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Abstract: The main interest of this paper is to propose a numerical scheme in order to solve linear systems of Volterra-
Fredholm integro-differential equations given with mixed conditions. The proposed method is a weighted residual scheme
which uses monomials up to a prescribed degree N as the basis functions. By taking inner product of the equation
system with the elements of this basis set in a Galerkin-like fashion, the original problem is transformed into a linear
algebraic equation system. After a suitable incorporation of the mixed conditions, a final algebraic system is obtained,
from which the approximate solutions of the problem are computed. The proposed numerical scheme is illustrated with
example problems taken from the literature.
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1. Introduction
Integro-differential equations arise in situations where the rate of change of a quantity depends on the history
of that quantity throughout a continuous time interval as well as on its present state. Many applications
in science and engineering possess this property, resulting in model problems that involve integro-differential
equations. Such applications include circuit analysis [22, p. 263], computational neuroscience [16], heat flow
[19], plate equation with memory [4] and image processing [5]. There are also several textbooks on the theory
and applications of integro-differential equations. The reader who is interested in such treatises can see [18].

In some problems where integro-differential equations are relevant, there are more than one unknown
functions involved, resulting in the problem being modeled as a system of integro-differential equations. Such
applications include the relation between populations of immune cells and tumor [7], boundary value problems
in electromagnetic theory [9], modeling of fluid waves with an application to oceanography [1], population
dynamics [12] and statistics of polymer chains [17].

In this study, we consider the following system of linear integro-differential equations

m∑
n=0

k∑
j=1

Pn
i,j(x)y

(n)
j (x) =

∫ b

a

m∑
n=0

k∑
j=1

Kn
i,j(x, t)y

(n)
j (t)dt+

∫ x

a

m∑
n=0

k∑
j=1

Ln
i,j(x, t)y

(n)
j (t)dt

+ gi(x), i = 1, 2, . . . , k

(1.1)
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in the interval a ≤ x ≤ b and under the mixed initial and boundary conditions

m−1∑
j=0

(
ani,jy

(j)
n (a) + bni,jy

(j)
n (b)

)
= λn,i, i = 1, 2, . . . ,m, n = 1, 2, . . . , k. (1.2)

In (1.1), the subscript i corresponds to the equations and the subscript j corresponds to the unknown functions;
hence it is a system of k equations in k unknown functions. The degree of the highest derivative of the unknown
functions in each of the k equations is equal to at most m , which means that each equation is of m -th or smaller
order. Pn

i,j are given functions of one variable defined in [a, b] whereas the kernel functions Kn
i,j and Ln

i,j are
known functions of two variables defined in the domain [a, b] × [a, b] for i = 1, 2, . . . , k, j = 1, 2, . . . , k , n =

0, 1, . . . ,m . In addition, the nonhomogeneous terms gi are known continuous functions of one variable over
the interval [a, b] . The integrals having constant upper limit b are the Fredholm terms of the system, whereas
those given with variable upper limit x constitutes the Volterra terms. Therefore, (1.1) is a system of linear
Volterra-Fredholm integro-differential equations. As for the km conditions given by (1.2), they are of mixed
type in the sense that some of them may contain terms evaluated at both boundary points a and b . Whenever
suitable, we will refer to the system (1.1) given with the conditions (1.2) as problem (1.1)–(1.2).

As of today, there does not exist a known method that exactly solves the problem (1.1)–(1.2); therefore
numerical techniques are required when one needs its solutions. Indeed, many researchers have been interested
in obtaining numerical solutions of integro-differential equations using a variety of methods. To name a few of
such studies, Biazar [8] used the well-known Adomian decomposition method to solve an initial value version of
problem (1.1)–(1.2) where the left-hand side contains only the first derivative of the unknown functions. In [21],
Saberi-Nadjafi and Tamamgar used the still more popular variational iteration method in order to solve problems
of type (1.1)–(1.2). Another popular method, He’s homotopy perturbation method, was employed for the same
purpose by Yusufoğlu in [26]. In [2], Akyüz-Daşcıoğlu and Sezer obtained Chebyshev polynomial solutions of
problem (1.1)–(1.2) by using Chebyshev nodes as collocation points. Hesameddini and Shahbazi solved the
same problem using collocation approach in conjunction with hybrid Block-Pulse functions based on Bernstein
polynomials [14]. Other schemes based on collocation points were employed by Sezer and Gülsu using Taylor
polynomials [13], by Caliò et al. [11] who utilized a certain type of spline approximation functions and by Yüzbaşı
using Bessel polynomials [27]. Lastly, operational matrix method in connection with Bernstein polynomials was
applied to a version of problem (1.1)–(1.2) with slightly different mixed conditions by Maleknejad et al. in
[20]. Apart from these numerical studies, Fredholm-Volterra integral or integro-differential equations and their
various variants have extensively been studied from a qualitative point of view. Among recent studies in
this category, we refer the reader to [24] and [23], where fundamental properties of certain types of nonlinear
integro-delay differential equation systems such as stability, boundedness and integrability are investigated. In
addition, stability and boundedness properties of solutions of a new mathematical model involving Volterra
integro-differential equations with Caputo fractional derivative and constant delays have been studied in [10].

Our interest in this paper is to solve problem (1.1)–(1.2) by using a weighted residual scheme reminiscent of
the Galerkin method. We will use standard polynomials up to a prescribed degree as the set of basis functions,
meaning that the approximate solutions that will be obtained as a result of the method are polynomials.
Similar numerical schemes were used in the case of single high-order Fredholm integro-differential equations
[25] and Fredholm integro-differential equations with weakly singular kernel [28], Lotka-Volterra predator-prey
population model [29] and linear Volterra integro-delay differential equations [30] in addition to systems of
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linear differential and integral equations [15]. Although there is a large number of numerical methods in the
literature that can be used to solve integro-differential equations, the method presented in this paper has the
virtue that it can easily be adapted to problems of different kind and it also improves on most of the other
proposed schemes in terms of accuracy. This will be apparent in the succeeding sections.

The organization of the rest of the paper is as follows: Section 2 describes the proposed solution method
in detail, whereas Section 3 explains a technique useful in estimating the error of an obtained approximate
solution. Numerical examples are considered in Section 4. Finally, Section 5 contains some comments regarding
the effectivity of the proposed scheme based on the obtained numerical results.

2. Method of solution
This section outlines the method that we will use to solve problems of type (1.1)–(1.2). In the sequel, we
will often express the mathematical identities in their matrix forms since this makes it easier to program the
numerical scheme in computer. In order to help the reader follow the method more easily, we will divide it into
four steps. Step 1 consists of replacing the unknown functions in system (1.1) by their approximate forms (will
be defined in the sequel) and hence obtain an approximate matrix version of the system. In step 2, we convert
this matrix version to a system of linear algebraic equations by applying inner product with weight functions
(will be defined in the sequel). In step 3, we feed the mixed conditions (1.2) to this system and thus obtain a
modified system. In step 4, we obtain the approximate solutions of problem (1.1)–(1.2) using the solutions of
this system.

Our only assumption on the solutions of problem (1.1)–(1.2) is that they are expressible in the form of
power series in the interval [a, b] as

yi(x) =

∞∑
n=0

ai,nx
n = ai,0 + ai,1x+ ai,2x

2 + . . . , i = 1, 2, . . . , k.

Step 1: The first step of the proposed scheme starts by choosing a positive integer N and truncating
the above solutions after their (N + 1) -st terms, resulting in the approximate solutions

yi ≈ yi,N (x) =

N∑
n=0

ai,nx
n, i = 1, 2, . . . , k.

As the notation suggests, we denote the i -th approximate solution by yi,N (x) , which is a polynomial of degree
N with the coefficient of xn being denoted by ai,n . The goal of the method is to determine these coefficients,
which are also called the “weights”. We call the monomials 1, x, x2, . . . , xN up to degree N the “basis functions”
since each approximate solution is a linear combination of them. Our main task in this step is to impose on
the approximate solutions yi,N the condition of satisfying system (1.1). To make this task easier, let us define
some auxiliary matrices that will simplify the notation. Namely, we define

X(x) = [ 1 x x2 . . . xN ], Ai = [ ai,0 ai,1 . . . ai,N ]T , i = 1, 2, . . . , k,

where T denotes transpose. Under this setting, the approximate solutions can be expressed as

yi,N (x) = X(x)Ai, i = 1, 2, . . . , k.

Likewise, derivatives of the approximate solutions can also be expressed in terms of a matrix multiplication.
This is achieved by defining a (N +1)× (N +1) square matrix, which we denote by B , with entries Bi,i+1 = i

for i = 1, 2, . . . , N and Bi,j = 0 for all other entries. More explicitly, the matrix
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B =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
... . . . ...

0 0 0 . . . N
0 0 0 . . . 0


enables us to express the derivatives as y

(n)
i,N (x) = X(x)BnAi for i = 1, 2, . . . , k and n = 1, 2, . . . ,m. Note that

this identity is also valid for n = 0 ; it reduces to yi,N (x) = X(x)Ai in this case. Next, we substitute the matrix
expressions for the approximate solutions yi,N and their derivatives in the original system (1.1). The resulting
equations are as follows:

m∑
n=0

k∑
j=1

Pn
i,j(x)X(x)BnAj −

∫ b

a

m∑
n=0

k∑
j=1

Kn
i,j(x, t)X(t)BnAjdt

−
∫ x

a

m∑
n=0

k∑
j=1

Ln
i,j(x, t)X(t)BnAjdt = −gi(x), i = 1, 2, . . . , k.

Alternatively, grouping the unknown weights corresponding to the same unknown function, we can rewrite the
above as

k∑
j=1

(
m∑

n=0

(
Pn
i,j(x)X(x)−

∫ b

a

Kn
i,j(x, t)X(t)dt−

∫ x

a

Ln
i,j(x, t)X(t)dt

)
Bn

)
Aj

= Fi,1(x)A1 + Fi,2(x)A2 + . . .+ Fi,k(x)Ak = −gi(x), i = 1, 2, . . . , k,

(2.1)

where the notation Fi,j(x) :=
∑m

n=0

(
Pn
i,j(x)X(x)−

∫ b

a
Kn

i,j(x, t)X(t)dt−
∫ x

a
Ln
i,j(x, t)X(t)dt

)
Bn for j =

1, 2, . . . , k have been adopted for convenience. Here, each Fi,j(x) is a row vector of length N + 1 whose
entries are functions of x . It is possible to express the left-hand side of (2.1) as a single matrix multiplication
by vertically concatenating the column vectors A1,A2, . . . ,Ak . In addition, we construct (N + 1)× k(N + 1)

matrices Ij from the (N + 1)× (N + 1) identity matrix I for j = 1, 2, . . . , k . Namely, we define

A =


A1

A2

...
Ak

 , Ij =
[

0 · · · 0︸ ︷︷ ︸
j−1 times

I 0 · · · 0︸ ︷︷ ︸
k−j times

]
, j = 1, 2, . . . , k.

In the definition of Ij , 0 denotes the all-zero matrix of size (N +1)× (N +1) . This new setting suggests that
(2.1) can be written for a fixed i as k∑

j=1

Fi,j(x)Ij

A = Fi(x)A = gi(x). (2.2)

This is the i -th equation in the original system (1.1) with the unknown functions yj replaced by their polynomial
approximations yj,N . Since there are a total of k equations in (1.1), the whole system can be expressed by
vertically concatenating all k matrix equations of the from (2.2); namely by

F1(x)
F2(x)

...
Fk(x)

A =


g1(x)
g2(x)

...
gk(x)

 or F(x)A = g(x). (2.3)

3124



KARAÇAYIR and YÜZBAŞI/Turk J Math

Here, F(x) is a k × k(N + 1) matrix whose entries are functions of x . Thus, (2.3) can be viewed as N + 1

functional equations in the k(N + 1) unknowns ai,j . This completes step 1.
Step 2: Now, we have the approximate matrix version (2.3) of the original system (1.1). The goal of this

step is to transform (2.3) to a linear algebraic system whose unknowns are the weights ai,j . This is achieved by
taking inner product of (2.3) with the weight functions 1, x, x2, . . . , xN (which are the same as basis functions∗)
one at a time. This inner product is defined in the space L2[a, b] of square integrable functions on a real interval.
More explicitly, if f and g are functions from L2[a, b] , then their inner product is given by

< f, g >=

∫ b

a

f(t)g(t)dt.

Recall that each line of (2.3) is an equation of the form Fi(x)A = gi(x) for some i = 1, 2, . . . , k . Now, to each
of these k equations we apply inner product with each of the weight functions 1, x, x2, . . . , xN . Due to the
linearity of the inner product, this results in the following:

< Fi(x), x
j > A =< gi(x), x

j >, i = 1, 2, . . . , k, j = 0, 1, . . . , N.

For a fixed i and a fixed j , this is a linear algebraic equation whose unknowns are the k(N + 1) unknown
weights in A . Since there are k equations and N + 1 basis functions in total, this process results in a system
of k(N + 1) algebraic equations in k(N + 1) unknowns. Using the linearity of inner product, we can shortly
write this system as

WA = G, (2.4)
where the entries of W and G are determined by

Wjk+i,l =< Fi(x)l, x
j >, Gjk+i,1 =< gi(x), x

j >,

or more explicitly by

W =



< F1(x)1, 1 > < F1(x)2, 1 > · · · < F1(x)k(N+1), 1 >
< F2(x)1, 1 > < F2(x)2, 1 > · · · < F2(x)k(N+1), 1 >

...
... · · ·

...
< Fk(x)1, 1 > < Fk(x)2, 1 > · · · < Fk(x)k(N+1), 1 >
< F1(x)1, x > < F1(x)2, x > · · · < F1(x)k(N+1), x >
< F2(x)1, x > < F2(x)2, x > · · · < F2(x)k(N+1), x >

...
... · · ·

...
< Fk(x)1, x > < Fk(x)2, x > · · · < Fk(x)k(N+1), x >

...
... · · ·

...
< F1(x)1, x

N > < F1(x)2, x
N > · · · < F1(x)k(N+1), x

N >
< F2(x)1, x

N > < F2(x)2, x
N > · · · < F2(x)k(N+1), x

N >
...

... · · ·
...

< Fk(x)1, x
N > < Fk(x)2, x

N > · · · < Fk(x)k(N+1), x
N >



, G =



< g1(x), 1 >
< g2(x), 1 >

...
< gk(x), 1 >
< g1(x), x >
< g2(x), x >

...
< gk(x), x >

...
< g1(x), x

N >
< g2(x), x

N >
...

< gk(x), x
N >


for i = 1, 2, . . . , k, j = 0, 1, . . . , N, l = 1, 2, . . . , k(N +1) and Fi(x)l denotes the l -th entry of the vector Fi(x) .
Since we have obtained the linear algebraic system (2.4), step 2 is complete.

Step 3: The solutions of the system (2.4) do not yield the approximate solutions yi,N , since the mixed
conditions (1.2) have not been taken into account yet. In this step we incorporate these conditions into system

∗In general weight functions do not have to be same as the basis functions. In Galerkin method they are taken to be the same.
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(2.4). There is a total of km mixed conditions, each of which imposes a linear equation in the unknown weights
ai,j . These equations can easily be expressed in terms of matrices, in a similar fashion to what we did in step
1. In the context of mixed conditions (1.2), the superscript n stands for the n -th unknown function yn and
the subscript i enumerates the m distinct mixed conditions corresponding to the same unknown function. The
i -th mixed condition for the n -th approximate solution yn,N can be expressed asm−1∑

j=0

(
ani,jX(a) + bni,jX(b)

)
Bj

An =

m−1∑
j=0

(
ani,jX(a) + bni,jX(b)

)
Bj

 InA = Cn,iA = λn,i,

where the matrix In is as before and we have defined Cn,i :=
[∑m−1

j=0

(
ani,jX(a) + bni,jX(b)

)
Bj
]
In . Clearly, the

row vector Cn,i , which represents the i -th condition corresponding to yn,N , has length k(N+1) . Concatenating
all vectors that represent the mixed conditions, we can express all of them by

C1,1

...
C1,m

...
Ck,1

...
Ck,m


A =



λ1,1

...
λ1,m

...
λk,1

...
λk,m


or CA = Λ. (2.5)

The systems (2.5) contains all the mixed conditions and has dimension km× k(N +1) . In order to ensure that
the approximate solutions yi,N satisfy the mixed conditions, we must combine system (2.5) with the previously
obtained system (2.4). Since there should be exactly as many equations as unknowns, we incorporate all km

mixed conditions by replacing this number of rows of system (2.4) by system (2.5). In order to be deterministic,
let us replace the last km rows of W by C and those of G by Λ . More explicitly, we form a new system

W̃A = G̃,

where

W̃ =


W1

...
Wk(N+1−m)

C

 , G̃ =


G1

...
Gk(N+1−m)

Λ

 .

Here Wi and Gi denote the rows of W and G .
Step 4: This step only consists of solving the final system W̃A = G̃ . Provided that the system matrix

W̃ has full rank, the matrix of unknown weights can be computed by A = W̃−1G̃ . Finally, the approximate
solutions are found by yi,N (x) =

∑N
n=0 ai,nx

n for i = 1, 2, . . . , k .

3. Error estimation for approximate solutions

In order to evaluate the accuracy of any numerical method, the straightforward way is to consider the absolute
error of the approximate solution. In our context, if the exact solutions of problem (1.1)–(1.2) are denoted by
yi,exact(x) , the actual errors of the approximate solutions yi,N (x) are given by ei,N (x) = yi,exact(x)−yi,N (x) for
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i = 1, 2, . . . , k . However, this measure of accuracy is not applicable most of the time due to the unavailability
of the exact solution. In such cases, the residual of the approximate solution, which is what remains when we
substitute it in the original equation, can be used as a measure of accuracy. The residuals of the approximate
solutions of problem (1.1)–(1.2) are given by

Ri,N (x) =

m∑
n=0

k∑
j=1

Pn
i,j(x)y

(n)
j,N (x)−

∫ b

a

m∑
n=0

k∑
j=1

Kn
i,j(x, t)y

(n)
j,N (t)dt−

∫ x

a

m∑
n=0

k∑
j=1

Ln
i,j(x, t)y

(n)
j,N (t)dt

− gi(x)

(3.1)

for i = 1, 2, . . . , k . In addition, since yi,exact are the exact solutions, they satisfy system (1.1); therefore it is
true that

m∑
n=0

k∑
j=1

Pn
i,j(x)y

(n)
j (x)−

∫ b

a

m∑
n=0

k∑
j=1

Kn
i,j(x, t)y

(n)
j (t)dt−

∫ x

a

m∑
n=0

k∑
j=1

Ln
i,j(x, t)y

(n)
j (t)dt− gi(x) = 0 (3.2)

for i = 1, 2, . . . , k . Subtracting (3.1) from (3.2) yields

m∑
n=0

k∑
j=1

Pn
i,j(x)e

(n)
j,N (x) =

∫ b

a

m∑
n=0

k∑
j=1

Kn
i,j(x, t)e

(n)
j,N (t)dt+

∫ x

a

m∑
n=0

k∑
j=1

Ln
i,j(x, t)e

(n)
j,N (t)dt

−Ri,N (x), i = 1, 2, . . . , k,

(3.3)

which is the same as system (1.1) with gi(x) replaced by negative −Ri,N (x) of the residuals of approximate
solutions yi,N . The unknown functions of the above system are the actual errors ei,N of these approximate
solutions. Since both yi,exact and yi,N satisfy the mixed conditions (1.2) for each i = 1, 2, . . . , k , we have the
following homogeneous mixed conditions for the actual errors en,N where n = 1, 2, . . . , k :

m−1∑
j=0

(
ain,je

(j)
n,N (a) + bin,je

(j)
n,N (b)

)
=

m−1∑
j=0

(
ani,j(yn,exact − yn,N )(j)(a) + bni,j(yn,exact − yn,N )(j)(b)

)

=

m−1∑
j=0

(
ani,jy

(j)
n,exact(a) + bni,jy

(j)
n,exact(b)

)
−

m−1∑
j=0

(
ani,jy

(j)
n,N (a) + bni,jy

(j)
n,N (b)

)
= 0, i = 1, . . . ,m.

(3.4)

The system (3.3) considered under the conditions (3.4) is called the error problem associated with the problem
(1.1)–(1.2). Since the error problem (3.3)–(3.4) is of the same form as the original problem (1.1)–(1.2), we
can use the method of Section 2 with the aim of obtaining its approximate solutions. To this end, we choose
a parameter value, say M , and apply the numerical scheme to the error problem (3.3)–(3.4). The resulting
approximate solution polynomials of degree M , which we will denote by ei,N,M for i = 1, 2, . . . , k , can be
regarded as estimations for the actual errors ei,N . One can consider using these estimations as an assessment
regarding the accuracy of the approximate solutions yi,N . This will be made more clear during the discussion
of the last example problem in Section 4.

Although the error estimates ei,N,M may provide a practical overview of the accuracy of the approximate
solution yi,N as explained above, this estimation itself relies on the present numerical scheme; therefore it is
plausible to resort to another measure of accuracy. Whenever there is no available exact solution to compare,
such a measure is provided by the residual of the approximate solution as given by Equation (3.1). Namely, one
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can measure the absolute value |Ri,N (x)| of the residual Ri,N (x) corresponding to the approximate solution
polynomial yi,N (x) . If the accuracy required for a specific application has been determined as ε > 0 , then N

can be increased until |Ri,N (x)| < ε for all x ∈ [a, b] .

4. Applications to example problems

This section applies the numerical scheme described in Section 2 to five example problems selected from several
past works. In addition, error estimation method explained in Section 3 is applied to one of these problems.
All the required calculations have been carried out in MATLAB.

Example 1: Firstly, let us examine the following linear system of Volterra integral equations from [14]:

y1(x) = 1 + x2 − x3 + x4

6
+

∫ x

0

(x− t)3

2
y1(t)dt+

∫ x

0

(x− t)2

2
y2(t)dt,

y2(x) = 1 + x− x3 − x7

840
− x4 + x5

8
+

∫ x

0

(x− t)4

2
y1(t)dt+

∫ x

0

(x− t)3

2
y2(t)dt .

(4.1)

The exact solution is known to be y1,exact(x) = 1 + x2, y2,exact(x) = 1 + x − x3. Let us apply the proposed
scheme with the choice N = 3 . We have

y1,3(x) = a1,0 + a1,1x+ a1,2x
2 + a1,3x

3, y2,3(x) = a2,0 + a2,1x+ a2,2x
2 + a2,3x

3.

Replacing y1 and y2 by y1,3 and y2,3 , respectively, in system (4.1) and rearranging gives

a1,0 + a1,1x+ a1,2x
2 + a1,3x

3 −
∫ x

0

(x− t)3

2
(a1,0 + a1,1t+ a1,2t

2 + a1,3t
3)dt

−
∫ x

0

(x− t)2

2
(a2,0 + a2,1t+ a2,2t

2 + a2,3t
3)dt = 1 + x2 − x3 + x4

6
,

a2,0 + a2,1x+ a2,2x
2 + a2,3x

3 −
∫ x

0

(x− t)4

2
(a1,0 + a1,1t+ a1,2t

2 + a1,3t
3)dt

−
∫ x

0

(x− t)3

2
(a2,0 + a2,1t+ a2,2t

2 + a2,3t
3)dt = 1 + x− x3 − x4 + x5

8
− x7

840
.

Then, evaluating the integrals we have the following:

a1,0 + a1,1x+ a1,2x
2 + a1,3x

3 − 105a1,0x
4 + 21a1,1x

5 + 7a1,2x
6 + 3a1,3x

7

840

− 20a2,0x
3 + 5a2,1x

4 + 2a2,2x
5 + a2,3x

6

120
= 1 + x2 − x3 + x4

6
,

a2,0 + a2,1x+ a2,2x
2 + a2,3x

3 − 168a1,0x
5 + 28a1,1x

6 + 8a1,2x
7 + 3a1,3x

8

1680

− 105a2,0x
4 + 21a2,1x

5 + 7a2,2x
6 + 3a2,3x

7

840
= 1 + x− x3 − x4 + x5

8
− x7

840
.

The above equations are the equations F1(x)A = g1(x) and F2(x)A = g2(x) described at the end of step 1 in
Section 2, where
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F1(x) =

[
1− 105x4

840
, x− 21x5

840
, x2 − 7x6

840
, x3 − 3x7

840
, −20x3

120
, −5x4

120
, −2x5

120
, − x6

120

]
,

F2(x) =

[
−168x5

1680
, −28x6

1680
, − 8x7

1680
, − 3x8

1680
, 1− 105x4

840
, x− 21x5

840
, x2 − 7x6

840
, x3 − 3x7

840

]
,

g1(x) = 1 + x2 − x3 + x4

6
, g2(x) = 1 + x− x3 − x4 + x5

8
− x7

840
.

This marks the end of step 1. Now we apply inner product with the weight functions 1, x, x2, x3 to both of the
above equations. In other words, we will multiply both sides of the two equations by the weight functions one
at a time and integrate from 0 to 1. Each inner product will result in a linear equation in the unknown weights.
Equations resulting from F1(x)A = g1(x) are

39

40
a1,0 +

119

240
a1,1 +

93

280
a1,2 +

559

2240
a1,3 −

1

24
a2,0 −

1

120
a2,1 −

1

360
a2,2 −

1

840
a2,3 =

151

120
,

23

48
a1,0 +

277

840
a1,1 +

239

960
a1,2 +

503

2520
a1,3 −

1

30
a2,0 −

1

144
a2,1 −

1

420
a2,2 −

1

960
a2,3 =

31

45
,

53

168
a1,0 +

79

320
a1,1 +

43

216
a1,2 +

1397

8400
a1,3 −

1

36
a2,0 −

1

168
a2,1 −

1

480
a2,2 −

1

1080
a2,3 =

607

1260
,

15

64
a1,0 +

71

360
a1,1 +

199

1200
a1,2 +

439

3080
a1,3 −

1

42
a2,0 −

1

192
a2,1 −

1

540
a2,2 −

1

1200
a2,3 =

125

336
.

Similarly, equations resulting from F2(x)A = g2(x) are

− 1

60
a1,0 −

1

420
a1,1 −

1

1680
a1,2 −

1

5040
a1,3 +

39

40
a2,0 +

119

240
a2,1 +

93

280
a2,2 +

559

2240
a2,3 =

2697

2240
,

− 1

70
a1,0 −

1

480
a1,1 −

1

1890
a1,2 −

1

5600
a1,3 +

23

48
a2,0 +

277

840
a2,1 +

239

960
a2,2 +

503

2520
a2,3 =

8989

15120
,

− 1

80
a1,0 −

1

540
a1,1 −

1

2100
a1,2 −

1

6160
a1,3 +

53

168
a2,0 +

79

320
a2,1 +

43

216
a2,2 +

1397

8400
a2,3 =

12871

33600
,

− 1

90
a1,0 −

1

600
a1,1 −

1

2310
a1,2 −

1

6720
a1,3 +

15

64
a2,0 +

71

360
a2,1 +

199

1200
a2,2 +

439

3080
a2,3 =

61543

221760
.

These eight equations together make up the system WA = G , where

W =



39

40

119

240

93

280

559

2240
− 1

24
− 1

120
− 1

360
− 1

840

− 1

60
− 1

420
− 1

1680
− 1

5040

39

40

119

240

93

280

559

2240
23

48

277

840

239

960

503

2520
− 1

30
− 1

144
− 1

420
− 1

960

− 1

70
− 1

480
− 1

1890
− 1

5600

23

48

277

840

239

960

503

2520
53

168

79

320

43

216

1397

8400
− 1

36
− 1

168
− 1

480
− 1

1080

− 1

80
− 1

540
− 1

2100
− 1

6160

53

168

79

320

43

216

1397

8400
15

64

71

360

199

1200

439

3080
− 1

42
− 1

192
− 1

540
− 1

1200

− 1

90
− 1

600
− 1

2310
− 1

6720

15

64

71

360

199

1200

439

3080



, G =



151

120
2697

2240
31

45
8989

15120
607

1260
12871

33600
125

336
61543

221760


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Since the linear algebraic system is obtained, step 2 is complete.
In this example problem step 3 is not required since there are no initial or boundary conditions in the

problem. Therefore, the matrix of unknown weights is calculated by

A = W−1G =
[
1.0 0 1.0 0 1.0 1.0 0 −1.0

]T
,

which means that the approximate solutions are

y1,3(x) = 1 + x2, y2,3(x) = 1 + x− x3,

which are the exact solutions. This happened because the supposition that the approximate solutions are
polynomials of degree three is true and as a result, the linear algebraic system resulting from this supposition is
exact. Consequently, the approximate solutions yielded by this system are exact. By the same reasoning, any
N > 3 gives the exact solutions in this problem.

Example 2: Our second example is the following second order system of two variables which is taken
from [27]:

y′′1 (x)− 3xy′2(x)− 2y1(x) = 3(x− 1) sin(x) + 2 cos(x)(1− cos(1)− sin(1) + x
4 ) +

x2

2 (cos2(1)− 1)

− 1
2 sin(x) cos

2(x) +

∫ 1

0

(
2 cos(x)ty′1(t)− x2 sin(t)y′′2 (t)

)
dt

+

∫ x

0

(
x cos(t)y1(t)− x sin(t)y′1(t) + cos(x) sin(t)y′2(t)

)
dt,

y′′2 (x)− 2xy′1(x) + xy2(x) = − 1
2 cos(x)(1 + sin(2) + 2x)− 1

2 sin(x)(x+ 2) + 1
2 cos

3(x) + x

+ 1
4x

2(1− cos(2)) +

∫ 1

0

(
x2 cos(t)y′′1 (t) + 2 cos(x) sin(t)y′2(t)

)
dt

+

∫ x

0

(
sin(x) cos(t)y′1(t)− cos(x)ty′2(t) + sin(x)ty′′2 (t)

)
dt,

y1(0) = 0, y′1(0) = 1, y2(0) = 1, y′2(0) = 0.

(4.2)

This problem has the exact solution y1,exact(x) = sin(x), y2,exact(x) = cos(x). We have solved this problem
using several values for the parameter N . For instance, one can verify that for N = 3 first two steps of the
present method outputs the linear algebraic system WA = G , where

W =



−787

342
−841

460

1259

4458

1313

994
0 −502

311
−362

201
−703

404

0 −2245

1764
−910

437
−1200

499

1

2
− 586

1827

2820

2501

1613

887

−1463

1196
−754

727

719

14282

2485

2262
0 −531

491
−3400

2513
−6613

4647

0 −3209

3704
−820

523
−1367

724

1

3
− 172

11367

1031

1582

1371

950

−1739

2061
−1134

1555
− 41

34991

671

771
0 −595

732
−612

565
−943

785

0 −1661

2528
−1667

1326
−3385

2176

1

4

187

4006

1191

2530

5613

4921

−1583

2448
−447

794
− 141

8008

507

712
0 −386

593
−791

876
−487

469

0 −281

531
−875

834
−999

755

1

5

165

2624

739

1989

3901

4169



, G =



−1399

1180

−600

701

− 789

1372

− 907

1917

−1573

4362

− 584

1801

−1229

4812

− 625

2552



.
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Let us now consider the four given mixed conditions, which are indeed initial conditions. The equation
corresponding to y1(0) = 0 is just a1,0 = 0 . Likewise, equations corresponding to y′1(0) = 1, y2(0) = 1

and y′2(0) = 0 are a1,1 = 1, a2,0 = 1 and a2,1 = 0 , respectively. The matrix representations of these equations
are [

1 0 0 0 0 0 0 0
]
A = 0,

[
0 1 0 0 0 0 0 0

]
A = 1,[

0 0 0 0 1 0 0 0
]
A = 1,

[
0 0 0 0 0 1 0 0

]
A = 0.

In order to obtain the final system W̃A = G̃ , last four rows of the system WA = G must be replaced by the
above matrix representations of the initial conditions. Thus, the final system becomes



−787

342
−841

460

1259

4458

1313

994
0 −502

311
−362

201
−703

404

0 −2245

1764
−910

437
−1200

499

1

2
− 586

1827

2820

2501

1613

887

−1463

1196
−754

727

719

14282

2485

2262
0 −531

491
−3400

2513
−6613

4647

0 −3209

3704
−820

523
−1367

724

1

3
− 172

11367

1031

1582

1371

950

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0





a1,0

a1,1

a1,2

a1,3

a2,0

a2,1

a2,2

a2,3



=



−1399

1180

−600

701

− 789

1372

− 907

1917

0

1

1

0



.

The solution of this system is

a1,0 = 0, a1,1 = 1, a1,2 = −0.0195274388, a1,3 = −0.1447398671

and
a2,0 = 1, a2,1 = 0, a2,2 = −0.5369955259, a2,3 = 0.0734172099.

As a result, the approximate solutions obtained using N = 3 are given by

y1,3(x) = x− 0.0195274388x2 − 0.1447398671x3, y2,3(x) = 1− 0.5369955259x2 + 0.0734172099x3.

Since the actual solution is known for this problem, the best way to measure the quality of the approximate
solutions is by means of considering their actual absolute error. Graphs of the absolute error functions |e1,N (x)|
and |e2,N (x)| corresponding to N = 3, 4, 6, 8 are depicted in Figure 1. It is clearly understood from the graph
that increasing the value of the parameter N greatly improves the accuracy.

In order to have an idea on the position of the present scheme with respect to other methods in the
literature, let us compare our results with those obtained by Bessel collocation method in [27]. For this purpose,
we consider the maximum absolute error defined according to the norm ∥f∥ = max

a≤x≤b
|f(x)| . This comparison is

made in Table 1, where the maximum errors corresponding to y1(x) and y2(x) are listed separately. The table
shows that the present scheme outperforms Bessel collocation method for listed N values except the values
corresponding to y2(x) for N = 9 .
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Figure 1. Graphics of the actual absolute errors of the approximate solutions of Problem (4.2) obtained using
N = 3, 4, 6, 8 corresponding to y1(x) (left) and y2(x) (right).

Table 1. Comparison of the present method with Bessel collocation method with respect to the maximum absolute
error of the approximate solutions obtained using N = 3, 6, 9 in Problem (4.2).

Bessel collocation method [27] Present method
N = 3 N = 6 N = 9 N = 3 N = 6 N = 9

∥y1,N∥∞ 5.828e − 2 5.309e − 5 8.356e − 9 5.738e − 3 7.649e − 8 3.092e − 9

∥y2,N∥∞ 7.096e − 2 2.411e − 5 3.054e − 9 3.880e − 3 5.012e − 8 3.599e − 9

Example 3: Next, let us examine the problem given by

y
(3)
1 + y′′2 + y′1 + e−xy2 = −1− xex − 2e−x +

∫ 1

−1

(
sinh(t)y1 + cosh(t)y2

)
dt+

∫ x

−1

ex−ty2 dt,

y
(3)
2 − exy

(3)
1 − y′2 + xy2 + y1 = −6− x− xe−x + xex+2 +

∫ 1

−1

(
3ety1 − xex+1y2

)
dt

+

∫ x

−1

(
− ty1 + e−ty2

)
dt,

y1(−1) = e, y1(0) = 1, y1(1) = e−1, y2(−1) = e, y2(0) = 1, y2(1) = e.

(4.3)

studied in [2]. Notice that this time the interval of interest is −1 ≤ x ≤ 1 . Additionally, two of the mixed
conditions are given at x = 0 , which is not a boundary point. This does not pose any problem, however, since
the conditions at x = 0 can be treated in the same manner as those given at x = −1 and x = 1 .

The exact solution of this problem is known to be y1,exact(x) = e−x, y2,exact(x) = ex . Again, we have
obtained the approximate solutions of this problem corresponding to several choices of the method parameter
N . The absolute errors of some of these solutions are illustrated in Figure 2, which makes it clear that greater
N values give rise to solutions with significantly smaller absolute error. In addition, we compare the absolute
errors of three of our approximate solutions with those obtained by Chebyshev collocation method [2] in Tables
2 and 3. The tables suggest that the proposed scheme exhibits a close performance to the Chebyshev collocation
method for this example problem.
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Figure 2. Graphics of the actual absolute errors of the approximate solutions of Problem (4.3) obtained using
N = 5, 7, 10, 12 corresponding to y1(x) (left) and y2(x) (right).

Table 2. Comparison of the present method with Chebyshev collocation method with respect to the absolute error of
the approximate solutions for y1(x) corresponding to N = 5, 10, 13 at several x values in Problem (4.3).

Chebyshev collocation method [2] Present method
x |e1,5(x)| |e1,10(x)| |e1,13(x)| |e1,5(x)| |e1,10(x)| |e1,13(x)|
−0.75 6.88e − 4 3.72e − 10 2.66e − 14 5.24e − 4 6.62e − 11 3.10e − 15

−0.5 3.66e − 4 3.17e − 10 1.09e − 14 4.51e − 4 1.44e − 10 1.13e − 14

−0.25 8.99e − 5 1.93e − 11 7.11e − 15 1.33e − 4 2.03e − 10 2.42e − 14

0.25 3.27e − 5 1.21e − 10 2.89e − 15 1.82e − 4 2.41e − 10 1.77e − 14

0.5 8.35e − 5 1.18e − 10 3.89e − 15 4.59e − 4 6.61e − 11 8.65e − 15

0.75 9.63e − 5 7.95e − 11 3.89e − 15 4.51e − 4 7.57e − 11 2.93e − 14

Table 3. Comparison of the present method with Chebyshev collocation method with respect to the absolute error of
the approximate solutions for y2(x) corresponding to N = 5, 10, 13 at several x values in Problem (4.3).

Chebyshev collocation method [2] Present method
x |e2,5(x)| |e2,10(x)| |e2,13(x)| |e2,5(x)| |e2,10(x)| |e2,13(x)|
−0.75 7.25e − 4 2.61e − 10 2.80e − 14 1.54e − 4 3.63e − 11 1.56e − 13

−0.5 3.87e − 4 2.07e − 10 1.21e − 14 2.42e − 5 4.01e − 10 3.10e − 14

−0.25 8.61e − 5 2.16e − 11 8.22e − 15 1.16e − 4 4.96e − 11 1.57e − 14

0.25 3.24e − 5 1.29e − 10 4.00e − 15 3.82e − 4 4.25e − 10 1.70e − 14

0.5 1.15e − 4 1.01e − 10 5.11e − 15 7.26e − 4 2.06e − 11 1.99e − 14

0.75 1.47e − 4 9.18e − 11 5.77e − 15 6.09e − 4 2.57e − 11 1.05e − 13

Although the exact solution of Problem 4.3 is known, it may be interesting to see how the process of error
estimation works for the approximate solutions obtained with the choice N = 5 . To this end, we have formed
the error problem corresponding to the approximate solutions y1,5(x) and y2,5(x) and applied the present
scheme using the values 6, 7 and 9 for the parameter M , as explained in Section 3. Thus we have obtained
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the error estimates e1,5,M (x) and e2,5,M (x) for M = 6, 7, 9 . The values of these error estimates at selected
values of x are given together with the actual errors e1,5(x) and e2,5(x) in Table 4. We see that error estimates
corresponding to bigger M values are more accurate; they are even equal to the actual error to three decimal
places for M = 9 .

Lastly, as a demonstration of the comment closing Section 3, we consider the absolute residuals of the
approximate solutions of Problem (4.3). While the absolute residuals are roughly equal to 10−2 throughout the
interval −1 ≤ x ≤ 1 for N = 5 , they are reduced to approximately 10−10 for N = 12 . This situation can be
observed in Figure 3.

Table 4. Comparison of the actual errors e1,5(x) and e2,5(x) corresponding to N = 5 with their three estimates
obtained by setting M = 6, 7, 9 at several x values in Problem (4.3).

Actual errors for y1(x) Actual errors for y2(x)

x e1,5(x) e1,5,6(x) e1,5,7(x) e1,5,9(x) e2,5(x) e2,5,6(x) e2,5,7(x) e2,5,9(x)

−0.75 5.240e − 4 5.338e − 4 5.264e − 4 5.240e − 4 1.548e − 4 1.607e − 4 1.564e − 4 1.548e − 4

−0.5 4.515e − 4 4.941e − 4 4.552e − 4 4.515e − 4 2.423e − 5 −2.921e − 6 2.582e − 5 2.423e − 5

−0.25 1.339e − 4 1.772e − 4 1.354e − 4 1.338e − 4 −1.162e − 4 −1.556e − 4 −1.163e − 4 −1.162e − 4

0.25 1.820e − 4 1.361e − 4 1.836e − 4 1.820e − 4 3.820e − 4 4.396e − 4 3.845e − 4 3.820e − 4

0.5 4.594e − 4 4.073e − 4 4.626e − 4 4.594e − 4 7.264e − 4 8.035e − 4 7.297e − 4 7.264e − 4

0.75 4.510e − 4 4.272e − 4 4.526e − 4 4.510e − 4 6.098e − 4 6.535e − 4 6.101e − 4 6.098e − 4

Figure 3. Absolute residuals of the approximate solutions of Problem (4.3) corresponding to N = 5, 7, 10, 12 for y1(x)
(left) and y2(x) (right).

Example 4: Next, we consider the following system of second order linear Volterra integral equations
studied in [3] and [20]:

y′′1 (x) + 2xy′1(x)− y1(x) =

∫ x

0

(y1(t)− y2(t)) dt+ 2 + x− ex + 2xex − cos(x),

y′′2 (x) + y′1(x)− 2xy2(x) =

∫ x

0

(y1(t) + y2(t)) dt+ 2 cos(x)− 3x− (1 + 2x) sin(x)− ex,

(4.4)

y1(0) = 1, y′1(0) = 1, y2(0) = 1, y′2(0) = 1.
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The exact solutions are known to be y1,exact(x) = ex, y2,exact(x) = 1 + sin(x) We have solved this problem
using various N values. The absolute errors corresponding to N = 3, 5, 8 are depicted in Figure 4, which shows
that accuracy improves greatly as we increase the value of N , in a similar fashion to the previous examples.
We also compare the absolute errors of our results obtained by N = 5 to those of spectral method [3] and
Bernstein operational matrix method [20] in Table 5. It is understood from the table that the present method is
significantly better than the spectral method and slightly better than Bernstein operational matrix method for
N = 5 in this problem. In addition, in order to give an idea on the speed of the present method, we included in
Table 6 the CPU times (in seconds) needed to compute the approximate solutions in a computer with an Intel
Core i5 2.80 GHz processor.

Figure 4. Graphics of the actual absolute errors of the approximate solutions of Problem (4.4) obtained using N = 3, 5, 8
corresponding to y1(x) (left) and y2(x) (right).

Table 5. Comparison of the present method with Bernstein operational matrix method (BOM) and the spectral method
(SM) with respect to the absolute errors for y1(x) and y2(x) corresponding to N = 5 in Problem (4.4).

Absolute errors for y1(x) Absolute errors for y2(x)

x BOM [20] SM [3] Present BOM SM Present
0 8.881e − 16 0 0 7.771e − 16 0 0

0.2 1.364e − 6 9.1e − 8 3.137e − 6 2.873e − 7 2.0e − 9 8.056e − 7

0.4 2.420e − 6 6.031e − 6 2.834e − 6 4.545e − 7 3.25e − 7 9.747e − 7

0.6 3.315e − 6 7.08e − 5 2.545e − 6 5.638e − 7 5.527e − 6 9.880e − 7

0.8 1.213e − 5 4.102e − 4 3.899e − 6 2.692e − 6 4.124e − 5 9.476e − 7

1 1.295e − 4 1.615e − 3 3.251e − 8 3.359e − 5 1.956e − 4 1.364e − 7

Table 6. CPU times in seconds corresponding to several N values in Problem (4.4).

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

CPU time(s) 0.5938 0.6250 0.7188 0.7813 0.8438 1.8906

Example 5: Lastly, we consider the following system of linear Fredholm integral equations taken from
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[6] and [11]:

22y1(x) = −
∫ 1

0

ex−ty1(t) dt−
∫ 1

0

e(x+2)ty2(t) dt+ 23ex +
e1+x − 1

1 + x

22y2(x) = −
∫ 1

0

exty1(t) dt−
∫ 1

0

ex+ty2(t) dt+ 22e−x + ex +
e1+x − 1

1 + x
.

(4.5)

The exact solutions are known to be y1,exact(x) = ex, y2,exact(x) = e−x . We have solved this problem using
N = 3, 4, 5, 6 by the present method. In Table 7, we compare the maximum absolute errors of our solutions
with those of the fixed point algorithm in [11] with i = 33 nodes and m = 6 iterations, quasiinterpolatory
spline collocation method [11] with order of precision p = 4 and hat basis functions method [6] with n = 32 .
It is seen that the present method outperforms the other methods (with the mentioned parameters) for N = 6

and is outperformed only by quasiinterpolatory spline collocation method for N = 5 .

Table 7. Comparison of the present method (PM) with the fixed point algorithm (FPA), quasiinterpolatory spline
collocation method (QISC) and hat basis functions method (HBF) with respect to the maximum absolute errors of the
approximate solutions obtained using N = 3, 4, 5, 6 in Problem (4.5).

FPA [11] QISC [11] HBF [6] PM N = 3 PM N = 4 PM N = 5 PM N = 6

∥y1,N∥∞ 1.83e − 5 1.04e − 7 2.68e − 3 1.04e − 3 5.76e − 5 2.59e − 6 1.10e − 7

∥y2,N∥∞ 1.08e − 5 4.26e − 7 1.23e − 4 3.45e − 4 1.93e − 5 8.85e − 7 3.34e − 8

5. Conclusion

We have presented a weighted residual scheme to obtain approximate polynomial solutions of systems of linear
Volterra-Fredholm integro-differential equations given with mixed initial and boundary conditions. This method
basically consists of transforming the original problem into a linear algebraic system by taking inner product
with the monomials up to a prescribed degree N in a Galerkin-like fashion. We have also described how
residuals of the approximate solutions can be used to form an error problem from which error estimates for
the obtained solutions are obtained. We have then applied the proposed scheme to five example problems.
These simulations have revealed that increasing the parameter N makes the resulting approximate solutions
significantly more accurate. In addition, it has been understood that, when applied to a problem whose exact
solutions are polynomials of degree at most N , the method yields these exact solutions as long as the parameter
is chosen to be at least N . We have also compared the accuracy of our solutions with those of several methods
from the literature, where the results are either comparable or in favor of our method. The proposed scheme has
the additional advantage that it can be applied to a large set of problems including Fredholm or Volterra integral
equation systems, as exhibited by three of the studied example problems. Fairly low CPU times in obtaining the
approximate solutions are another virtue of the present scheme. It can also be extended to nonlinear problems
of similar type, which is a task that can be dealt with in a future work. On the whole, we can conclude that the
numerical scheme presented in this paper can be relied on to solve linear Volterra-Fredholm integro-differential
equation systems with high levels of accuracy and thus it is a reasonable contribution to the field.
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