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Abstract: Let k ≥ 2 be an integer and let (P
(k)
n )n≥2−k be the k -generalized Pell sequence defined by

P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + ...+ P

(k)
n−k

for n ≥ 2 with initial conditions

P
(k)

−(k−2) = P
(k)

−(k−3) = · · · = P
(k)
−1 = P

(k)
0 = 0, P

(k)
1 = 1.

In this study, we deal with the Diophantine equation

P (k)
n = d

(
bm − 1

b− 1

)
in positive integers n,m, k, b, d such that m ≥ 2, 2 ≤ b ≤ 9 and 1 ≤ d ≤ b− 1 . We show that the repdigits in the base
b in the k−generalized Pell sequence, which have at least two digits, are the numbers

P
(4)
7 = 228 = (444)7, P

(2)
4 = 12 = (22)5, P (2)

6 = 70 = (77)9;

P
(k)
4 = 13 = (111)3

for k ≥ 3 and

P
(k)
3 = 5 = (11)4

for k ≥ 2.

Key words: Repdigit, Fibonacci and Lucas numbers, Exponential Diophantine equations, linear forms in logarithms;
Baker’s method

1. Introduction

Let k, r be integers with k ≥ 2 and r ̸= 0 . Let the linear recurrence sequence
(
G

(k)
n

)
n≥2−k

of order k be

defined by

G(k)
n = rG

(k)
n−1 +G

(k)
n−2 + . . .+G

(k)
n−k (1.1)

∗Correspondence: zsiar@bingol.edu.tr
2010 AMS Mathematics Subject Classification: 11B39, 11D61, 11J86

This work is licensed under a Creative Commons Attribution 4.0 International License.
3083

https://orcid.org/0000-0002-6473-4754
https://orcid.org/0000-0003-2547-2082


ŞİAR and KESKİN/Turk J Math

for n ≥ 2 with the initial conditions G
(k)
−(k−2) = G

(k)
−(k−3) = · · · = G

(k)
−1 = 0, G

(k)
0 = a, and G

(k)
1 = b. For

(a, b, r) = (0, 1, 1) and (a, b, r) = (2, 1, 1), the sequence
(
G

(k)
n

)
n≥2−k

is called the k−generalized Fibonacci

sequence
(
F

(k)
n

)
n≥2−k

and the k−generalized Lucas sequence
(
L
(k)
n

)
n≥2−k

, respectively (see [3, 4]). Also,

the sequence
(
F

(3)
n

)
n≥−1

is called the Tribonacci sequence. For (a, b, r) = (0, 1, 2) and (a, b, r) = (2, 2, 2), the

sequence
(
G

(k)
n

)
n≥2−k

is called the k−generalized Pell sequence
(
P

(k)
n

)
n≥2−k

and the k−generalized Pell-

Lucas sequence
(
Q

(k)
n

)
n≥2−k

, respectively (see [15]). The terms of these sequences are called k−generalized

Fibonacci numbers, k−generalized Lucas numbers, k−generalized Pell numbers and k−generalized Pell-Lucas
numbers, respectively. When k = 2, we have Fibonacci, Lucas, Pell and Pell-Lucas sequences, denoted by

(Fn)n≥0 , (Ln)n≥0 , (Pn)n≥0 , and (Qn)n≥0 ,

respectively.
A base b repdigit is a positive integer N whose digits are all equal when written in base b . Particularly,

we say, to simplify notation, for b = 10 that N is a repdigit. Recently, some mathematicians have investigated
the repdigits or the repdigits in base b in the above sequences for k = 2 or general k. In [16], Luca determined
that the largest repdigits in the sequences (Fn)n≥0 and (Ln)n≥0 are F10 = 55 and L5 = 11. All base b repdigits
in the Fibonacci and Lucas sequences have been investigated by Erduvan et al. in [12, 13] for 2 ≤ b ≤ 10 .
In [14], the authors have found all repdigits in the sequences (Pn)n≥0 and (Qn)n≥0 . Here, they showed that
the largest repdigits in these sequences are P5 = 5 and Q2 = 6. In [17], Marques proved that the largest

repdigits in the Tribonacci sequence
(
F

(3)
n

)
n≥−1

is F
(3)
8 = 44. Furthermore, in [6], Bravo and Luca handled

the Diophantine equation

F (k)
n = d

(
10m − 1

9

)
(1.2)

and they showed that this equation has only the solutions (n, k, d,m) = (10, 2, 5, 2), (8, 3, 4, 2) in positive
integers n,m, k, d with k ≥ 2, 1 ≤ d ≤ 9 and m ≥ 2 . The same authors [4] considered the equation (1.2) for
the k−generalized Lucas sequence and they have shown that all the solutions of a such equation are given by
(n, k, d,m) = (5, 2, 1, 2), (5, 4, 2, 2).

In this paper, motivated by the mentioned above, we will deal with the Diophantine equation

P (k)
n = d

(
bm − 1

b− 1

)
. (1.3)

We think it is difficult to find an upper bound for b in this equation. Although b can be chosen in any interval
[2, c], we only consider the case c = 9. That is, we will handle the Diophantine equation (1.3) in positive
integers n,m, k, b, d with k,m ≥ 2, 2 ≤ b ≤ 9 and 1 ≤ d ≤ b − 1 . We determine all base b repdigits in the
k−generalized Pell sequence, which have at least two digits. They are the numbers

P
(4)
7 = 228 = (444)7, P (2)

4 = 12 = (22)5, P (2)
6 = 70 = (77)9;

P
(k)
4 = 13 = (111)3
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for k ≥ 3 and
P

(k)
3 = 5 = (11)4

for k ≥ 2. In addition to this, the authors in [7] and (∗) have solved the equation (1.3) independently for b = 10

and they have shown that P
(3)
5 = 33 and P

(4)
6 = 88 are the only repdigits in the k−generalized Pell sequence,

which have at least two digits.

2. Preliminaries
It can be seen that the characteristic polynomial of the k−generalized Pell sequence is given by

Ψk(x) = xk − 2xk−1 − · · · − x− 1. (2.1)

We know from Lemma 1 given in [20] that this polynomial has exactly one positive real root located between
2 and 3. We denote the roots of the polynomial in (2.1) by α1, α2, . . . , αk. Particularly, let α = α1 denote the
positive real root of Ψk(x) . The positive real root α = α(k) is called dominant root of Ψk(x) . The other roots
are strictly inside the unit circle. In [5], the Binet- like formula for the k− generalized Pell numbers are given
by

P (k)
n =

k∑
j=1

(αj − 1)

α2
j − 1 + k(α2

j − 3αj + 1)
αn
j . (2.2)

It has been shown in [5] that the contribution of the roots inside the unit circle to the formula (2.1) is very
small, namely that the approximatiıon ∣∣∣P (k)

n − gk(α)α
n
∣∣∣ < 1

2
(2.3)

holds for all n ≥ 2− k , where

gk(z) :=
z − 1

(k + 1)z2 − 3kz + k − 1
. (2.4)

We will use the inequality ∣∣∣∣∣ (αj − 1)

α2
j − 1 + k(α2

j − 3αj + 1)

∣∣∣∣∣ < 1 (2.5)

for k ≥ 2, where αj ’s are the roots of the polynomial in (2.1) for j = 1, 2, . . . , k . The proof of (2.5) can be
found in [7] .

Throughout this paper, α denotes the positive real root of the polynomial given in (2.1). The following

relation between α and P
(k)
n given in [5] is valid for all n ≥ 1 :

αn−2 ≤ P (k)
n ≤ αn−1. (2.6)

Furthermore, Kılıç [15] proved that
P (k)
n = F2n−1 (2.7)

for all 1 ≤ n ≤ k + 1.

∗Şiar Z, Keskin R. Repdigits in k -generalized Pell sequences (preprint). arXiv:2009.13387
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Lemma 2.1 ([5], Lemma 3.2)Let k, l ≥ 2 be integers. Then
(a) If k > l, then α(k) > α(l), where α(k) and α(l) are the values of α relative to k and l, respectively.

(b) φ2(1− φ−k) < α < φ2, where φ = 1+
√
5

2 is the golden section.

(c) gk(φ
2) = 1

φ+2 .

(d) 0.276 < gk(α) < 0.5.

For solving the equation (1.3), we use linear forms in logarithms and Baker’s theory. For this, we will
give some notions, theorem, and lemmas related to linear forms in logarithms and Baker’s theory.

Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(
x− η(i)

)
∈ Z[x],

where the ai ’s are integers with gcd(a0, . . . , an) = 1 and a0 > 0 and the η(i) ’s are conjugates of η. Then

h(η) =
1

d

(
log a0 +

d∑
i=1

log
(
max

{
|η(i)|, 1

}))
(2.8)

is called the logarithmic height of η. In particular, if η = a/b is a rational number with gcd(a, b) = 1 and
b ≥ 1, then h(η) = log (max {|a|, b}) .

We give some properties of the logarithmic height whose proofs can be found in [10]:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (2.9)

h(ηγ±1) ≤ h(η) + h(γ), (2.10)

h(ηm) = |m|h(η). (2.11)

From the proof of Lemma 6 given in [8], we can write the inequality

h(gk(α)) < 5 log k for k ≥ 2, (2.12)

which will be used in the main theorem, where gk(α) is as defined in (2.4). Now we give a theorem deduced
from Corollary 2.3 of Matveev [18] and provides a large upper bound for the subscript n in the equation (1.3)
(also see Theorem 9.4 in [9]).

Theorem 2.2 Assume that γ1, γ2, . . . , γt are positive real algebraic numbers in a real algebraic number field K
of degree D , b1, b2, . . . , bt are rational integers, and

Λ := γb1
1 · · · γbt

t − 1

is not zero. Then

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2 · · ·At

)
,
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where
B ≥ max {|b1|, . . . , |bt|} ,

and Ai ≥ max {Dh(γi), | log γi|, 0.16} for all i = 1, . . . , t.

Now we give a lemma which was proved in [2]. It is a version of the lemma given by Dujella and Pethő
[11]. The lemma given in [11] is a variation of a result of Baker and Davenport [1]. This lemma will be
used to reduce the upper bound for the subscript n in the equation (1.3). For any real number x, we let
||x|| = min {|x− n| : n ∈ Z} be the distance from x to the nearest integer.

Lemma 2.3 Let M be a positive integer, let p/q be a convergent of the continued fraction of the irrational
number γ such that q > 6M, and let A,B, µ be some real numbers with A > 0 and B > 1. Let ϵ :=

||µq|| −M ||γq||. If ϵ > 0, then there exists no solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ϵ)

logB
.

The following lemma can be found in [19].

Lemma 2.4 Let a, x ∈ R. If 0 < a < 1 and |x| < a, then

|log(1 + x)| < − log(1− a)

a
· |x|

and
|x| < a

1− e−a
· |ex − 1| .

3. Main theorem
Theorem 3.1 All solutions (n,m, b, d, k) of Diophantine equation (1.3) in positive integers n,m, k, b, d such
that k,m ≥ 2, 2 ≤ b ≤ 9 and 1 ≤ d ≤ b− 1 are given by (n,m, b, d, k) = (7, 3, 7, 4, 4), (4, 2, 5, 2, 2), (6, 2, 9, 7, 2)

and (n,m, b, d, k) = (4, 3, 3, 1, k) for k ≥ 3 and (n,m, b, d, k) = (3, 2, 4, 1, k) for k ≥ 2.

Proof Assume that P
(k)
n = d

(
bm−1
b−1

)
with n ≥ 1 , m, k ≥ 2, 2 ≤ b ≤ 9 and 1 ≤ d ≤ b− 1. If 1 ≤ n ≤ k + 1,

then we have

d

(
bm − 1

b− 1

)
= P (k)

n = F2n−1

by (2.7). In this case we get (n,m, b, d) = (3, 2, 4, 1), (4, 3, 3, 1) by Corollary 5 given in [12]. Now we can
suppose that n ≥ k+2. Since k ≥ 2, we have n ≥ 4. Let α be positive real root of Ψk(x) given in (2.1). Then

2 < α < φ2 < 3 by Lemma 2.1 (b). Besides, it is seen that 2m−1 < P
(k)
n < 9m. Thus, using the inequality

(2.6), we get

(n− 2)
log 2

log 9
< m < (n− 1)

log 3

log 2
+ 1,
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which implies that
3n

20
< m <

9n

5
(3.1)

for n ≥ 4. Now, rearranging the equation (1.3) as

P (k)
n − gk(α)α

n +
d

b− 1
= d

bm

b− 1
− gk(α)α

n

and taking the absolute value of both sides, we get∣∣∣∣d( bm

b− 1

)
− gk(α)α

n

∣∣∣∣ = ∣∣∣∣P (k)
n − gk(α)α

n +
d

b− 1

∣∣∣∣ .
Thus, using the inequality (2.3), it is seen that∣∣∣∣d( bm

b− 1

)
− gk(α)α

n

∣∣∣∣ < 3

2
. (3.2)

If we divide both sides of the inequality (3.2) by gk(α)α
n , from Lemma 2.1, we get∣∣∣∣bmα−n d(gk(α))

−1

b− 1
− 1

∣∣∣∣ < 3

2gk(α)αn
<

3

0.552 · αn
<

5.5

αn
. (3.3)

In order to use Theorem 2.2, we take

(γ1, b1) := (b,m) , (γ2, b2) := (α,−n) , (γ3, b3) :=

(
(b− 1) · gk(α)

d
,−1

)
.

The number field containing γ1, γ2 , and γ3 is K = Q(α), which has degree D = k. We show that the number

Λ1 := bmα−n d(gk(α))
−1

b− 1
− 1

is nonzero. Contrast to this, assume that Λ1 = 0 . Then

d
bm

b− 1
= αngk(α) =

α− 1

(k + 1)α2 − 3kα+ k − 1
αn.

Conjugating the above equality by some automorphisim of the Galois group of the splitting field of Ψk(x) over
Q and taking absolute values, we get

d
bm

b− 1
=

∣∣∣∣ αi − 1

(k + 1)α2
i − 3kαi + k − 1

αn
i

∣∣∣∣
for some i > 1, where α = α1, α2, . . . , αk are the roots of Ψk(x). Using (2.5) and that |αi| < 1 , we obtain from
the last equality that

d

(
bm

b− 1

)
=

∣∣∣∣ αi − 1

(k + 1)α2
i − 3kαi + k − 1

∣∣∣∣ |αi|n < 1,
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which is impossible since m ≥ 2. Therefore, Λ1 ̸= 0. Moreover, since

h(b) = log b ≤ log 9, h(γ2) =
logα

k
<

log 3

k

by (2.8) and

h(γ3) = h

(
(b− 1) · gk(α)

d

)
≤ h((b− 1) /d) + h(gk(α))

< log 9 + 5 log k < 10 log k

by (2.12), we can take A1 := k log 9, A2 := log 3, and A3 := 10k log k. Also, since m < 9n/5 by (3.1), it follows
that B := 9n/5. Thus, taking into account the inequality (3.3) and using Theorem 2.2, we obtain

5.5

αn
> |Λ1| > exp

(
−1.4 · 306 · 34.5 · k2(1 + log k)(1 + log(9n/5)) (k log 9) (log 3) (10k log k)

)
and so

n logα− log(5.5) < 1.4 · 306 · 34.5 · k2(3 log k)(3 log n) (k log 9) (log 3) (10k log k) ,

where we have used the fact that 1 + log k < 3 log k for all k ≥ 2 and 1 + log(9n/5) < 3 log n for n ≥ 3. From
the last inequality, a quick computation with Mathematica yields

n logα < 3.12 · 1013 · k4 · (log k)2 · log n

or
n < 4.51 · 1013 · k4 · (log k)2 · log n. (3.4)

The inequality (3.4) can be rearranged as

n

log n
< 4.51 · 1013 · k4 · (log k)2.

Using the fact that

if A ≥ 3 and n

log n
< A, then n < 2A logA,

we obtain

n < 2 · 4.51 · 1013 · k4 · (log k)2 log
(
4.51 · 1013 · k4 · (log k)2

)
(3.5)

< 9.02 · 1013 · k4 · (log k)2(31.5 + 4 log k + 2 log(log k))

< 9.02 · 1013 · k4 · (log k)2(52 log k)

< 4.7 · 1015 · k4 · (log k)3,

where we have used the fact that 31.5 + 4 log k + 2 log(log k) < 52 log k for all k ≥ 2.

Let k ∈ [2, 450]. Now, let us reduce the upper bound on n applying Lemma 2.3. Let

z1 := m log b− n logα+ log

[
d

b− 1
(gk(α))

−1

]
.
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and x := ez1 − 1 . Then, from (3.3), we get

|x| = |ez1 − 1| < 5.5

αn
< 0.35

for n ≥ 4. Choosing a := 0.35, we obtain the inequality

|z1| = |log(x+ 1)| < log(100/65)

0.35
· 5.5
αn

<
6.77

αn

by Lemma 2.4. Thus, it follows that

0 <

∣∣∣∣m log b− n logα+ log

[(
d

b− 1

)
(gk(α))

−1

]∣∣∣∣ < 6.77

αn
.

Dividing this inequality by logα, we get

0 < |mγ − n+ µ| < A ·B−w, (3.6)

where

γ :=
log b

logα
/∈ Q, µ :=

log
(

d
b−1 (gk(α))

−1
)

logα
, A := 9.77, B := α, and w := n.

If we take
M :=

⌊
4.7 · 1015 · k4 · (log k)3

⌋
,

which is an upper bound on m since m < n < 4.7 · 1015 · k4 · (log k)3 by (3.5), we found that q221, the
denominator of the 221 st convergent of γ exceeds 6M. Furthermore, a quick computation with Mathematica
gives us that the value

log (Aq221/ϵ)

logB

is less than 442.9. So, if the inequality (3.6) has a solution, then

n <
log (Aq221/ϵ)

logB
< 442.9,

that is, n ≤ 442. In this case, m < 796 by (3.1). A quick computation with Mathematica gives us that the
equation

P (k)
n = d

(
bm − 1

b− 1

)
has only the solutions

(n,m, b, d, k) = (7, 3, 7, 4, 4), (4, 2, 5, 2, 2), (6, 2, 9, 7, 2)

in the intervals n ∈ [4, 442] , m ∈ [2, 796) , and k ∈ [2, 450] . Thus, this completes the analysis in the case
k ∈ [2, 450] .

From now on, we can assume that k > 450. Then we can see from (3.5) that the inequality

n < 4.7 · 1015 · k4 · (log k)3 < φk/2 (3.7)
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holds for k > 450.

By Lemma 2 given in [6], we have

gk(α)α
n =

φ2n

φ+ 2
(1 + η) , (3.8)

where

|η| < 4

φk/2
. (3.9)

So, using (3.2), (3.8), and (3.9), we obtain∣∣∣∣d · bmb− 1
− φ2n

φ+ 2

∣∣∣∣ =

∣∣∣∣d · bmb− 1
− gk(α)α

n +
φ2n

φ+ 2
η

∣∣∣∣ (3.10)

≤
∣∣∣∣d · bmb− 1

− gk(α)α
n

∣∣∣∣+ φ2n

φ+ 2
|η|

<
3

2
+

4φ2n

φk/2 (φ+ 2)
.

Dividing both sides of the above inequality by φ2n

φ+ 2
, we get

∣∣∣∣ bmφ−2n · d
b− 1

(φ+ 2)− 1

∣∣∣∣ <
3 (φ+ 2)

2φ2n
+

4

φk/2
(3.11)

<
0.01

φk/2
+

4

φk/2
=

4.01

φk/2
,

where we have used the fact that
3 (φ+ 2)

2φ2n
<

0.01

φk/2

for k > 450 and n ≥ k + 2 . In order to use the result of Theorem 2.2, we take

(γ1, b1) := (b,m) , (γ2, b2) := (φ,−2n) , (γ3, b3) :=

(
d (φ+ 2)

b− 1
, 1

)
.

The number field containing γ1, γ2 , and γ3 is K = Q(
√
5), which has degree D = 2. We show that the number

Λ2 := bmφ−2n d

b− 1
(φ+ 2)− 1

is nonzero. Contrast to this, assume that Λ2 = 0. Then

bm
d

b− 1
(φ+ 2) = φ2n

and conjugating this relation in Q(
√
5), we get bm

(
d

b−1

)
(β + 2) = β2n, where β = 1−

√
5

2 = −1
φ . So, we have

φ2n

φ+ 2
=

β2n

β + 2
,

3091



ŞİAR and KESKİN/Turk J Math

which implies that
φ4n

φ+ 2
=

1

β + 2
< 1.

The last inequality is impossible for n ≥ 4. Therefore, Λ2 ̸= 0. Moreover, since

h(γ1) = h(b) ≤ log 9, h(γ2) = h(φ) ≤ logφ

2

and

h( γ3) ≤ h(d/(b− 1)) + h(φ) + h(2) + log 2 ≤ log 36 +
logφ

2
,

by (2.10), we can take A1 := 2 log 9, A2 := logφ , and A3 := log (1296φ) . Also, since m < 9n
5 , we can take

B := 2n. Thus, taking into account the inequality (3.11) and using Theorem 2.2, we obtain

(4.01) · φ−k/2 > |Λ2| > exp (C · (1 + log 2n) (2 log 9) (logφ) log (1296φ)) ,

where C = −1.4 · 306 · 34.5 · 22 · (1 + log 2) and we have used the fact that (1 + log 2n) < 2 log 2n for n ≥ 2 .
This implies that

k

2
logφ− log(4.01) < 3.14 · 1013 · log 2n

or
k < 1.31 · 1014 · log 2n. (3.12)

On the other hand, from (3.7), we get

log 2n < log
(
2 · 4.7 · 1015 · k4 · (log k)3

)
< 36.8 + 4 log k + 3 log(log k)

< 57 log k

for k ≥ 2. So, from (3.12), we obtain
k < 1.31 · 1014 · 57 log k,

which implies that
k < 3.01 · 1017. (3.13)

To reduce this bound on k , we use Lemma 2.3. Substituting this bound of k into (3.7), we get n < 2.52 · 1090,
which implies that m < 4.54 · 1090 by (3.1).

Now, let

z2 := m log b− 2n logφ+ log

(
d

b− 1
(φ+ 2)

)
.

and x := 1− ez2 . Then, by (3.11), we have

|x| = |1− ez2 | < 4.01

φk/2
< 0.1

for k > 450 . Choosing a := 0.1, we obtain the inequality
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|z2| = |log(x+ 1)| < log(10/9)

0.1
· 4.01
φk/2

<
4.23

φk/2

by Lemma 2.4. That is,

0 <

∣∣∣∣m log b− 2n logφ+ log

(
d

9
(φ+ 2)

)∣∣∣∣ < 4.23

φk/2
.

Dividing both sides of the above inequality by logφ, we get

0 < |mγ − 2n+ µ| < A ·B−w, (3.14)

where

γ :=
log b

logφ
/∈ Q, µ :=

log
(

d·(φ+2)
b−1

)
logφ

, A := 8.8, B := φ, and w := k/2.

If we take M := 4.54 · 1090 , which is an upper bound on m , we found that q190, the denominator of the 190

th convergent of γ exceeds 6M. Furthermore, a quick computation with Mathematica gives us that the value

log (Aq190/ϵ)

logB

is less than 514.47. So, if the inequality (3.14) has a solution, then

k

2
<

log (Aq190/ϵ)

logB
< 514.47,

which implies that k ≤ 1028. Hence, from (3.7), we get n < 1.76 · 1030, which implies that m < 3.168 · 1030

since m < 9n/5 by (3.1). If we again apply Lemma 2.3 to (3.14) with M := 3.168 · 1030, we found that q69,

the denominator of the 69 th convergent of γ exceeds 6M. After doing this, then a quick computation with
Mathematica shows that the inequality (3.14) has a solution only for k ≤ 375. This contradicts the fact that
k > 450. This completes the proof. 2

Thus, we can give the following results easily.

Corollary 3.2 Let 2 ≤ b ≤ 9. If Pn is a base b repdigit and has at least two digits, then (n, b) = (3, 4), (4, 5),

and (6, 9). Namely, P3 = 5 = (11)4 , P
(2)
4 = 12 = (22)5 , P

(2)
6 = 70 = (77)9.

Corollary 3.3 If m > 1 , then the equation P
(k)
n = bm − 1 has no solution for 2 ≤ b ≤ 9.

Corollary 3.4 The k−generalized Pell sequence does not contain any Mersenne number greater than 1 .
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