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Abstract: In this paper, we introduce and examine certain subclass Mq,Σ (φ, β) of analytic and bi-univalent functions
on the open unit disk in the complex plane. Here, we give coefficient bound estimates, upper bound estimate for the
second Hankel determinant and Fekete-Szegö inequality for the function belonging to this class. Some interesting special
cases of the results obtained here are also discussed.
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1. Introduction and preliminaries

Let A denote the class of all complex valued functions f given by

f(z) = z + a2z
2 + a3z

3 + ...+ anz
n + ... = z +

∞∑
n=2

anz
n, an ∈ C, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} in the complex plane. By S we define the
class of all univalent functions in A .

For α ∈ [0, 1) , some of the important and well-investigated subclasses of S include the classes S∗(α) and
C(α) , respectively, starlike and convex function classes of order α in U .

By definition, we have

S∗(α) =

{
f ∈ S : ℜ

(
zf

′
(z)

f(z)

)
> α, z ∈ U

}

and

C(α) =

{
f ∈ S : ℜ

(
1 +

zf
′′
(z)

f ′(z)

)
> α, z ∈ U

}
.

In his fundamental paper [16] for q ∈ (0, 1) , Jackson introduce q− derivative operator Dq of an analytic
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function f as follows:

Dqf(z) =

{
f(z)−f(qz)

(1−q)z , if z ̸= 0,

f
′
(0), if z = 0.

(1.2)

The formulas for q−derivative of a product and a quotient of functions are

Dqz
n = [n]q z

n−1, n ∈ N,

where [n]q =
n∑

k=1

qk−1 is q− analogue of the natural numbers n . It can be easily shown that [n]q = 1−qn

1−q ,

[0]q = 0, [1]q = 1, lim
q→1−

[n]q = n.

It follows from (1.2) that

Dqf(z) = 1 +

∞∑
n=2

[n]q anz
n−1

and

D2
qf(z) = Dq (Dqf(z)) =

∞∑
n=2

[n]q [n− 1]q anz
n−2

for the function f ∈ A . Also, it is clear that lim
q→1−

Dqf(z) = f
′
(z) for an analytic function f.

Let us define the following subclasses of analytic functions.

Definition 1.1 For q ∈ (0, 1) and α ∈ [0, 1) , a function f ∈ A is said to be in q -starlike function class S∗
q (α)

of order α , if satisfied the following condition

ℜ
(
zDqf (z)

f (z)

)
> α, z ∈ U .

Definition 1.2 For q ∈ (0, 1) and α ∈ [0, 1) , a function f ∈ A is said to be in q - convex function class Cq (α)

of order α , if satisfied the following condition

ℜ

(
1 +

zD2
qf (z)

Dqf (z)

)
> α, z ∈ U .

Studies on q− derivative were firstly initiated by Jackson [15, 16], Carmichael [9], Mason [18], Adams
[1] and Trjizinsky [32]. This topic was forgotten for a long time. Later, some properties related with function
theory involving q− theory were introduced by Ismail et al. [14]. Recently, many studies were done on this
subject (see [2, 28, 29]). As the study [2] suggests, there is a lot that can be done for this research topic. For
example, q− analogy of starlikeness and convexity of analytic functions in the open unit disk and in arbitrary
simply connected domains would be interesting for researchers in this field.

In [3], by using applications of q− derivative, it was shown that Szasz Mirakyan operators are convex
when convex functions are taken such that their result generalizes well known results for q = 1 . Also, in [3] the
authors showed that q− derivatives of these operators approach q− derivatives of approximated functions.
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Very soon, by Uçar [33] and Uçar et al. [34] studied some properties of q - close-to-convex functions. By
Polatoğlu in [27] was investigated q− starlike functions and gave growth and distortion theorems for this class.
Quasi starlike and quasi-convex functions were studied by Altıntaş in [5]. Altıntaş and Mustafa studied quasi
q− starlike and quasi q− convex functions (see [6]).

Very recently, in [4] Altıntaş and Aydoğan studied quasi q− convex functions.
Now, let’s give some preliminary information and definitions that we use in our study.
It is well-known that every function f ∈ S given by (1.1) has an inverse f−1 defined as follows

f−1 (f (z)) = z, z ∈ U, f−1 (f (w)) = w,w ∈ Ur0 = {w ∈ C : |w| < r0 (f)} ,

r0 (f) ≥ 1/4

and

f−1 (w) = w +A2w
2 +A3w

3 +A4w
4 + ..., w ∈ Ur0 , (1.3)

where

A2 = −a2, A3 = 2a22 − a3, A4 = −5a32 + 5a2a3 − a4.

Also, it is well known that a function f ∈ A is called bi-univalent function in U , if both f and f−1

are univalent in U and Ur0 , respectively. Let Σ denote the class of bi-univalent functions in U given by (1.1).
For a short history and examples of functions belonging to the class Σ see [30].

For the functions f and g analytic in U , f is said to be subordinate to g and denoted as f (z) ≺ g (z) ,

if there exists an analytic function ω such that

ω (0) = 0, |ω (z)| < 1 and f (z) = g (ω (z)) .

In particular, when g is univalent in U

f (z) ≺ g (z) ⇐⇒ f (0) = g (0) and f (U) ⊂ g (U) , z ∈ U.

Firstly, by Lewin in [17] he introduced a subclass of bi-univalent functions and obtained the estimate
|a2| ≤ 1.51 for the function belonging to this class. Subsequently, Brannan and Clunie in [7] developed the
result of Lewin to |a2| ≤

√
2 for f ∈ Σ . Later, Netanyahu [19] showed that |a2| ≤ 4

3 . Brannan and Taha [8]
introduced certain subclasses of bi-univalent function class Σ , namely bi-starlike function of order α denoted
S∗Σ (α) and bi-convex function of order α denoted CΣ (α) corresponding to the function classes S∗ (α) and
C(α) , respectively. For each of the function classes S∗Σ (α) and CΣ (α) , nonsharp estimates on the first two
Taylor-Maclaurin coefficients were found in [8, 31]. Many researchers have introduced and investigated several
interesting subclasses of bi-univalent function class Σ and they have found nonsharp estimates on the first two
Taylor-Maclaurin coefficients (see [30, 36]).

Among the important tools in the theory of analytic functions is Hankel determinant, which is defined
by coefficients of the function f ∈ S. The Hankel determinants Hm (n) , n = 1, 2, 3, ...,m = 1, 2, 3, ... of the
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function f ∈ S are defined by (see [20]).

Hm (n) =


an an+1 ... an+m−1

an+1 an+2 ... an+m

... ... ... ...
an+m−1 an+m ... an+m−2

 , a1 = 1.

Generally, these determinants were investigated by researchers with m = 2.

Recently, the upper bounds of second Hankel determinant |H2 (2)| =
∣∣a2a4 − a23

∣∣ for the classes S∗Σ (α)

and CΣ (α) were obtained by Deniz et al. [10] . Very soon, Orhan et al. [26] reviewed the study of bound for
the second Hankel determinant for the subclass Mα

Σ (β) of bi-univalent functions. Mustafa et al. [23] improved
the results obtained in [10].

One of the important tools in the theory of analytic functions is the functional H2 (1) = a3 − a22, which
is known as the Fekete-Szegö functional and one usually considers the further generalized functional a3 − µa22,

where µ is a complex or real number (see [12]). Estimating the upper bound of
∣∣a3 − µa22

∣∣ is known as the
Fekete-Szegö problem in the theory of analytic functions. The well-known result due to them states that if
f ∈ A, then

∣∣a3 − µa22
∣∣ ≤


3− 4µ, if µ ≤ 0,

1 + 2 exp
(

−2µ
1−µ

)
, if 0 ≤ µ ≤ 1,

4µ− 3, if 1 ≤ µ.

In 1969 Koegh and Merkes ([21]) solved the Fekete- Szegö problem for the classes of starlike and convex
functions for some real µ. The Fekete-Szegö problem has been investigated by many mathematicians for several
subclasses of analytic functions ([20–22, 25]). Zaprawa (see [35]) has studied on Fekete-Szegö problem for some
subclasses of bi-univalent functions. Very soon, Mustafa and Mrugusundaramoorthy [24] solved the Fekete-Szegö
problem for the subclass of bi-univalent functions related to shell shaped region.

We define the following subclasses of analytic functions.

Definition 1.3 For q ∈ (0, 1) , a function f ∈ A given by (1.1) is said to be in the class S∗q(φ) , which we will
call q−starlike function class with subordination if the following condition is satisfied

zDqf(z)

f(z)
≺ φ(z),

where φ(z) = z+
√
1 + z2 and the branch of the square root is chosen to be the principal one, that is φ(0) = 1 .

Definition 1.4 For q ∈ (0, 1) , a function f ∈ A given by (1.1) is said to be in the class Cq(φ) , which we will
call q−convex function class with subordination, if the following condition is satisfied

1 +
zD2

qf (z)

Dqf (z)
≺ φ(z),

where φ(z) = z+
√
1 + z2 and the branch of the square root is chosen to be the principal one, that is φ(0) = 1 .
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It can be easily seen that the function φ(z) = z +
√
1 + z2 maps the unit disc U onto a shell shaped

region on the right half plane and it is analytic and univalent in U . The range φ(U) is symmetric respect to
real axis and φ is a function with positive real part in U , with φ(0) = φ′(0) = 1 . Moreover, it is a starlike
domain with respect to point φ(0) = 1 .

Now, we define a subclass of analytic and bi-univalent functions as follows.

Definition 1.5 For q ∈ (0, 1) and β ≥ 0, a function f ∈ Σ given by (1.1) is said to be in the class Mq,Σ (φ, β) ,

if the following conditions are satisfied

(1− β)
zDqf(z)

f(z)
+ β

(
1 +

zD2
qf (z)

Dqf (z)

)
≺ φ (z) = z +

√
1 + z2, z ∈ U

and

(1− β)
wDqg(w)

g(w)
+ β

(
1 +

zD2
qg (w)

Dqg (w)

)
≺ φ (w) = w +

√
1 + w2, w ∈ Ur0 ,

where g = f−1 as given by (1.3).

Remark 1.6 Taking β = 0 in the Definition 1.5, we have bi-q−starlike function class with subordination
S∗
q.Σ (φ) , which satisfied the following conditions

zDqf(z)

f(z)
≺ φ (z) = z +

√
1 + z2, z ∈ U

and

wDqg(w)

g(w)
≺ φ (w) = w +

√
1 + w2, w ∈ Ur0

where g = f−1 as given by (1.3).

Remark 1.7 Taking β = 1 in the Definition 1.5, we have bi-q−convex function class with subordination
Cq,Σ (φ) , which satisfied the following conditions

1 +
zD2

qf(z)

Dqf(z)
≺ φ (z) = z +

√
1 + z2, z ∈ U

and

1 +
wD2

qg(w)

Dqg(w)
≺ φ (w) = w +

√
1 + w2, w ∈ Ur0 ,

where g = f−1 as given by (1.3).
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Notation 1.8 It is clear that
lim

q→1−
Mq,Σ (φ, β) = MΣ (φ, β) .

The class MΣ (φ, β) was recently investigated by Mustafa and Mrugusundaramoorthy in [24] .

In this paper, our aim is to give coefficient bound estimates, determine the upper bound estimate for
the second Hankel determinant and solve the Fekete-Szegö problem for the function belonging to the class
MΣ (φ, β) .

In order to prove our main results, we shall need the following lemmas.

Lemma 1.9 ([11, 13]) Let P be the class of all analytic functions p of the form

p(z) = 1 + p1z + p2z
2 + p3z

3 + ... = 1 +

∞∑
n=1

pnz
n (1.4)

satisfying ℜ (p (z)) > 0, z ∈ U and p (0) = 1 . Then,

|pn| ≤ 2, n = 1, 2, 3, ....

This inequality is sharp for each n = 1, 2, 3, ... . In particular, equality holds for the function

p(z) =
1 + z

1− z

for all n = 1, 2, 3, ... .

Lemma 1.10 ([11, 13]) Let P be the class of all analytic functions p of the form

p(z) = 1 + p1z + p2z
2 + p3z

3 + ... = 1 +

∞∑
n=1

pnz
n

satisfying ℜ (p (z)) > 0, z ∈ U and p (0) = 1 . Then,

2p2 = p21 +
(
4− p21

)
x,

4p3 = p31 + 2
(
4− p21

)
p1x−

(
4− p21

)
p1x

2 + 2
(
4− p21

) (
1− |x|2

)
z

for some x, z with |x| ≤ 1, |z| ≤ 1 .

Notation 1.11 As can be seen from serial expansion of the function φ given in Definition 1.3, 1.4 and 1.5,
this function belongs to the class P.

Lemma 1.12 ( [13]) The power series given by (1.4) converge in U to the function p in P if and only if the
Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

2 p1 p2 ... pn
p−1 2 p1 ... pn−1

. . . ... .

. . . ... .

. . . ... .
p−n p−n+1 p−n+2 ... 2

∣∣∣∣∣∣∣∣∣∣∣∣
, n = 1, 2, 3, ...
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and p−n =
−
pn , are all nonnegative. They are strictly positive except for

p (z) =

n∑
n=1

ρnp0
(
eitnz

)
, ρn > 0, tn

real and tn ̸= tk for n ̸= k in this case Dn > 0 for n < m− 1 and Dn = 0 for n ≥ m .

Notation 1.13 According to Lemma 1.12 pn ≥ 0 for each n = 1, 2, 3, ... , if p ∈ P . On the other hand,
according to Lemma 1.9 |pn| ≤ 2 for each n = 1, 2, 3, ... , if p ∈ P . For these reasons, we will assume that∣∣4− p21

∣∣ = ∣∣∣4− |p1|2
∣∣∣ = 4− |p1|2 for p1 , which is the first coefficient in (1.4), throughout our study.

2. Coefficients bound estimates
In this section, we prove the following theorem on upper bound estimates for the first three coefficients of the
functions belonging to the class Mq,Σ (φ, β) .

Theorem 2.1 Let the function f given by (1.1) be in the class Mq,Σ (φ, β) . Then,

|a2| ≤
1

[2]q − 1 + β
,

|a3| ≤ max
{
a
(1)
3 (q, β) , a

(2)
3 (q, β)

}
,

where

a
(1)
3 (q, β) =

1(
[2]q − 1 + β

)2
and

a
(2)
3 (q, β) =

1

[3]q − 1 +
((

[2]q 1
)
[3]q + 1

)
β
,

|a4| ≤ max
{
a
(1)
4 (q, β) , a

(2)
4 (q, β)

}
,

where

a
(1)
4 (q, β) =

1

[4]q − 1 +
((

[3]q 1
)
[4]q + 1

)
β

and

a
(2)
4 (q, β) =

[3]q − 1 +
{(

[2]q − 1
)
[3]q +

(
[3]q − [2]q

)
[2]

2
q + 1

}
β[

[4]q − 1 +
((

[3]q 1
)
[4]q + 1

)
β
] (

[2]q − 1 + β
)3
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The results obtained here are sharp for β ∈ [0, 1] .

Proof Let f ∈ Mq,Σ (φ, β) , β ≥ 0 and g = f−1 . Then, there are analytic functions ω : U → U, ϖ :

Ur0 → Ur0 with ω (0) = 0 = ϖ (0) , |ω (z)| < 1, |ϖ (w)| < 1 satisfying the following conditions

(1− β)
zDqf(z)

f(z)
+ β

(
1 +

zD2
qf(z)

Dqf(z)

)
= φ (ω (z)) = ω (z) +

√
1 + ω2 (z) , z ∈ U (2.1)

and

(1− β)
wDqg(w)

g(w)
+ β

(
1 +

wD2
qg(w)

Dqg(w)

)
= φ (ϖ (w)) = ϖ (w) +

√
1 +ϖ2 (w) , w ∈ Ur0 . (2.2)

We define the functions p, q ∈ P as follows:

p (z) =
1 + ω (z)

1− ω (z)
= 1 + p1z + p2z

2 + p3z
3 + ... = 1 +

∞∑
n=1

pnz
n, z ∈ U

and

q (w) =
1 +ϖ (w)

1−ϖ (w)
= 1 + q1w + q2w

2 + q3w
3 + ... = 1 +

∞∑
n=1

qnw
n, w ∈ Ur0 .

It follows that

ω (z) =
p (z)− 1

p (z) + 1
=

1

2

[
p1z +

(
p2 −

p21
2

)
z2 +

(
p3 − p1p2 +

p31
4

)
z3 + ...

]
, z ∈ U (2.3)

and

ϖ (w) =
q (w)− 1

q (w) + 1
=

1

2

[
q1w +

(
q2 −

q21
2

)
w2 +

(
q3 − q1q2 +

q31
4

)
w3 + ...

]
, w ∈ Ur0 . (2.4)

Changing the expressions of functions ω (z) and ϖ (w) in (2.1) and (2.2) with expressions in (2.3) and
(2.4), we obtain

(1− β)
zDqf(z)

f(z)
+ β

(
1 +

zD2
qf(z)

Dqf(z)

)
= 1 +

p1
2
z +

(
p2
2

− p21
8

)
z2 +

(p3
2

− p1p2
4

)
z3 + ... (2.5)

and

(1− β)
wDqg(w)

g(w)
+ β

(
1 +

wD2
qg(w)

Dqg(w)

)
= 1 +

q1
2
w +

(
q2
2

− q21
8

)
w2 +

(q3
2

− q1q2
4

)
w3 + ... (2.6)

If the operations and simplifications on the left side of (2.5) and (2.6) are made and the coefficients of
the terms of the same degree are equalized, the following equations are obtained for a2, a3 and a4(

[2]q − 1 + β
)
a2 =

p1
2
, (2.7)
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{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}
a3 −

{
[2]

2
q β +

(
[2]q − 1

)
(1− β)

}
a22 (2.8)

=
p2
2

− p21
8
,

{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}
a4 (2.9)

−
{(

[2]
2
q β − β + 1

)
[3]q +

(
[3]q β − β + 1

)
[2]q + 2 (β − 1)

}
a2a3

+
{(

[2]
2
q β − β + 1

)
[2]q + β − 1

}
a32

=
p3
2

− p1p2
4

and
−
(
[2]q − 1 + β

)
a2 =

q1
2
, (2.10)

−
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}
a3 (2.11)

+
{
2
[
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

]
−
[
[2]

2
q β +

(
[2]q − 1

)
(1− β)

]}
a22

=
q2
2

− q21
8
,

−
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}
a4 (2.12)

+


(
5 [4]q − [2]q

)(
[3]q β − β + 1

)
−
(
[2]

2
q β − β + 1

)
[3]q + 3 (β − 1)

 a2a3 −


(
5 [4]q − 2 [2]q

)(
[3]q β − β + 1

)
+
(
[2]q − 2 [3]q

)(
[2]

2
q β − β + 1

)
+ 2 (β − 1)

 a32

=
q3
2

− q1q2
4

From equations (2.7) and (2.10), we write

p1

2
(
[2]q − 1 + β

) = a2 = − q1

2
(
[2]q − 1 + β

) and p1 = −q1. (2.13)

From this and Lemma 1.9, the first result of the theorem is clear.
Subtracting (2.11) from (2.8) and considering the equality p1 = −q1 , we get

a3 = a22 +
p2 − q2

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} ;
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that is,

a3 =
p21

4
(
[2]q − 1 + β

)2 +
p2 − q2

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} . (2.14)

Also, subtracting the equation (2.12) from the equation (2.9), considering the equalities (2.13) and (2.14),
we have

a4 =

{
[3]q +

(
[3]q − [2]q

)
[2]q

}
[2]q β +

(
[3]q − 1

)
(1− β)

8
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)3 p31 (2.15)

+
5 (p2 − q2) p1

16
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}(
[2]q − 1 + β

)
+

p3 − q3

4
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}
− (p2 + q2) p1

8
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

} .
Since p1 = −q1 , according to Lemma 1.10, we can write

p2 − q2 =
4− p21

2
(x− y) , p2 + q2 = p21 +

4− p21
2

(x+ y) (2.16)

and

p3 − q3 =
p31
2

+

(
4− p21

)
p1

2
(x+ y)−

(
4− p21

)
p1

4

(
x2 + y2

)
(2.17)

+
4− p21

2

[(
1− |x|2

)
z −

(
1− |y|2

)
w
]

for some x, y, z, w with |x| ≤ 1, |y| ≤ 1, |z| ≤ 1, |w| ≤ 1 .
Substituting the first equality (2.16) in (2.14), we write the following expression for the coefficient a3

a3 =
p21

4
(
[2]q − 1 + β

)2 +
4− p21

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} (x− y) .

Note that if we take |p1| = t , we can write
∣∣4− p21

∣∣ = ∣∣∣4− |p1|2
∣∣∣ = ∣∣4− t2

∣∣ = 4− t2 (see, also Notation

1.13 at the end of the first section). That is, we may assume without restriction that t ∈ [0, 2] . In that case,
using a triangle inequality and setting |x| = ξ and |y| = η , we can write the following inequality for |a3|

|a3| ≤ t2

4
(
[2]q − 1 + β

)2 +
4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} (ξ + η) ,

(ξ, η) ∈ [0, 1]
2
.
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Now, let the function F : R2 → R defined as follows:

F (ξ, η) =
t2

4
(
[2]q − 1 + β

)2 +
4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} (ξ + η) ,

(ξ, η) ∈ [0, 1]
2 .

We need to maximize the function F on the closed square Ω =
{
(ξ, η) : (ξ, η) ∈ [0, 1]

2
}
.

It is clear that the function F takes its maximum value at the boundary of the closed square Ω.

Differentiating the function F (ξ, η) respect to parameter ξ , we have

Fξ(ξ, η) =
4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} .
Since Fξ(ξ, η) ≥ 0, the function F (ξ, η) is an increasing function respect to ξ and maximum occurs at

ξ = 1, so

max {F (ξ, η) : ξ ∈ [0, 1]} = F (1, η) =
t2

4
(
[2]q − 1 + β

)2
+

4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} (1 + η)

for each η ∈ [0, 1] and t ∈ [0, 2] .

Now, differentiating the function F (1, η) , we have

F
′
(1, η) =

4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} .
Since F ′

(1, η) ≥ 0, the function F (1, η) is an increasing function and maximum occurs at η = 1, so

max {F (1, η) : η ∈ [0, 1]} = F (1, 1) =
t2

4
(
[2]q − 1 + β

)2
+

4− t2

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} , t ∈ [0, 2] .

Thus, we have

F (ξ, η) ≤ max {F (ξ, η) : (ξ, η) ∈ Ω} = F (1, 1)

=
t2

4
(
[2]q − 1 + β

)2 +
4− t2

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} .
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Since |a3| ≤ F (ξ, η) , we can write

|a3| ≤ a (q, β) t2 +
1

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

, t ∈ [0, 2]

where

a (q, β) =
1

4

 1(
[2]q − 1 + β

)2 − 1

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

 .
Now, let’s find the maximum of the function χ : R → R defined as follows

χ(t) = a (q, β) t2 +
1

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

in the interval [0, 2] .

Differentiating the function χ(t), we have χ′
(t) = 2a (q, β) t, t ∈ [0, 2] . Since χ′

(t) ≤ 0 when a (q, β) ≤ 0,

the function χ(t) is a decreasing function and maximum occurs at t = 0, so

max {χ(t) : t ∈ [0, 2]} = χ(0) =
1

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

and χ
′
(t) ≥ 0 when a (q, β) ≥ 0, the function χ(t) is an increasing function and maximum occurs at

t = 2, so

max {χ(t) : t ∈ [0, 2]} = χ(2) =
1(

[2]q − 1 + β
)2 .

Thus, we obtain the following upper bound estimate for |a3|

|a3| ≤ max

 1(
[2]q − 1 + β

)2 , 1

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

 .

From (2.15), using (2.16), (2.17) and triangle inequality, we obtain the following inequality for |a4|

|a4| ≤ c1 (t) + c2 (t) (ξ + η) + c3 (t)
(
ξ2 + η2

)
:= G (ξ, η) ,

where

c1 (t) =

{
[3]q +

(
[3]q − [2]q

)
[2]q

}
[2]q β +

(
[3]q − 1

)
(1− β)

8
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)3 t3

+
4− t2

4
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

} ,
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c2 (t) =
5
(
4− t2

)
t

32
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}(
[2]q − 1 + β

)
+

(
4− t2

)
t

16
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

} ,

c3 (t) =

(
4− t2

)
(t− 2)

16
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

} ,
Now, we need to maximize the function G on Ω for each t ∈ [0, 2] .

Since the coefficients c1 (t) , c2 (t) and c3 (t) of the function G depend on the parameter t, we must
investigate the maximum of the function G for different values of the parameter t .

For t = 0 , since c2(0) = 0,

c1 (0) =
1

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

and

c3 (0) =
−1

2
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

} ,
we write

G (ξ, η) =
1

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

− 1

2
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

} (ξ2 + η2
)
, (ξ, η) ∈ [0, 1]

2
.

From this, we have

G (ξ, η) ≤ max {G (ξ, η) : (ξ, η) ∈ Ω} = G (0, 0) =
1

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

.

Let t = 2 . Then, since c2(2) = c3(2) = 0 and

c1 (2) =

{
[3]q +

(
[3]q − [2]q

)
[2]q

}
[2]q β +

(
[3]q − 1

)
(1− β){

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)3 ,

the function G is constant as follows

G (ξ, η) = c1 (2) =

{
[3]q +

(
[3]q − [2]q

)
[2]q

}
[2]q β +

(
[3]q − 1

)
(1− β){

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)3 .
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In the case t ∈ (0, 2) , we can easily show that the function G cannot have a maximum on the Ω.

Thus, we obtain

|a4| ≤ max


1

[3]q [4]qβ+([4]q−1)(1−β)
,

{[3]q+([3]q−[2]q)[2]q}[2]qβ+([3]q−1)(1−β)

{[3]q [4]qβ+([4]q−1)(1−β)}([2]q−1+β)
3

 .

The results obtained in the theorem are sharp for β ∈ [0, 1] . Really, the obtained results hold with
equalities for the following function

f(z) = z +
z2

[2]q − 1 + β
+

z3(
[2]q − 1 + β

)2

+

{
[3]q +

(
[3]q − [2]q

)
[2]q

}
[2]q β +

(
[3]q − 1

)
(1− β){

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)3 z4, z ∈ U

for β ∈ [0, 1] .
Thus, the proof of Theorem 2.1 is completed. 2

In special cases β = 0 and β = 1 , from the Theorem 2.1 we obtain the following results, respectively.

Corollary 2.2 Let the function f given by (1.1) be in the class S∗q,Σ (φ) . Then,

|a2| ≤
1

[2]q − 1
, |a3| ≤

1(
[2]q − 1

)2 and |a4| ≤
[3]q − 1(

[4]q − 1
)(

[2]q − 1
)3 .

The results obtained here are sharp. In particular, equalities hold for the function

f(z) = z +
z2

[2]q − 1
+

z3(
[2]q − 1

)2 +

(
[3]q − 1

)
z4(

[4]q − 1
)(

[2]q − 1
)3 , z ∈ U.

Corollary 2.3 Let the function f given by (1.1) be in the class Cq,Σ (φ) . Then,

|a2| ≤
1

[2]q
, |a3| ≤

1

[2]
2
q

and |a4| ≤


1

[3]q [4]q
, if q ∈ (0, q0] ,

[3]q+([3]q−[2]q)[2]q
[2]2q [3]q [4]q

, if q ∈ [q0, 1) ,
.

where q0 =
√
5−1
2 .

The results obtained here are sharp. In particular, equalities hold for the function

f(z) = z +
z2

[2]q
+

z3

[2]
2
q

+
z4

[3]q [4]q
, z ∈ U

for q ∈ (0, q0] and for the function
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f(z) = z +
z2

[2]q
+

z3

[2]
2
q

+
[3]q +

(
[3]q − [2]q

)
[2]q

[2]
2
q [3]q [4]q

z4, z ∈ U

for q ∈ [q0, 1) .

Also, from the Theorem 2.1 the following result was obtained, when q → 1− .

Theorem 2.4 (see [24],Theorem 2.1) Let the function f given by (1.1) be in the class MΣ (φ, β) . Then,

|a2| ≤
1

1 + β

|a3| ≤

{
1

(1+β)2
, if β ∈

[
0, 1 +

√
2
]
,

1
2(1+2β) , if β ≥ 1 +

√
2,

|a4| ≤
1

3 (1 + 3β)

{
2(1+4β)

(1+β)3
, if β ∈ [0, β0] ,

1, if β ≥ β0,

where β0 = 1.3289 is the numerical solution of the equation β3 + 3β2 − 5β − 1 = 0.

3. The second Hankel determinant and Fekete-Szegö inequality

In this section, we give an upper bound estimate for the second Hankel determinant and Fekete-Szegö inequality
for the function belonging to the class Mq,Σ (φ, β) defined by Definition 1.5.

Firstly, we prove the following theorem on the upper bound estimate of the second Hankel determinant.

Theorem 3.1 Let the function f given by (1.1) be in the class Mq,Σ (φ, β) , β ∈ [0, 1] . Then,

∣∣a2a4 − a23
∣∣ ≤ max {A (q, β) , B (q, β)} . (3.1)

where

A (q, β) =
1{

[3]q − 1 +
[(

[2]q − 1
)
[3]q + 1

]
β
}2 ,

B (q, β) =
[4]q − [3]q +

{(
[3]q + [2]q

)
[2]

2
q −

(
[2]q − 1

)
[3]q −

(
[3]q + 1

)
[4]q

}
β{

[4]q − 1 +
[(

[3]q − 1
)
[4]q + 1

]
β
}(

[2]q − 1 + β
)4 .

Proof Let f ∈ Mq,Σ (φ, β) , β ∈ [0, 1] . Then, from (2.13), (2.14) and (2.15), we write the following equality
for a2a4 − a23

3109



MUSTAFA and KORKMAZ/Turk J Math

a2a4 − a23 =

{(
[3]q − [2]

2
q

)
[2]q +

(
[2]

2
q − [4]q

)
[3]q

}
β +

(
[3]q − [4]q

)
(1− β)

16
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)4 p41

+
(p2 − q2) p

2
1

32
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}(
[2]q − 1 + β

)2
+

(p3 − q3) p2

8
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)
− (p2 + q2) p

2
1

16
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)
− (p2 − q2)

2

16
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}2 .

Using equalities (2.16) and (2.17), then triangle inequality and letting |p1| = t, |x| = ξ, |y| = η, we obtain
the following estimate for

∣∣a2a4 − a23
∣∣

∣∣a2a4 − a23
∣∣ ≤ C1 (t) + C2 (t) (ξ + η) + C3 (t)

(
ξ2 + η2

)
+ C4 (t) (ξ + η)

2
, (3.2)

where

C1 (t) =

{(
[2]

2
q − [3]q

)
[2]q +

(
[2]

2
q − [4]q

)
[3]q

}
β +

(
[4]q − [3]q

)
(1− β)

16
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)4 t4

+

(
4− t2

)
t

8
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

) ≥ 0,

C2 (t) =

(
4− t2

)
t2

64
(
[2]q − 1 + β

) { 1

{[2]q [3]qβ+([3]q−1)(1−β)}([2]q+β−1)
+ 2

[3]q [4]qβ+([4]q−1)(1−β)

}
≥ 0,

C3 (t) =

(
4− t2

)
(t− 2) t

32
{
[3]q [4]q β +

(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

) ≤ 0,

C4 (t) =

(
4− t2

)2
64
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}2 ≥ 0.

Let the function Φ : R2 → R defined as follows:

Φ(ξ, η) = C1 (t) + C2 (t) (ξ + η) + C3 (t)
(
ξ2 + η2

)
+ C4 (t) (ξ + η)

2
, (ξ, η) ∈ [0, 1]

2
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for each t ∈ [0, 2] .

Now, we need to maximize the function Φ on Ω for each t ∈ [0, 2] .
Since the coefficients of the function Φ depend on the parameter t, we must investigate the maximum

for different values of the parameter t .
1. Let t = 0 . Since C1 (0) = C2 (0) = C3 (0) = 0 and

C4 (0) =
1

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}2 ,

the function Φ written as follows

Φ(ξ, η) =
(ξ + η)

2

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}2 , (ξ, η) ∈ Ω .

It is clear that the function Φ takes its maximum at the boundary of the closed square Ω.

Now, differentiating the function Φ(ξ, η) respect to ξ, we have

Φξ (ξ, η) =
ξ + η

2
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}2

for each η ∈ [0, 1] .
Since Φξ (ξ, η) ≥ 0 , the function Φ(ξ, η) is an increasing function respect to ξ and maximum occurs at

ξ = 1 . So

max {Φ(ξ, η) : ξ ∈ [0, 1]} = Φ(1, η) =
(1 + η)

2

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}2 , η ∈ [0, 1] .

Differentiating the function Φ(1, η) , we have

Φ
′
(1, η) =

1 + η

2
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}2 > 0, η ∈ [0, 1] .

Since Φ
′
(1, η) > 0 , the function Φ(1, η) is an increasing function and maximum occurs at η = 1 .

Therefore,

max {Φ(1, η) : η ∈ [0, 1]} = Φ(1, 1) =
1{

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

}2 .

Thus, in the case t = 0 , we have

Φ(ξ, η) ≤ max
{
Φ(ξ, η) : (ξ, η) ∈ [0, 1]

2
}
= Φ(1, 1)

=
1{

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

}2 .
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Since
∣∣a2a4 − a23

∣∣ ≤ Φ(ξ, η) , we can write

∣∣a2a4 − a23
∣∣ ≤ 1{

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

}2 .

2. Now let t = 2 . Since C2 (2) = C3 (2) = C4 (2) = 0 and

C1 (2) =

{(
[2]

2
q − [3]q

)
[2]q +

(
[2]

2
q − [4]q

)
[3]q

}
β +

(
[4]q − [3]q

)
(1− β){

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)4 ,

the function Φ(ξ, η) is a constant as follows

Φ(ξ, η) = C1 (2) =

{(
[2]

2
q − [3]q

)
[2]q +

(
[2]

2
q − [4]q

)
[3]q

}
β +

(
[4]q − [3]q

)
(1− β){

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

}(
[2]q − 1 + β

)4 .

Thus, we have

∣∣a2a4 − a23
∣∣ ≤

{(
[2]

2
q − [3]q

)
[2]q +

(
[2]

2
q − [4]q

)
[3]q

}
β +

(
[4]q − [3]q

)
(1− β){

[3]q [4]q β +
(
[4]q − 1

)
(1− β)

}(
[2]q + β − 1

)4
in the case t = 2 .
3. Finally, let t ∈ (0, 2) . In this case, we must investigate the maximum of the function Φ taking into

account the sign of ∆(Φ) = Φξξ (ξ, η)Φηη (ξ, η)− (Φξη (ξ, η))
2 .

We can easily see that ∆(Φ) = 4C3 (t) [C3 (t) + 2C4 (t)] . The sign of ∆(Φ) , we will investigate in two
cases.

3.1. Let C3 (t) + 2C4 (t) ≤ 0 for same t ∈ (0, 2) . In this case, since Φξη (ξ, η) = Φηξ (ξ, η) = 2C4 (t) ≥ 0

and ∆(Φ) ≥ 0 , from the elementary calculus the function Φ ( have a minimum) cannot have a maximum on
the square Ω .

3.2. Now let C3 (t) + 2C4 (t) ≥ 0 for some t ∈ (0, 2) . In this case, since ∆(Φ) ≤ 0, the function Φ

cannot have a maximum on the square Ω .
Thus, as a result of all three cases, we write

∣∣a2a4 − a23
∣∣ ≤ max


1

{[2]q [3]qβ+([3]q−1)(1−β)}2

{([2]2q−[3]q)[2]q+([2]
2
q−[4]q)[3]q}β+([4]q−[3]q)(1−β)

{[3]q [4]qβ+([4]q−1)(1−β)}([2]q−1+β)
4

 .

Thus, the proof of Theorem 3.1 is completed. 2

In special values of the parameters, from Theorem 3.1 we obtain the following results.

Corollary 3.2 Let the function f given by (1.1) be in the class S∗
q,Σ (φ) . Then,

∣∣a2a4 − a23
∣∣ ≤ [4]q − [3]q(

[4]q − 1
)(

[2]q − 1
)4 .
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Corollary 3.3 Let the function f given by (1.1) be in the class Cq,Σ (φ) . Then,

∣∣a2a4 − a23
∣∣ ≤ 1

[2]
2
q [3]

2
q

.

Also, from Theorem 3.1, we obtain the following theorem when q → 1−.

Theorem 3.4 (see [24],Theorem 3.1) Let the function f given by (1.1) be in the class MΣ (φ, β) . Then,

∣∣a2a4 − a23
∣∣ ≤ { 1

3(1+3β)(1+β)3
, if β ∈ [0, β1]

1
4(1+2β)2

if β ≥ β1,

where β1 = 0.16357 is numerical solution of equation 9β4 + 30β3 + 20β2 + 2β − 1 = 0.

Now, we give the following theorem on the Fekete-Szegö inequality.

Theorem 3.5 Let the function f given by (1.1) be in the class Mq,Σ (φ, β) and µ ∈ C . Then,

∣∣a3 − µa22
∣∣ ≤


l(q,β)

([2]q−1+β)
2 if |1− µ| ≤ l (q, β) ,

|1−µ|
([2]q−1+β)

2 if |1− µ| ≥ l (q, β) ,
(3.3)

where

l (q, β) =

(
[2]q − 1 + β

)2
[3]q − 1 +

[(
[2]q − 1

)
[3]q + 1

]
β
.

The result obtained here is sharp.

Proof Let f ∈ Mq,Σ (φ, β) , β ≥ 0 and µ ∈ C . Then, from the equalities (2.13), (2.14) and (2.16) the
expression a3 − µa22 written as

a3 − µa22 = (1− µ)
p21(

[2]q − 1 + β
)2 +

4− p21

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} (x− y) (3.4)

f or some x, y with |x| ≤ 1, |y| ≤ 1.

Using triangle inequality to the equality (3.4) and setting |x| = ξ, |y| = η, |p1| = t , we obtain the
following estimate for the upper bound of

∣∣a3 − µa22
∣∣

∣∣a3 − µa22
∣∣ ≤ |1− µ| t2

4
(
[2]q − 1 + β

)2 (3.5)

+
4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} (ξ + η) , (ξ, η) ∈ Ω
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for each t ∈ [0, 2] .

Let us define the function ψ : R2 → R as follows:

ψ (ξ, η) =
|1− µ| t2

4
(
[2]q − 1 + β

)2 +
4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} (ξ + η) ,

(ξ, η) ∈ Ω

for each t ∈ [0, 2] .

Let’s find the maximum of the function ψ on the closed square Ω .
It is clear that the function ψ takes its maximum value at the boundary of the closed square Ω .
Differentiating the function ψ (ξ, η) respect to ξ , we have

ψξ (ξ, η) =
4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}
for each t ∈ [0, 2] .

Since ψξ (ξ, η) ≥ 0 , the function ψ (ξ, η) is an increasing function respect to ξ and maximum occurs at
ξ = 1 .

Therefore,

max {ψ (ξ, η) : ξ ∈ [0, 1]} = ψ (1, η)

=
|1− µ| t2

4
(
[2]q − 1 + β

)2 +
4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} (1 + η)

for each η ∈ [0, 1] and t ∈ [0, 2] .

Now, differentiating the function ψ (1, η) , we have

ψ
′
(ξ, η) =

4− t2

8
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

}
for each t ∈ [0, 2] .

Since ψ′
(1, η) ≥ 0 , the function ψ (1, η) is an increasing function and maximum occurs at η = 1 , so

max {ψ (1, η) : η ∈ [0, 1]} = ψ (1, 1)

=
|1− µ| t2

4
(
[2]q − 1 + β

)2 +
4− t2

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} , t ∈ [0, 2] .

Thus, we have

ψ (ξ, η) ≤ max {(ξ, η) : (ξ, η) ∈ Ω} = ψ (1, 1)

=
|1− µ| t2

4
(
[2]q − 1 + β

)2 +
4− t2

4
{
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

} .
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Since
∣∣a3 − µa22

∣∣ ≤ ψ (ξ, η) , we can write the following estimate

∣∣a3 − µa22
∣∣ ≤ |1− µ| − l (q, β)

4
(
[2]q − 1 + β

)2 t2 + l (q, β)(
[2]q − 1 + β

)2 ,
where

l (q, β) =

(
[2]q − 1 + β

)2
[2]q [3]q β +

(
[3]q − 1

)
(1− β)

.

In that case, if we find the maximum of the function φ : [0, 2] → R defined as follows

φ (t) =
|1− µ| − l (q, β)

4
(
[2]q − 1 + β

)2 t2 + l (q, β)(
[2]q − 1 + β

)2
the proof of the theorem is completed .
Differentating the function φ (t) , we have

φ
′
(t) =

|1− µ| − l (q, β)

2
(
[2]q − 1 + β

)2 t, t ∈ [0, 2] .

Since φ′
(t) ≤ 0 , the function φ (t) is a decreasing function, if |1− µ| ≤ l (q, β) and maximum occurs at

t = 0 , so

max {φ (t) : t ∈ [0, 2]} = φ (0) =
l (q, β)(

[2]q − 1 + β
)2

and φ
′
(t) ≥ 0 , the function φ (t) is an increasing function, if |1− µ| ≥ l (q, β) and maximum occurs at

t = 2 , so

max {φ (t) : t ∈ [0, 2]} = φ (2) =
|1− µ|(

[2]q − 1 + β
)2 .

Thus, as a result, we obtain

∣∣a3 − µa22
∣∣ ≤


l(q,β)

([2]q−1+β)
2 if |1− µ| ≤ l (q, β) ,

|1−µ|
([2]q−1+β)

2 if |1− µ| ≥ l (q, β) .

The result obtained here is sharp for |1− µ| ≥ l (q, β) , if we choose the function f as follows:

f(z) = z +
z2

[2]q − 1 + β
+

z3(
[2]q − 1 + β

)2 , z ∈ U .
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Thus, the proof of Theorem 3.5 is completed. 2

In the cases β = 0 and β = 1, from the Theorem 3.5 we obtain the following results, respectively.

Corollary 3.6 Let the function f given by (1.1) be in the class S∗q,Σ (φ) and µ ∈ C . Then,

∣∣a3 − µa22
∣∣ ≤


1

[3]q−1 if |1− µ| ≤ l0 (q) ,
|1−µ|

([2]q−1)
2 if |1− µ| ≥ l0 (q) .

where l0 (q) =
([2]q−1)

2

[3]q−1 . The result obtained here is sharp for the function

f(z) = z +
z2

[2]q − 1
+

z3(
[2]q − 1

)2 , z ∈ U

for |1− µ| ≥ l0 (q) .

Corollary 3.7 Let the function f given by (1.1) be in the class Cq,Σ (φ) and µ ∈ C . Then,

∣∣a3 − µa22
∣∣ ≤ { 1

[2]q [3]q
if |1− µ| ≤ l1 (q) ,

|1−µ|
[2]2q

if |1− µ| ≥ l1 (q) ,

where l1 (q) =
[2]q
[3]q

. The result obtained here is sharp for the function

f(z) = z +
z2

[2]q
+

z3

[2]
2
q

, z ∈ U

for |1− µ| ≥ l1 (q) .

Also, from the Theorem 3.5 we obtain the following theorem, when q → 1−.

Theorem 3.8 (see [24],Theorem 3.4) Let the function f given by (1.1) be in the class MΣ (φ, β) and µ ∈ C .
Then,

∣∣a3 − µa22
∣∣ ≤ { 1

2(1+2β) if |1− µ| ≤ (1+β)2

2(1+2β) ,
|1−µ|
(1+β)2

if |1− µ| ≥ (1+β)2

2(1+2β) .

In the case µ ∈ R , the Theorem 3.5 is given as follows.

Theorem 3.9 Let the function f given by (1.1) be in the class Mq,Σ (φ, β) and µ ∈ R . Then,

∣∣a3 − µa22
∣∣ ≤


1−µ

([2]q−1+β)
2 if µ ≤ 1− l (q, β) ,

l(q,β)

([2]q−1+β)
2 if 1− l (q, β) ≤ µ ≤ 1 + l (q, β) ,

µ−1

([2]q−1+β)
2 if 1 + l (q, β) ≤ µ.

(3.6)
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where l (q, β) =
([2]q−1+β)

2

[3]q−1+[([2]q−1)[3]q+1]β

Proof Let f ∈ Mq,Σ (φ, β) , β ≥ 0 and µ ∈ R . Since in the case µ ∈ R inequalities |1− µ| ≥ l (q, β) and
|1− µ| ≤ l (q, β) are equivalent to the inequalities

µ ≤ 1− l (q, β) or µ ≥ 1 + l (q, β)

and

1− l (q, β) ≤ µ ≤ 1 + l (q, β) ,

respectively, from the Theorem 3.5 we obtain the result of the theorem.
This completes the proof of Theorem 3.9. 2

In the cases β = 0 and β = 1, from the Theorem 3.9 we obtain the following results, respectively.

Corollary 3.10 Let the function f given by (1.1) be in the class S∗
q,Σ (φ) and µ ∈ R . Then,

∣∣a3 − µa22
∣∣ ≤


1−µ

([2]q−1)
2 if µ ≤ 1− l0 (q) ,

1
[3]q−1 if 1− l0 (q) ≤ µ ≤ 1 + l0 (q) ,
µ−1

([2]q−1)
2 if 1 + l0 (q) ≤ µ.

where l0 (q) =
([2]q−1)

2

[3]q−1 .

Corollary 3.11 Let the function f given by (1.1) be in the class Cq,Σ (φ) and µ ∈ R . Then, we have

∣∣a3 − µa22
∣∣ ≤


1−µ
[2]2q

if µ ≤ 1− l1 (q) ,
1

[2]q [3]q
if 1− l1 (q) ≤ µ ≤ 1 + l1 (q) ,

µ−1
[2]2q

if 1 + l1 (q) ≤ µ ,

where l1 (q) =
[2]q
[3]q

.

Furthermore, from the Theorem 3.9 we obtain the following results for µ = 1.

Corollary 3.12 Let the function f given by (1.1) be in the class Mq,Σ (φ, β) . Then, we have

∣∣a3 − a22
∣∣ ≤ 1

[2]q [3]q β +
(
[3]q − 1

)
(1− β)

.

Corollary 3.13 Let the function f given by (1.1) be in the class S∗
q,Σ (φ) . Then, we have

∣∣a3 − a22
∣∣ ≤ 1

[3]q − 1
.
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Corollary 3.14 Let the function f given by (1.1) be in the class Cq,Σ (φ) . Then, we have

∣∣a3 − a22
∣∣ ≤ 1

[2]q [3]q
.

In the case µ = 0 , from the Theorem 3.9 we obtain the following results, which confirm the second
inequality obtained in Theorem 2.1

Corollary 3.15 Let the function f given by (1.1) be in the class Mq,Σ (φ, β) . Then, we have

|a3| ≤


1

([2]q−1+β)
2 if l (q, β) ≤ 1,

l(q,β)

([2]q−1+β)
2 if l (q, β) ≥ 1 ,

where l (q, β) =
([2]q−1+β)

2

[2]q [3]qβ+([3]q−1)(1−β)
.

From the Theorem 3.9, we obtained the following theorem, when q → 1−.

Theorem 3.16 (see [24],Theorem 3.7) Let the function f given by (1.1) be in the class MΣ (φ, β) and µ ∈ R.
Then, we have

∣∣a3 − µa22
∣∣ ≤


1−µ

(1+β)2
if µ ≤ 1− l (β) ,

1
2(1+2β) if 1− l (β) ≤ µ ≤ 1 + l (β) ,

µ−1
(1+β)2

if 1 + l (β) ≤ µ,

where l (β) = (1+β)2

2(1+2β) .
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