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Abstract: This paper presents a novel class of third order nonlinear nonautonomous neutral differential equation
with delay. The third order neutral differential equation is cut down to a system of first order, a suitable complete
Lyapunov-Krasovskii’s functional is constructed and used, to obtain standard conditions on the nonlinear functions to
ensure stability and uniform asymptotic stability of the trivial solutions, the existence of a unique periodic solution,
uniform boundedness and uniform ultimate boundedness of solutions when the forcing term is nonzero. The obtained
results are new and include many prominent results on neutral and nonneutral delay differential equations in literature.
Finally, the practicability and reliability of the theoretical results are demonstrated.
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1. Introduction
Qualitative behaviour of ordinary and partial differential equations such as stability, instability, decay and
boundedness, oscillation, asymptotic behaviour, convergence, and the existence of unique periodic solutions with
or without delay, have been impressively examined by prominent researchers. Distinct techniques such as the
generalized Riccati substitution (Cesarano and Bazighifan [14, 15], Chatzarakis et al. [16], Fite [25]); classical
Riccati transformation technique (Wei [44]); linearization technique (Došlá and Liška [23]); the comparison
theorem (or principle) (Trench [41]); Banach fixed point theorem (Stokes [39]); coincidence degree theory in
(Dahiya, and Akinyele [17], Das and Misra [18]); the general theory of semigroup as found in (Avrin [9], Okoya
and Ayeni [35], Okoya [36, 37]); and Lyapunov’s second method in (Ademola and Arawomo [2, 3], Ademola et
al. [4, 5], Kirane [30], Remili and Beldjerd [33], Remili and Oudjedi [34], Tejumola and Tchegnani [40], Tunç
[42, 43]) to mention but a few, have been utilized by these authors. Outstanding results on the qualitative
behaviour of solutions to both ordinary and partial differential equations with and without delay are discussed
in these expository research works.

Functional differential equations are general applicable differential equations which include the classical
ordinary and partial differential equations, its applications are found in technical problems, mechanical system
under the action of dissipative, gyroscopic forces, hydraulic engineering applications (Arino et al. [8], Halanay
and Rǎsvan [26], Kolmanovskii and Myshkis [31]); physical applications to control problems, feedback control
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system, distribution of primes, the theory of growth in a species, examination of predator-prey models, electrical
networks containing lossless transmission lines, variational problems (Arino et al. [8], Hale [27, 28], Hale and
Lunel [29], Kolmanovskii and Myshkis [31]); study of materials which is viscous and elastic in nature, motion of
a particle in a liquid and rigid body, relativistic dynamics and oscillation, study of nuclear rectors, distribute and
neural networks (Kolmanovskii and Myshkis [31]); the circummutation of plants in sunflower (Hale and Lunel
[29]); and model of fish population, decomposition theory, epidemic models, vaccinated state model (Arino et
al. [8], Hale [28], Hale and Lunel [29]).

As a result of these untrammeled areas of applications in many subdivisions of human endeavour and
things, authors in recent years, have developed various techniques to present background studies to system of
functional differential equations (see Agarwal et al. [7], Arino et al. [8], Burton [11–13], Driver [24], Halanay
and Rǎsvan [26], Hale [27, 28], Hale and Lunel [29] and Yoshizawa [45]). Therefore, the study of the asymptotic
behaviour of solutions for nonlinear nonautonomous functional differential equations cannot be overemphasized.
There are several estimable methods that have been developed by researchers to study the qualitative behaviour
of solutions. Among these methods that provide concise and worthful information on the behaviour of solutions
without solving the differential equation in question, is the direct method of Lyapunov. In this paper, we shall
consider the nonlinear nonautonomous third order neutral differential equation with delay defined as

[r(t)(x′′(t) + q(t)Φ(x′′(t− τ0)))]
′ + φ(t)f(x(t))x′′(t) + ψ(t)g(x(t− τ1), x

′(t− τ1))

+ µ(t)h(x(t− τ1)) = p(t).
(1.1)

Let Z(t) = x′′(t) + q(t)Φ(x′′(t− τ0)). Equation (1.1) is equivalent to system of first order differential equations

x′(t) = y(t), y′(t) = z(t),

r(t)Z ′(t) = −r′(t)Z(t)− φ(t)f(x(t))z(t)− ψ(t)g(x(t), y(t))− µ(t)h(x(t)) + p(t)

+

∫ t

t−τ1

[
ψ(t)

[
gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s)

]
+ µ(t)h′(x(s))y(s)

]
ds,

(1.2)

where the functions p(t), q(t), r(t), φ(t), ψ(t), µ(t) ∈ C([tx,∞),R), f(x(t)), h(x(t)) ∈ C(R,R), g(x(t), y(t)) ∈
C(R2,R), with |q(t)| ≤ q1, q1 > 0 is a constant, and q(0) = 0 = h(0). It is assumed that the derivatives
r′(t), ψ′(t), φ′(t), µ′(t), Φ′(z), h′(x(t)), gx(x(t), y(t)) and gy(x(t), y(t)) exist and are continuous for all
t ≥ t0+ϑ where ϑ = max{τ0, τ1}. Solution of equation (1.1) is defined as the continuous function x : [tx,∞) → R
so that x(t) ∈ C2([tx,∞),R) which satisfies (1.1) on [tx,∞) and r(t)Z(t) ∈ C1([tx,∞),R). It is assumed end-
to-end that every solution x(t) of (1.1) is continuable to the right on some interval [tx,∞).

Investigation on properties of solutions to functional differential equations with delay is dated back
to Dahiya and Akinyele [17] where the oscillation theorems of nth−order functional differential equations
with forcing terms were developed. Later, boundedness, oscillatory and non oscillatory properties of neutral
differential equations with delay emerged see (Baculíková and Džurina [10], Das and Misra [18], Das [19, 20],
Dorociaková [22], Mihalíková and Kostiková [32] and the references cited therein). Furthermore, papers on
stability, boundedness, and existence of a unique periodic solution for third order differential equations with delay
abound (see Ademola and Arawomo [3], Ademola et al. [4], Tejumola and Tchegnani [40], Tunç [42, 43] when
[r(t)(x′′(t)+q(t)Φ(x′′(t−τ0)))]′ = x′′′(t), Remili and Beldjerd [33] for the case [r(t)(x′′(t)+q(t)Φ(x′′(t−τ0)))]′ =
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[g1(x(t))x
′(t)]′′ , Remili and Oudjedi [34] when [r(t)(x′′(t) + q(t)Φ(x′′(t − τ0)))]

′ = [g1(x
′′(t))x′′(t)]′ , and the

references cited therein to mention but a few).
Recently, Domoshnitsky et al. [21] used Azbelev W−transform to study of exponential stability for third

order neutral differential equations with delay. In addition, Oudjedi et al. [38] gave sufficient conditions for
every solution to converge to zero when h(t) = 0 , boundedness and square integrability for a class of third order
neutral delay differential equations defined as

[x(t) + βx(t− r)]′′′ + a(t)x′′(t) + b(t)x′(t) + c(t)f(x(t− r)) = h(t).

If r(t) ≡ 1, q(t) ≡ 1, f(x(t)) ≡ 1, and g(x(t − τ1), x
′(t − τ1)) ≡ x′(t), then equation (1.1) reduces to that

considered in [38]. In [1] Ademola et al., consider a more general third order neutral differential equation using
a standard Lyapunov’s functional to develop criteria guaranteeing uniform asymptotic stability when p(t) = 0

and uniform ultimate boundedness of solutions of the equations

[x(t) + βx(t− τ)]′′′ + a(t)x′′(t) + b(t)g(x′(t− τ)) + c(t)h(x(t− τ)) = p(t),

where τ > 0 is a constant delay, β is a constant satisfying 0 ≤ β ≤ 1, the functions a(t), b(t), c(t), g(x), h(x) are
continuous in their respective arguments on R+,R+,R+,R,R respectively with R+ = [0,∞) and R = (−∞,∞).

Besides, it is supposed that the derivatives g′(x) and h′(x) exist and are continuous for all x and h(0) = 0.

It is noted that when r(t) ≡ 1, q(t) ≡ 1 a positive constant, τ0 = τ1 ≡ τ and the function p(t) in (1.1) and
[1] have finite positive constants as bound, thus equation (1.1) includes the equation discussed in [1]. In 2021,
Ademola [6] enumerates criteria for qualitative behaviour of solutions to a certain class of third order neutral
functional differential equation

[x′′(t) + βx′′(t− τ(t))]′ + φ(t)x′′(t) + f(t, x(t), x′(t− τ(t))) + ψ(t)g(x(t), x(t− τ(t))) = p(·),

where p(·) = p(t, x(t), x(t− τ(t)), x′(t), x′(t− τ(t))), |β| < 1, τ(t) ≤ τ1, τ1 > 0 is a constant to be determined
later, the derivative τ ′(t) exists such that τ ′(t) ≤ µ for some constant µ ∈ (0, 1), the functions φ,ψ, f and g

are continuous in their respective arguments. The derivatives φ′, ψ′, fx∗ , gx and gx∗ exist and are continuous
with g(0, x∗) = 0 for all x∗. We note that the neutral differential equations studied in [6] when compared with
equation (1.1) is the case r(t) ≡ 1, q(t) ≡ 1, Φ(x′′(t − τ0)) ≡ x′′(t − τ(t)), the functions p(t) and p(·) have
finite constants as bound.

In this paper, a more general class of third order neutral differential equation with delay is discussed
using Lyapunov’s second method. In addition, the function g ∈ R2 is completely delayed which, according to
our observation from relevant literature, has never occurred in the study of neutral differential equations with
delay. This work is actuated by the works in [1, 6, 38] and the references cited therein. The results of this
paper are not only novel but include many salient existing results in the literature. Stability and boundedness
results are presented in Sections 2 and 3 respectively while the last section presents examples to illustrate the
theoretical results of Sections 2 and 3.

2. Stability results
This section states and proves results on the asymptotic stability and uniform asymptotic stability for equation
(1.1) or its equivalent system (1.2) for p(t) = 0, that is

[r(t)(x′′(t) + q(t)Φ(x′′(t− τ0)))]
′ + φ(t)f(x(t))x′′(t) + ψ(t)g(x(t− τ1), x

′(t− τ1))

+ µ(t)h(x(t− τ1)) = 0.
(2.1)

3141



ADEMOLA et al./Turk J Math

Our notations shall be x = x(t), Φ(z) = Φ(z(t− τ0)), F (t) = f ′(x(t))x′(t), Xt = xt, yt, zt, and the subscript t
stands for delay. Equation (2.1) is equivalent to

x′(t) = y(t), y′(t) = z(t),

r(t)Z ′(t) = −r′(t)Z(t)− φ(t)f(x(t))z(t)− ψ(t)g(x(t), y(t))− µ(t)h(x(t))

+

∫ t

t−τ1

[
ψ(t)[gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s)] + µ(t)h′(x(s))y(s)

]
ds.

(2.2)

Next, a continuously differentiable functional employed in this paper is V (t,Xt) defined as

V (t,Xt) = U(t,Xt) exp

(
− 1

γ

∫ t

t0

β(s)ds

)
, (2.3)

where U(t,Xt) is defined as

U(t,Xt) = aµ(t)

∫ x

0

h(s)ds+ µ(t)r(t)yh(x) +
1

2
r(t)[µ(t)y2 + r(t)Z2] +

1

2
aφ(t)f(x)y2

+ r(t)[ψ(t)yg(x, y) + a(x+ y)Z] +
1

2
aψ(t)x2 +

∫ 0

−τ1

∫ t

t+s

[λ1y
2(u) + λ2z

2(u)]duds

+

∫ t

t−τ0

λ3z
2(s)ds,

(2.4)

a, and γ are positive constants and the values of positive constants λi (i = 1, 2, 3), will be determined later in
this section.

Remark 2.1 It is remarkable at this junction that the appearance of neutral and distinct delay terms in (2.1)
added more difficulties to the construction of Lyapunov-Krasovskii’s functional defined by (2.3). Hence equation
(2.3) includes and extends the main tools used in [1–6, 30, 33, 34, 40, 42, 43] and the cited references of these
papers.

Next, assumptions are presented as follows.

Assumption 2.2 In addition to the basic assumption on the functions defined above, let bi, ci, d1, hi, Lj , q1, ri,

β1, η, µi, σi, φi, ψi, (i = 0, 1), (j = 0, 1, 2) are positive constants such that for all t ≥ t0 :

(i) µ0 ≤ µ(t) ≤ µ1, φ0 ≤ φ(t) ≤ φ1, ψ0 ≤ ψ(t) ≤ ψ1, r0 ≤ r(t) ≤ r1, −σ0 ≤ µ′(t) ≤ 0,

− σ1 ≤ φ′(t) ≤ 0;

(ii) b0 ≤ f(x) ≤ b1, |Φ(z)| ≤ η|z| for all z, |q(t)| ≤ q1;

(iii) h0 ≤ h(x)

x
≤ h1 for all x ̸= 0, h′(x) ≤ d1 and |h′(x)| ≤ L0 for all x;

(iv) c0 ≤ g(x, y)

y
≤ c1 for all x, y ̸= 0, gx(x, y) ≤ 0, |gx(x, y)| ≤ L1, |gy(x, y)| ≤ L2 for all x, y;

(v) max

{
d1r1,

d1r1µ1

c0µ0
,
h1q1r1η

h0µ0

}
< a < min

{
b0φ0, b1φ1, c1ψ1,

ψ0

4
,
b0φ0

4

}
;
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(vi)
t∫

t0

[|r′(s)|+ |ψ′(s)|+ |F (s)|]ds < β1;

(vii) ah0µ0 > h1q1r1η, ac0ψ0 − d1r1µ1 > A1, (b0φ0 − a)r0 > A2, where

A1 := r1[a+ µ1 + ψ1L2 + q1η(c1ψ1 − a)]; and A2 := A1 + q1r1η[h1µ1 + c1ψ1 + b1φ1 − 2a].

Next, two stability theorems designed for this section are stated:

Theorem 2.3 If assumptions (i) to (vii) hold, then the trivial solution of system (2.2) is asymptotically stable
provided the inequality

τ1 <
1

2
min

{
ah0µ0 − h1q1r1η

A3
,
ac0ψ0 − d1r1µ1 −A1

A4
,
(b0φ0 − a)r0 −A2

A5

}
(2.5)

holds, where

A3 := a[L0µ1 + (L1 + L2)ψ1]; A4 := [2a+ r1(1 + q1η) + aψ1L2](L0µ1 + L1ψ1); and

A5 := r1(1 + q1η)[L0µ1 + (L1 + L2)ψ1] + (2a+ r1(1 + q1η))ψ1L2.

Theorem 2.4 If in addition to assumptions (i) to (vii), there exist positive constants D0 and D1 such that

D1 > D0[|r′(t)|+ |ψ′(t)|+ |F (t)|]

for all t ≥ t0 then the trivial solution of system (2.2) is uniformly asymptotically stable if the inequality (2.5)
holds.

Remark 2.5 Theorems 2.3 and 2.4 are extensions to all stability results discussed in [1–4, 6, 21, 33, 34, 38]
and the references cited therein.

In the sequel, proofs of two lemmas that are crucial to the results are stated.

Lemma 2.6 Under the conditions of Theorems 2.3 and 2.4 there exist positive constants D2, D3, D4, D5 and
D6 such that

D2(x
2(t) + y2(t) + Z2(t)) ≤ U(t,Xt) ≤ D3(x

2(t) + y2(t) + Z2(t))

+D4

∫ 0

−τ1

∫ t

t+s

[y2(u) + z2(u)]duds+D5

∫ t

t−τ0

z2(s)ds,
(2.6)

for all t ≥ 0, x, y, Z, and

V (t,Xt) ≥ D6(x
2(t) + y2(t) + Z2(t)) (2.7)

for all t ≥ 0, x, y and Z.
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Proof Let (Xt) be any solution of system (2.2). Now since h(0) = 0, (2.4) can be redefined as

U(t,Xt) =
1

2
µ(t)r(t)(h(x) + y)2 + µ(t)

∫ x

0

[a− r(t)h′(s)]h(s)ds+
1

8
[2ax+ r(t)Z]2

+
a

2
[(φ(t)f(x)− 4a)y2 + (ψ(t)− 4a)x2] + r(t)ψ(t)

g(x, y)

y
y2 +

1

4
(r(t)Z)2

+
1

8
[2ay + r(t)Z]2 +

∫ 0

−τ1

∫ t

t+s

[λ1y
2(u) + λ2z

2(u)]duds+

∫ t

t−τ0

λ3z
2(s)ds.

(2.8)

Since the integrals in the last two terms of (2.8) are nonnegative, applying assumptions (i) and (iii) we find that

1

2
µ(t)r(t)(h(x) + y)2+

1

8

[
[2ax+ r(t)Z]2 + [2ay + r(t)Z]2

]
≥ 1

2
r0µ0(h0x+ y)2 +

1

8

[
(2ax+ r0Z)

2 + (2ay + r0Z)
2

]
≥ 0

for all t ≥ 0, x, y and Z. With this estimate and assumption (v), there exists a positive constant δ0 such that

U(t,Xt) ≥ δ0(x
2 + y2 + Z2), (2.9)

for all t ≥ 0, x, y, Z where

δ0 :=
1

2
min

{
a(ψ0 − 4a) + h0µ0(a− d1r1), a(b0φ0 − 4a) + 2c0r0ψ0,

1

2
r20

}
.

Moreover, since ∫ t

t0

β(s)ds < β1

there exists a positive constant δ1 such that

V (t,Xt) ≥ δ1(x
2 + y2 + Z2), (2.10)

for all t ≥ 0, x, y, Z where

δ1 := δ0 exp

(
− β1

γ

)
.

Furthermore, from the assumptions (i) to (iv), and the fact that 2|x1x2| ≤ x21 + x22 for all x1, x2 ∈ R,
there exist positive constants δi, (i = 2, 3, 4) such that

U(t,Xt) ≤ δ2(x
2 + y2 + Z2) + δ3

∫ 0

−τ1

∫ t

t+s

[y2(u) + z2(u)]duds+ δ4

∫ t

t−τ0

z2(s)ds, (2.11)

for all t ≥ 0, x, y and Z, where

δ2 :=
1

2
max

{
µ1h1(a+ r1) + a(r1 + ψ1), r1µ1(1 + h1) + ab1φ1 + 2c1r1ψ1 + ar1, r1(r1 + 2a)

}
,

δ3 := max{λ1, λ2}, and δ4 := λ3.
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From estimates (2.9) and (2.11) inequality (2.6) of Lemma 2.6 holds with D2 ≡ δ0, D3 ≡ δ2, D4 ≡ δ3 and
D5 ≡ δ4. Also, from estimate (2.10) inequality (2.7) of Lemma 2.6 holds with D6 ≡ δ1. This completes the
proof of Lemma 2.6. 2

Lemma 2.7 If assumptions (i) to (vii) and inequality (2.5) hold, then there exist positive constants D7, D8,

and D9 such that

U ′
(2.2)(t,Xt) ≤ D7[|r′(t)|+ |ψ′(t)|+ |F (t)|](x2 + y2)−D8(x

2 + y2 + z2), (2.12)

for all t ≥ 0, x, y, z and
V ′

(2.2)(t,Xt) ≤ −D9(x
2 + y2 + z2), (2.13)

for all t ≥ 0, x, y and z.

Proof Let (Xt) be any solution of the system (2.2) and since h(0) = 0 , the derivative of the functional
V (t,Xt) along the trajectory of (2.2) is given by

V ′
(2.2)(t,Xt) =

[
U ′

(2.2)(t,Xt)−
1

γ
β(t)U(t,Xt)

]
exp

(
− 1

γ

∫ t

t0

β(s)ds

)
, (2.14)

where

U ′
(2.2)(t,Xt) =

6∑
j=1

Wj + λ1τ1y
2 + (τ1λ2 + λ3)z

2 − λ3z
2(t− τ0)−

∫ t

t−τ1

[λ1y
2(α) + λ2z

2(α)]dα, (2.15)

W1 := µ′(t)

[ ∫ x

0

[a− r(t)h′(s)]h(s)ds+
1

2
r(t)(h(x) + y)2

]
+

1

2
r′(t)

[
µ(t)

(
y2 + 2

h(x)

x
xy

)
+ r(t)y2 + 2ψ(t)

g(x, y)

y
y2
]
+

1

2
aφ(t)F (t)y2;

W2 :=− 1

2

[
aµ(t)

h(x)

x
x2 + [aψ(t)

g(x, y)

y
− r(t)µ(t)h′(x)]y2 + r(t)(φ(t)f(x)− a)z2

]
;

W3 := −W31 −W32;

W31 :=

[
1

4
aµ(t)

h(x)

x
x2 + aψ(t)[

g(x, y)

y
− 1]xy +

1

2
[aψ(t)

g(x, y)

y
− r(t)µ(t)h′(x)]y2

]
W32 :=

[
1

4
aµ(t)

h(x)

x
x2 + aφ(t)f(x)xz +

1

2
r(t)(φ(t)f(x)− a)z2

]
;

W4 := ψ′(t)[r(t)
g(x, y)

y
y2 +

1

2
ax2] + [

1

2
aφ′(t)f(x) + r(t)ψ(t)gx(x, y)]y

2;

W5 :=− q(t)r(t)

[
µ(t)

h(x)

x
x+

(
ψ(t)

g(x, y)

y
− a

)
y + (φ(t)f(x)− a)z

]
Φ(z)

+ r(t)[aµ(t) + ψ(t)gy(x, y)]yz; and

W6 :=[a(x+ y) + r(t)
(
z + q(t)Φ(z)

)
]

[
ψ(t)

∫ t

t−τ1

[gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s)]ds

+ µ(t)

∫ t

t−τ1

h′(x(s))y(s)ds

]
.
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The results of applying assumptions (i), (iii) and (iv) are

∫ x

0

[a− r(t)h′(s)]h(s)ds+
1

2
r(t)

(
h(x)

x
x+ y

)2

≥ 1

2
r0(h0x+ y)2 + (a− d1r1)h0x

2 ≥ 0,

for all t ≥ 0, x and y. Since µ′(t) ≤ 0 for all t ≥ 0, it follows that

µ′(t)

[ ∫ x

0

[a− r(t)h′(s)]h(s)ds+
1

2
r(t)

(
h(x)

x
x+ y

)2]
≤ 0

for all t ≥ 0, x and y, so with the last inequality and assumptions (i), (iii) and (iv) there exist positive constants
δ5 and δ6 such that

W1 ≤ δ5|r′(t)|(x2 + y2) + δ6|F (t)|y2,

for all t ≥ 0, x and y, where

δ5 :=
1

2
max{h1µ1, h1µ1 + r1 + 2c1ψ1} and δ6 :=

1

2
aφ1 .

Employing assumptions (i) to (iv), result in

W2 ≤ −1

2

[
ah0µ0x

2 + [ac0ψ0 − d1r1µ1]y
2 + [(b0φ0 − a)r0]z

2

]

for all t ≥ 0, x, y and z.

Furthermore, W31 = W31(x, y) and W32 = W32(x, z) are symmetric quadratic functions which satisfy a
2× 2 Hessian matrix. The discriminant b2 < ac yields inequalities

4

[
aψ(t)

g(x, y)

y
− 1

]2
< 2aµ(t)

h(x)

x
[aψ(t)

g(x, y)

y
− r(t)µ(t)h′(x)]

and

4[aφ(t)f(x)]2 < 2ar(t)µ(t)
h(x)

x
(φ(t)f(x)− a)

respectively. With these inequalities it is not difficult to see that W31 ≥ 0, W32 ≥ 0 for all t ≥ 0, x, y and z,

so that
W3 ≤ 0

for all t ≥ 0, x, y and z.

Moreover, since φ′(t) ≤ 0 for all t ≥ 0 and gx(x, y) ≤ 0 for all x and y, it follows that

1

2
aφ′(t)f(x) + r(t)ψ(t)gx(x, y) ≤ 0

for all t ≥ 0, x and y, so there exists a positive constant δ7 such that

W4 ≤ δ7|ψ′(t)|(x2 + y2),
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for all t ≥ 0, x and y, where δ7 := 1
2 max{a, 2c1r1}. Next, apply assumptions (i) to (iv) to get

W5 ≤ 1

2
r1

[
h1q1µ1ηx

2 + (a+ µ1 + ψ1L2 + q1η(c1ψ1 − a))y2 + (a+ µ1 + ψ1L2 + q1η(b1φ1 − a))z2

+ q1η[h1µ1 + (c1ψ1 − a) + (b1φ1 − a)]z2(t− τ0)

]
for all t ≥ 0, x, y and z.

Finally, on employing assumptions (i) to (iv), it follows that

W6 ≤ 1

2
[L0µ1 + (L1 + L2)ψ1]τ1[a(x

2 + y2) + r1z
2 + q1r1ηz

2(t− τ0)]

+
1

2
[2a+ r1(1 + q1η)]

∫ t

t−τ1

[(L0µ1 + L1ψ1)y
2(s) + ψ1L2z

2(s)]ds,

for all t ≥ 0, x, y and z.

We now turn our attention to estimates Wj , (j = 1, 2, 3, 4, 5) in equation (2.15) and on further simplifi-
cation, we have

U ′
(2.2)(t,Xt) ≤ δ8[|r′(t)|+ |ψ′(t)|+ |F (t)|](x2 + y2)

− 1

2

{
ah0µ0 − h1q1r1 − a[L0µ1 + (L1 + L2)ψ1]τ1

}
x2

− 1

2

{
ac0ψ0 − d1r1µ1 − r1[a+ µ1 + ψ1L2 + q1η(c1ψ1 − a)]− [a(L0µ1 + (L1 + L2)ψ1) + 2λ1]τ1

}
y2

− 1

2

{
(b0φ0 − a)r0 − r1[a+ µ1 + ψ1L2 + q1η(c1ψ1 − a)]− 2λ3 − [r1(L0µ1 + (L1 + L2)ψ1) + 2λ2]τ1

}
z2

− 1

2

{
2λ3 − q1r1η[h1µ1 + c1ψ1 + b1φ1 − 2a+ [L0µ1 + (L1 + L2)ψ1]τ1]

}
z2(t− τ0)

− 1

2

{
2λ1 − [2a+ r1(1 + q1η)][L0µ1 + L1ψ1]

}∫ t

t−τ1

y2(α)dα

− 1

2

{
2λ2 − ψ1L2[2a+ r1(1 + q1η)]

}∫ t

t−τ1

z2(α)dα,

(2.16)

where δ8 := max{δ5, δ6, δ7}. Let

λ1 :=
1

2
[2a+ r1(1 + q1η)][L0µ1 + L1ψ1]; λ2 :=

1

2
[2a+ r1(1 + q1η)]ψ1L2; and

λ3 :=
1

2
q1r1η[h1µ1 + c1ψ1 + b1φ1 − 2a+ [L0µ1 + (L1 + L2)ψ1]τ1].

On utilising λi, (i = 1, 2, 3) in the estimate (2.16) gives

U ′
(2.2)(t,Xt) ≤ δ8[|r′(t)|+ |ψ′(t)|+ |F (t)|](x2 + y2)− 1

2

{
ah0µ0 − h1q1r1η −A3τ1

}
x2

− 1

2

{
ac0ψ0 − d1r1µ1 −A1 −A4τ1

}
y2 − 1

2

{
(b0φ0 − a)r0 −A2 −A5τ1

}
z2,

(2.17)
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for all t ≥ 0, x, y and z. In view of assumption (vii), there exists a positive constant δ9 such that

U ′
(2.2)(t,Xt) ≤ δ8[|r′(t)|+ |ψ′(t)|+ |F (t)|](x2 + y2)− δ9(x

2 + y2 + z2) (2.18)

for all t ≥ 0, x, y, z, where

δ9 :=max

{
ah0µ0 −A1 −

1

2
a

[
L0µ1 + (L1 + L2)ψ1

]
τ1,

(ac0ψ0 − d1r1µ1)−A2 −
1

2

[
2a+ [a+ r1(1 + q1η)](L0µ1 + L1ψ1) + aψ1L2

]
τ1,

(b0φ0 − a)r0 −A3 −
1

2

[
r1(1 + q1η)(L0µ1 + (L1 + L2)ψ1) + (2a+ r1(1 + q1η))ψ1L2

]
τ1

}
.

Using assumption (vi), estimates (2.9), (2.18) in equation (2.14) with δ8 =
δ0
γ

, results in

V ′
(2.2)(t,Xt) ≤ −δ10(x2 + y2 + z2) (2.19)

for all t ≥ 0, x, y, z, where δ10 := δ9 exp(−β1/γ). Estimates (2.18) and (2.19) satisfy inequalities (2.12) and
(2.13) of Lemma 2.7 respectively with D7 ≡ δ8, D8 ≡ δ9, and D9 ≡ δ10. This completes the proof of Lemma
2.7. 2

Proof of Theorem 2.3.
Let (Xt) be any solution of system (2.2). Estimates (2.10) and (2.19) established that the trivial solution of
system (2.2) is asymptotically stable. This completes the proof of Theorem 2.3.

Proof of Theorem 2.4.
Let (Xt) be any solution of system (2.2). If δ9 > δ8[|r′(t)|+ |ψ′(t)|+ |F (t)|], then there exists a positive constant
δ11 such that the inequality (2.18) yields

U ′
(2.2)(t,Xt) ≤ −δ11(x2 + y2 + z2) (2.20)

for all t ≥ 0, x, y, z, where δ11 := δ9− δ8[|r′(t)|+ |ψ′(t)|+ |F (t)|]. In view of inequalities (2.9), (2.11) and (2.20),
the trivial solution of system (2.2) is uniformly asymptotically stable. This completes the proof of Theorem 2.4.

3. Boundedness and existence theorems
In this section the boundedness and existence of a unique periodic solution of system (1.2) is discussed. Let
(Xt) be a solution of (1.2), the following results emerge.

Theorem 3.1 If in addition to the assumptions of Theorem 2.3, |p(t)| ≤ P1, 0 < P1 <∞, then there exists a
positive constant D10 = D10(δ1, x(t0), y(t0), Z(t0)) such that the solution of (1.2) satisfies

|x(t)| ≤ D10, |y(t)| ≤ D10, |Z(t)| ≤ D10 (3.1)

for all t ≥ 0 provided the inequality (2.5) holds.
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Proof Let (Xt) be a solution of (1.2), the derivative of U(t,Xt) with respect to the independent variable t

along the trajectory of (1.2) is defined as

U ′
(1.2)(t,Xt) = U ′

(2.2)(t,Xt) + [a(x+ y) + q(t)Z]p(t). (3.2)

Using inequality (2.18) and the fact that |p(t)| ≤ P1, equation (3.2) becomes

U ′
(1.2)(t,Xt) ≤ δ8[|r′(t)|+ |ψ′(t)|+ |F (t)|](x2 + y2)− δ9(x

2 + y2 + z2) + δ12(x
2 + y2 + Z2 + 3) (3.3)

for all t ≥ 0, x, y, z, where δ12 := P1 max{a, r1}. Employing estimate (3.3) and the fact that δ9(x2+y2+z2) ≥ 0

for all t ≥ 0, x, y and z, equation (2.14) becomes

V ′
(1.2)(t,Xt) ≤ δ13(x

2 + y2 + Z2) + δ14 (3.4)

for all t ≥ 0, x, y, z, where δ13 := δ12 exp(−δ−1
0 β1δ8) and δ14 := 3δ12 exp(−δ−1

0 β1δ8). Engaging estimate (2.10)
in (3.4), results in

V ′
(1.2)(t) ≤ δ15V + δ14 (3.5)

where δ15 := δ−1
1 δ13. Solving the differential inequality (3.5) using integrating factor exp(−δ15t), to get

V (t) ≤ V (t0)e
δ15(t−t0) + δ14δ

−1
15

(
eδ15(t−t0) − 1

)
. (3.6)

Repeat estimate (2.10) and the fact that t ≥ t0, there exists a positive constant δ16 = δ16(δ1V (t0)), such that

|x(t)| ≤ δ16, |y(t)| ≤ δ16, |Z(t)| ≤ δ16, ∀ t ≥ t0.

This established estimate (3.1) with D10 ≡ δ16. This completes the proof of Theorem 3.1. 2

Theorem 3.2 In addition to the assumptions of Theorem 3.1, suppose that q(0) = 0, then the solution (Xt)

of (1.2) is uniformly bounded and uniformly ultimately bounded if the inequality (2.5) holds.

Proof Let (Xt) be any solution of (1.2). In view of estimate (2.9) and assumptions of Theorem 3.2, it follows
that U(t,Xt) = 0 if and only if x2 + y2 + z2 = 0, and U(t,Xt) > 0 if and only if x2 + y2 + z2 ̸= 0, and that

U(t,Xt) → +∞ as x2 + y2 + z2 → ∞. (3.7)

Next, the derivative of the functional U(t,Xt), defined by (2.4), along the trajectory of the system (1.2) is
defined in equation (3.2) i.e.

U ′
(1.2)(t,Xt) = U ′

(2.2)(t,Xt) + [a(x+ y) + q(t)Z]p(t).

Estimate (2.20) results in

U ′
(1.2)(t,Xt) ≤ −δ11(x2 + y2 + z2) + δ17[|x|+ |y|+ |Z|],
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where δ17 := P1 max{a, q1(1 + q1)}. Recall (|x|+ |y|+ |Z|)2 ≤ 3(x2 + y2 + z2) so there exist positive constants
δ18 and δ19 such that

U ′
(1.2)(t,Xt) ≤ −δ18(x2 + y2 + z2), (3.8)

for all t ≥ 0, x, y, and z, provided that (x2+y2+z2)1/2 ≥ δ19 where δ18 := 1
2δ11 and δ19 := 2

√
3δ−1

11 δ17. Hence,
from estimates (2.9), (2.11), (3.7), and (3.8) the solution (Xt) is uniformly bounded and uniformly ultimately
bounded. This completes the proof of Theorem 3.2. 2

Theorem 3.3 Suppose that all assumptions of Theorem 3.2 hold true, then there exists a periodic solution of
system (1.2) of period say ω, provided the inequality (2.5) holds true.

Proof Let (Xt) be any solution of (1.2), since the solution (Xt) is uniformly bounded and uniformly ultimately
bounded by Theorem 3.2, it follows that a periodic solution exists of period say ω. This completes the proof of
Theorem 3.3. 2

Remark 3.4 Our results in Theorems 3.1, 3.2i and 3.3 are generalization of boundedness and existence results
considered in [1–6, 10, 15–19, 21, 23, 32–34, 38, 40, 42–44] and the references cited in these papers.

4. Examples and discussion
This section presents examples on the theoretical results obtained in Sections 2 and 3.

Example 4.1 Consider the following third order neutral differential equation with delay defined as[
2t+ 21

10 + t

(
x′′ + (100 + cos t)−1Φ(x′′(t− τ0))

)]′
+

(
221 + 60t

11 + 3t

)(
101 + 20x2

10 + 2x2

)
x′′

+

(
281 + 56t

10 + 2t

)[
51x′(t− τ1) + 5x′(t− τ1)A(x(t− τ1), x

′(t− τ1))

10 +A(x(t− τ1), x′(t− τ1))

]

+

(
9 + 2t2

4 + t2

)[
31x′(t− τ1) + 9x3(t− τ1)

10 + 3x2(t− τ1)

]
= 0,

(4.1)

where

A(x(t− τ1), x
′(t− τ1)) := exp

(
1 + x(t− τ1)x

′(t− τ1) + x′2(t− τ1)

5 + x′2(t− τ1)

)
.

Equation (4.1) can be rewritten as

x′ = y, y′ = z(
21 + 2t

10 + t

)
Z ′ = − Z

(10 + t)2
−
(
221 + 60t

11 + 3t

)(
101 + 20x2

10 + 2x2

)
z −

(
9 + 2t2

4 + t2

)[
31x+ 9x3

10 + 3x2

]

−
(
281 + 56t

10 + 2t

)[
51y + 5yA(x, y)

10 +A(x, y)

]
+

(
9 + 2t2

4 + t2

)∫ t

t−τ1

[
3 +

10− 3x2(s)

(10 + 3x2(s))2

]
y(s)ds

−
(
281 + 56t

10 + 2t

)∫ t

t−τ1

[
y2(s)A(x(s), y(s))

[10 +A(x(s), y(s))]2(5 + y2(s))

]
y(s)ds

+

(
281 + 56t

10 + 2t

)∫ t

t−τ1

[
5 +

1

10 +A(x(s), y(s))
− y(s)A(x(s), y(s))B(x(s), y(s))

[10 +A(x(s), y(s))]2

]
z(s)ds,

(4.2)
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where

B(x, y) :=
x+ 2y

5 + y2
− 2y(1 + xy + y2)

(5 + y2)2
.

The following relations emanated from systems (2.2) and (4.2):
(i) The function

r(t) :=
21 + 2t

10 + t
= 2 +

1

10 + t
.

Since 0 <
1

10 + t
≤ 0.1 for all t ≥ 0, it follows that 2 = r0 ≤ r(t) ≤ r1 = 2.1 and

|r′(t)| = 1

(10 + t)2
≤ 0.1 (4.3)

for all t ≥ 0;

(ii) The function

φ(t) :=
221 + 60t

11 + 3t
= 20 +

1

11 + 3t
,

the maximum value of 1

11 + 3t
when t = 0 is 0.09, so that 20 = φ0 ≤ φ(t) ≤ φ1 = 20.09 for all t ≥ 0. Also

φ′(t) =
−3

(11 + 3t)2
≤ 0

for all t ≥ 0. Since lim
t→∞

φ′(t) = 0 it follows that −0.27 = −σ1 ≤ φ′(t) ≤ 0;

(iii) The function

f(x) :=
101 + 20x2

10 + 2x2
= 10 +

1

10 + 2x2
.

It can be shown that b0 = 10 ≤ f(x) ≤ b1 = 10.1 for all x. In addition,

f ′(x) =
−4x

(10 + 2x2)2
.

The function F (t) = f ′(x)x′ = f ′(x)y assuming, in this case, that |y| < 1 leads to

|F (t)| = |f ′(x)y| ≤ 4(1 + x2)

(10 + 2x2)2
≤ 0.04 (4.4)

for all x;
(iv) The function

ψ(t) :=
281 + 56t

10 + 2t
= 28 +

1

10 + 2t
.

Since 1

10 + 2t
≤ 0.1 for all t ≥ 0, then it is logical to have 28 = ψ0 ≤ ψ(t) ≤ ψ1 = 28.1, for all t ≥ 0.

Furthermore,

|ψ′(t)| = 2

(10 + 2t)2
≤ 0.02 (4.5)
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for all t ≥ 0;

(v) The function

g(x, y) :=
51y + 5yA(x, y)

10 +A(x, y)
= 5y +

y

10 +A(x, y)
,

since 1

10 +A(x, y)
≤ 0.089 for all x, y then it is reasonable to conclude 5 = c0 ≤ g(x, y)

y
≤ c1 = 5.089 for all

x and y ̸= 0. The facts can be traced in Figure 1 for all x, y ∈ [−4, 4] . These bounds on the function g(x, y)

y

are also true as x, y → ∞.

Figure 1. The behaviour of function g(x, y)

y
for x, y ∈ [−4, 4]

Next, the derivative of the function g(x, y) with respect to x is given by

gx(x, y) = − y2A(x, y)

(5 + y2)(10 +A(x, y))2
≤ 0

for all x and y. See Figure 2 pictorially confirms this inequality. Moreover,

|gx(x, y)| =
y2A(x, y)

(5 + y2)(10 +A(x, y))2
≤ L1 = 0.25

for all x, y. This inequality is depicted in Figure 3 for all x, y ∈ [−1000, 1000]. What is more, the derivative of
the function g(x, y) with respect to y is

gy(x, y) = 5 +
1

10 +A(x, y)
− yA(x, y)B(x, y)

(10 +A(x, y))2
.

Since

lim
x→∞

(
lim
y→∞

|gy(x, y)|
)

= 5.1 = lim
y→∞

(
lim
x→∞

|gy(x, y)|
)
,
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it follows that
|gy(x, y)| ≤ L2 = 5.1

for all x, y. This estimate is confirmed in Figure 4 for x, y ∈ [−40, 40] . The bound L2 = 5.1 holds true for
smaller or larger value of x and y.

Figure 2. The function gx(x, y) for all x, y ∈ [−4, 4]. Figure 3. The behaviour of |gx(x, y)| for all x, y ∈
[−1000, 1000]

Figure 4. The behaviour of |gy(x, y)| for x, y ∈ [−40, 40].

(vi) The function

µ(t) :=
9 + 2t2

4 + t2
= 2 +

1

4 + t2
,

since 1

4 + t2
≤ 0.25 for all t ≥ 0, it follows that 2 = µ0 ≤ µ(t) ≤ µ1 = 2.25. Also, the derivative of µ with

respect to t is defined as

µ′(t) =
−2t

(4 + t2)2
≤ 0

for all t ≥ 0. Since lim
t→∞

µ′(t) = 0, then the maximum value of µ′(t) for t > 0 is attained when t = 1, thus

−0.08 = −σ0 ≤ µ′(t) ≤ 0 for all t ≥ 0.
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(vii) The function

h(x) :=
31x+ 9x3

10 + 3x2
= 3x+

x

10 + 3x2
.

Clearly h(0) = 0 and h(x)

x
= 3 +

1

10 + 3x2
, since 1

10 + 3x2
≤ 0.1 for all x, it follows that 3 = h0 ≤ h(x)

x
≤

h1 = 3.1 for all x ̸= 0. Also

h′(x) = 3 +
1

10 + 3x2
− 6x2

(10 + 3x2)2
.

Since 6x2

(10 + 3x2)2
≥ 0 for all x then h′(x) ≤ d1 = 3.1 for all x, and |h′(x)| ≤ L0 = 3.1 for all x.

(viii) The function

Φ(z) :=
z

10 + e2z
.

Noting that 1

10 + e2z
≤ 0.1 for all z, it follows that |Φ(z)| ≤ η|z| so that η = 0.1.

(ix) Function

q(t) :=
1

100 + cos t
.

It is not difficult to show that |q(t)| ≤ q1 = 0.01 for all t ≥ 0.

Remark 4.2 The following assumptions hold for the trivial solution of (4.2) to be asymptotically stable:

(i)
{

2 = µ0 ≤ µ(t) ≤ µ1 = 2.25, 20 = φ0 ≤ φ(t) ≤ φ1 = 20.09, 28 = ψ0 ≤ ψ(t) ≤ ψ1 = 28.1,

2 = r0 ≤ r(t) ≤ r1 = 2.1, −0.08 = −σ0 ≤ µ′(t) ≤ 0, −0.27 = −σ1 ≤ φ′(t) ≤ 0 for all t ≥ 0;

(ii) 10 = b0 ≤ f(x) ≤ b1 = 10.1, |Φ(z)| ≤ η|z|, η = 0.1, |q(t)| ≤ q1 = 0.01;

(iii) h(0) = 0, 3 = h0 ≤ h(x)

x
≤ h1 = 3.1 for x ̸= 0, h′(x) ≤ d1 = 3.1, |h′(x)| ≤ L0 = 3.1;

(iv) 5 = c0 ≤ g(x, y)

y
≤ c1 = 5.089, gx(x, y) ≤ 0, |gx(x, y)| ≤ L1 = 0.25, |gy(x, y)| ≤ L2 = 5.1;

(v) max{6.51, 1.46, 0.0005} < a < min{200.202, 143, 7, 50} ⇒ 6.51 < a < 7 and a = 6.51001 is chosen;

(vi) Estimates (4.3), (4.4), and (4.5) produce
∫ t

t0
[|r′(s)|+ |ψ′(s)|+ |F (s)|]ds ≤ β1 = 0.07;

(vii) ah0µ0 − h1q1r1η = 39.057 > 0, ac0ψ0 − d1r1µ1 −A1 = 571.219 > 0, (b0φ0 − a)r0 −A2 = 60.732 > 0;

(viii) estimate (2.5) becomes

τ1 <
1

2
min{0.039, 0.077, 0.024} = 0.012.

Let τ1 = 0.01199

The assumptions of Theorem 2.3 hold, thus by Theorem 2.3 the trivial solution of (4.2) is asymptotically stable.
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Remark 4.3 The assumption that δ9 − δ8[|r′(t)| + |ψ′(t)| + |F (t)|] = 515.699 > 0 hold true, then the trivial
solution of (4.2) is uniformly asymptotically stable.

Example 4.4 Consider the following third order neutral differential equation with delay defined as[
2t+ 21

10 + t

(
x′′ + (100 + cos t)−1Φ(x′′(t− τ0))

)]′
+

(
221 + 60t

11 + 3t

)(
101 + 20x2

10 + 2x2

)
x′′

+

(
281 + 56t

10 + 2t

)[
51x′(t− τ1) + 5x′(t− τ1)A(x(t− τ1), x

′(t− τ1))

10 +A(x(t− τ1), x′(t− τ1))

]

+

(
9 + 2t2

4 + t2

)[
31x′(t− τ1) + 9x3(t− τ1)

10 + 3x2(t− τ1)

]
= 5 +

1

2
sin 2t,

(4.6)

Equation (4.6) as system of first order

x′ = y, y′ = z(
21 + 2t

10 + t

)
Z ′ = − Z

(10 + t)2
−
(
221 + 60t

11 + 3t

)(
101 + 20x2

10 + 2x2

)
z −

(
9 + 2t2

4 + t2

)[
31x+ 9x3

10 + 3x2

]

−
(
281 + 56t

10 + 2t

)[
51y + 5yA(x, y)

10 +A(x, y)

]
+

(
9 + 2t2

4 + t2

)∫ t

t−τ1

[
3 +

10− 3x2(s)

(10 + 3x2(s))2

]
y(s)ds

−
(
281 + 56t

10 + 2t

)∫ t

t−τ1

[
y2(s)A(x(s), y(s))

[10 +A(x(s), y(s))]2(5 + y2(s))

]
y(s)ds+ 5 +

1

2
sin 2t

+

(
281 + 56t

10 + 2t

)∫ t

t−τ1

[
5 +

1

10 +A(x(s), y(s))
− y(s)A(x(s), y(s))B(x(s), y(s))

[10 +A(x(s), y(s))]2

]
z(s)ds,

(4.7)

Next, comparing equations (1.2) and (4.7) the function below results

p(t) := 5 +
1

2
sin 2t.

Since 1

2
sin 2t ≤ 0.5 for all t ≥ 0, then |p(t)| ≤ 5.5 for all t ≥ 0, the following result is produced.

Remark 4.5 In addition to assumptions (i) to (viii) of Remark 4.2, suppose

(ix) |p(t)| ≤ P1 = 5.5 <∞ for all t ≥ 0,

then the conclusions of Theorems 3.1, 3.2, and 3.3 follow immediately for equation (4.7).

5. Conclusion
This paper discussed stability, uniform stability, the existence of a unique periodic solution, boundedness and
uniform ultimate boundedness of solutions to a novel class of third order nonlinear nonautonomous neutral
functional differential equations with delay. The direct method of Lyapunov is adopted, by constructing
a complete Lyapunov-Krasovskii functional to obtain stability and boundedness results. The behaviour of
solutions of equation (1.1), if the constant delays are replaced with variable delay and the function f is defined
in more general space, is still unresolved.
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