,1 by Lemma 2.1.

We show µ is injective. For this, let g1, g2 ∈ Ân such that g1µ = g2µ . By Lemma 3.5, we have

g1µ = αg1αω =

(
1 2 3 4 · · · n
1 1 f(3− 3g1 − 1) f(4− 4g1 − 1) · · · f(n− ng1 − 1)

)
and

g2µ = αg2αω =

(
1 2 3 4 · · · n
1 1 f(3− 3g2 − 1) f(4− 4g2 − 1) · · · f(n− ng2 − 1)

)
. For x ∈ {3, 4, 5, . . . , n} , we

have x− xg1 > 1 and x− xg2 > 1 , this means x− xg1 − 1 = f(x− xg1 − 1) = f(x− xg2 − 1) = x− xg2 − 1 .
Hence xg1 = xg2 . Altogether, we have xg1 = xg2 for all x ∈ Xn , that means g1 = g2 . 2

Theorem 3.11 The semigroup On,1 has presentation 〈Yn|R1 ∪R2〉 via φ .

Proof By Lemma 3.7, we have ∼⊆ kerφ . It remains to show that kerφ ⊆∼ . For this, let (w1, w2) ∈ kerφ .

By Lemmas 3.8 and 3.9, there are g1, g2 ∈ Ân such that w1 ∼ xg1xω and w2 ∼ xg2xω . Since ∼⊆ kerφ ,
we can calculate that xg1xωφ = w1φ = w2φ = xg2xωφ . In particular, g1µ = αg1αω = xg1xωφ and
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g2µ = αg2αω = xg2xωφ . This provides g1µ = g2µ . Since µ is injective by Lemma 3.10, we obtain g1 = g2 .
This gives w1 ∼ xg1xω = xg2xω ∼ w2 , i.e. w1 ∼ w2 . 2

We want to illustrate Theorem 3.11 for n = 4 . It is easy to verify that O4,1 consists of the five
transformations

a =

(
1 2 3 4
1 1 1 3

)
, b =

(
1 2 3 4
1 1 2 2

)
, c =

(
1 2 3 4
1 1 2 3

)
,

d =

(
1 2 3 4
1 1 1 2

)
, and e =

(
1 2 3 4
1 1 1 1

)
.

Let g1, g2 ∈ {0, 1, 2, 3}X4 with 1g1 = 1g2 = 0, 2g1 = 2g2 = 3g2 = 4g1 = 1 , and 3g1 = 4g2 = 2 . It is easy to
see that A4 = {g1, g2, w} , i.e. Y4 = {xg1 , xg2 , w} . For convenience, we use a, b , and c for xg1 , xg2 , and ω ,
respectively. The relations in R1 provide

ac2 ≈ bc, bc2 ≈ bc, and cc2 ≈ bc.

The relations in R2 provide

aa ≈ bc, ba ≈ bc, ca ≈ bc,
ab ≈ ac, bb ≈ bc, cb ≈ ac,
ac ≈ ac, bc ≈ bc, cc ≈ ac.

Then we obtain the following presentation for O4,1 :〈
{a, b, c} | {ac2 ≈ bc, bc2 ≈ bc, cc2 ≈ bc, aa ≈ bc, ab ≈ ac, ba ≈ bc, bb ≈ bc, ca ≈ bc, cb ≈ ac, cc ≈ ac}

〉
.
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