Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: $3159-3170$
© TÜBİTAK
doi:10.55730/1300-0098.3325

Continuous wavelet transform on Triebel-Lizorkin spaces

Antonio Luis BAISÓN-OLMO* ${ }^{\text {© }}$, Victor Alberto CRUZ-BARRIGUETE®, Jaime NAVARRO ${ }^{\text {© }}$

Department of Basic Sciences, Metropolitan Autonomous Metropolitan University, Mexico City, Mexico

| Received: 03.05 .2022 | Accepted/Published Online: 25.08 .2022 | Final Version: 09.11 .2022 |
| :--- | :--- | :--- | :--- |

Abstract

The continuous wavelet transform in higher dimensions is used to prove the regularity of weak solutions $u \in L^{p}\left(\mathbb{R}^{n}\right)$ under $Q u=f$ where f belongs to the Triebel-Lizorkin space $F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$ where $1<p, q<\infty, 0<r<1$, and where $Q=\sum_{|\beta| \leq m} c_{\beta} \partial^{\beta}$ is a linear partial differential operator of order $m>0$ with positive constant coefficients c_{β}.

Key words: Admissible function, continuous wavelet transform, Triebel-Lizorkin spaces, weak solution, regularity, differential operators.

1. Introduction

According to [8], the continuous wavelet transform (CWT) for functions f in $L^{2}\left(\mathbb{R}^{n}\right)$ with respect to a function h in $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the admissibility condition

$$
0<C_{h}:=\int_{0}^{\infty}|\eta(k)|^{2} \frac{d k}{k}<\infty
$$

where $\widehat{h}(x)=\eta(|x|)$, is given by

$$
\left(L_{h} f\right)(a, b)=\int_{\mathbb{R}^{n}} f(x) \overline{T_{b} J_{a} h(x)} d x=\int_{\mathbb{R}^{n}} f(x) \frac{1}{a^{\frac{n}{2}}} \overline{h\left(\frac{x-b}{a}\right)} d x
$$

where $\left(J_{a} h\right)(x)=\frac{1}{a^{\frac{n}{2}}} h\left(\frac{x}{a}\right), \quad a \quad 0 \quad$ is the dilation operator and where $\left(T_{b} h\right)(x)=h(x-b), x, b \in \mathbb{R}^{n}$ is the translation operator.

Moreover, the inversion (reconstruction) formula is given by

$$
\begin{equation*}
f=\frac{1}{C_{h}} \int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left(L_{h} f\right)(a, b) T_{b} J_{a} h \frac{d b d a}{a^{n+1}} \tag{1.1}
\end{equation*}
$$

where the convergence is in the weak sense. It was proved in [4] that with appropriate assumptions on $f \in L^{2}(\mathbb{R})$ that (1.1) holds in the pointwise sense.

[^0]On the other hand, when we extend the CWT for functions in $L^{p}\left(\mathbb{R}^{n}\right)$, where $1<p<\infty$, different types of convergence have been studied for the CWT in $L^{p}\left(\mathbb{R}^{n}\right)$, see $[1,5-7,10]$, and [11]. For example, in [6] the dilation operator is defined so that it satisfies the L^{1}-normalization and the convergence for the inversion formula holds in the L^{p} sense, whereas the L^{2}-normalization for the dilation operator is given in [2].

The regularity of functions has been studied through the characterization of these functions in different spaces by means of the CWT. For instance, in [6], the CWT is used to determine if a function belongs to the Besov spaces in one dimension.

In this paper, we follow the notations given in [1], [10], and [2] with L^{2}-normalization for the dilation operator to define the continuous wavelet transform for functions in $L^{p}\left(\mathbb{R}^{n}\right)$, and we apply this transform to analyze the regularity of weak solutions $u \in L^{p}\left(\mathbb{R}^{n}\right)$ under the equation $Q u=f$ where f belongs to the Triebel-Lizorkin space $F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$, with $1<p, q<\infty$ and $0<r<1$, and where $Q=\sum_{|\beta| \leq m} c_{\beta} \partial^{\beta}$ is a linear partial differential operator of order m with positive coefficients c_{β}.

Next, we formalize these concepts for functions in $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$.

2. Preliminaries

The following definitions and results will be needed throughout the paper.

Definition 2.1 For h in $L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$, the dilation operator J_{a} and the translation operator T_{b} are defined respectively as:

1) $\left(J_{a} h\right)(x)=a^{-\frac{n}{2}} h\left(a^{-1} x\right)$, where $a>0$ and $x \in \mathbb{R}^{n}$.
2) $\left(T_{b} h\right)(x)=h(x-b)$, where $x, b \in \mathbb{R}^{n}$.

Definition 2.2 A function h in $L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ is said to be admissible if

$$
\begin{equation*}
0<C_{h}:=\int_{\mathbb{R}^{n}}|\widehat{h}(k)|^{2} \frac{1}{|k|^{n}} d k<\infty \tag{2.1}
\end{equation*}
$$

where

$$
\widehat{h}(k)=\int_{\mathbb{R}^{n}} e^{-2 \pi i k \cdot x} h(x) d x
$$

is the Fourier transform of h.
In what follows, $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ consists of those functions infinitely differentiable on \mathbb{R}^{n} with compact support.

Lemma 2.3 Suppose that $h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $h \neq 0$. If for any multiindex $\alpha \in \mathbb{R}^{n}$,

$$
0<C_{\partial^{\alpha} h}:=\int_{\mathbb{R}^{n}}|\widehat{h}(k)|^{2}|k|^{2|\alpha|-n} d k<\infty
$$

then $\partial^{\alpha} h$ is admissible.
Proof The proof follows from Definition 2.2 and from the fact that $\widehat{\partial^{\alpha} h}(k)=(2 \pi i k)^{\alpha} \widehat{h}(k)$.

BAISÓN-OLMO et al./Turk J Math

Lemma 2.4 If g, h are admissible and $g+h \neq 0$, then $g+h$ is admissible.
Proof The proof comes from the fact that for any $1<p<\infty$, we have $|g+h|^{p} \leq 2^{p}\left(|g|^{p}+|h|^{p}\right)$.
Given the admissibility condition, we extend the wavelet transform to $L^{p}\left(\mathbb{R}^{n}\right)$, where $1<p<\infty$.

Definition 2.5 Let f be in $L^{p}\left(\mathbb{R}^{n}\right)$ with $1<p<\infty$. Consider $a>0$ and $b \in \mathbb{R}^{n}$. Let h be an admissible function in $L^{1}\left(\mathbb{R}^{n}\right)$. The wavelet transform of f with respect to h is defined as

$$
\begin{equation*}
\left(L_{h} f\right)(a, b)=\int_{\mathbb{R}^{n}} f(x) \overline{T_{b} J_{a} h(x)} d x=\int_{\mathbb{R}^{n}} f(x) \frac{1}{a^{\frac{n}{2}}} \overline{h\left(\frac{x-b}{a}\right)} d x \tag{2.2}
\end{equation*}
$$

Note that the wavelet transform can be written as

$$
\begin{equation*}
\left(L_{h} f\right)(a, b)=\left[\left(J_{a} \bar{h}\right)^{\sim} * f\right](b) \tag{2.3}
\end{equation*}
$$

where $*$ means convolution and h^{\sim} means $h^{\sim}(x)=h(-x)$.

Remark 2.6 According to (2.3), and since $J_{a} h \in L^{1}\left(\mathbb{R}^{n}\right)$ and $f \in L^{p}\left(\mathbb{R}^{n}\right)$, it follows from Young's Inequality that $\left(J_{a} \bar{h}\right)^{\sim} * f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $\left\|\left(J_{a} \bar{h}\right)^{\sim} * f\right\|_{p} \leq a^{\frac{n}{2}}\left\|J_{a} h\right\|_{1}\|f\|_{p}$. That is,

$$
\begin{equation*}
\left\|\left(L_{h} f\right)(a, \cdot)\right\|_{p} \leq a^{\frac{n}{2}}\|h\|_{1}\|f\|_{p} \tag{2.4}
\end{equation*}
$$

In order to obtain a reconstruction formulae for the wavelet transform, we need the following result.

Lemma 2.7 Suppose $h \in L^{1}\left(\mathbb{R}^{n}\right)$ is admissible. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$ where $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x=\frac{1}{C_{h}} \int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left(L_{h} f\right)(a, b) \overline{\left(L_{h} g\right)(a, b)} d b \frac{d a}{a^{n+1}}
$$

The integrals of the right hand side have to be taken in the sense of distributions.
Proof See [6].

Lemma 2.8 Consider $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $1<p<\infty$, and $h \in L^{1}\left(\mathbb{R}^{n}\right)$ admissible. Then

$$
\begin{equation*}
f(x)=\frac{1}{C_{h}} \int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left(L_{h} f\right)(a, b) \frac{1}{a^{\frac{n}{2}}} h\left(\frac{x-b}{a}\right) d b \frac{d a}{a^{n+1}} . \tag{2.5}
\end{equation*}
$$

The equality holds in the L^{p} sense, and the integrals on the right-hand side have to be taken in the sense of distributions.

Proof See [6].
So now, we proceed with the study of some differential aspects of the admisible functions, the wavelet transform, and differential operators.

Lemma 2.9 Let h be a differentiable function in an open set Ω in \mathbb{R}^{n}. Then for $b \in \mathbb{R}^{n}$, a>0 and any multiindex α in \mathbb{R}^{n},

$$
\begin{equation*}
\partial_{x}^{\alpha}\left(h\left(\frac{x-b}{a}\right)\right)=\frac{1}{a^{|\alpha|}} \partial^{\alpha} h\left(\frac{x-b}{a}\right) \tag{2.6}
\end{equation*}
$$

where $\frac{x-b}{a} \in \Omega$.
Proof The result comes from the chain rule.
The subsequent result can be obtained by integration by parts. See also [3, Lemma 3.2].
Lemma 2.10 Let h be in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ so that h is admissible, and let α be a multiindex in \mathbb{R}^{n}. Then for f and $\partial^{\alpha} f$ in $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$,

$$
\begin{equation*}
\left(L_{h} \partial^{\alpha} f\right)(a, b)=\frac{(-1)^{|\alpha|}}{a^{|\alpha|}}\left(L_{\partial^{\alpha} h} f\right)(a, b) \tag{2.7}
\end{equation*}
$$

Corollary 2.11 Suppose $h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is such that h and $Q h$ are admissible, where $Q=\sum_{|\alpha|=m} c_{\alpha} \partial^{\alpha}$, is a linear operator with positive constant coefficients c_{α} of order $m \geq 0$. Then for f and $Q f$ in $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$,

$$
\begin{equation*}
\left(L_{h} Q f\right)(a, b)=\frac{(-1)^{m}}{a^{m}}\left(L_{Q h} f\right)(a, b) \tag{2.8}
\end{equation*}
$$

Proof It comes from Lemma 2.10.

3. The continuous wavelet transform for functions in $F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$

In this section, we introduce the Triebel-Lizorkin spaces by the first differences [9], and we analyze the boundedness for the continuous wavelet transform on these spaces.

Definition 3.1 Given f in $L^{p}\left(\mathbb{R}^{n}\right)$, with $1<p<\infty$ define the first difference of f by the formula

$$
\left(\Delta_{c} f\right)(x)=f(x+c)-f(x)
$$

where $x, c \in \mathbb{R}^{n}$.

Remark 3.2

$$
\begin{equation*}
\left\|\left(\Delta_{c} f\right)(\cdot)\right\|_{p} \rightarrow 0 \quad \text { as } \quad c \rightarrow 0 \tag{3.1}
\end{equation*}
$$

Definition 3.3 For $1<p, q<\infty, c \in \mathbb{R}^{n} \backslash\{0\}$ and $0<r<1$, the Triebel-Lizorkin space $F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$ is defined as the space of all functions $f \in L^{p}\left(\mathbb{R}^{n}\right)$ such that

$$
\left\|\left(\int_{\mathbb{R}^{n}}\left|\left(\Delta_{c} f\right)(\cdot)\right|^{q} \frac{d c}{|c|^{r q+n}}\right)^{\frac{1}{q}}\right\|_{p}<\infty
$$

Remark 3.4 $F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$ is a Banach space, where

$$
\|f\|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)}=\|f\|_{p}+\left\|\left(\int_{\mathbb{R}^{n}}\left|\left(\Delta_{c} f\right)(\cdot)\right|^{q} \frac{d c}{|c|^{r q+n}}\right)^{\frac{1}{q}}\right\|_{p}<\infty
$$

BAISÓN-OLMO et al./Turk J Math

Remark 3.5 For simplicity, from now on we set

$$
\left.\left\|\left\|\left(\Delta_{c} f\right)(\cdot) \mid\right\|\right\|_{q, r}:=\left\|\left(\Delta_{c} f\right)(\cdot)\right\|_{L^{q}\left(\mathbb{R}^{n}, \frac{d c}{|c|^{q} q+n}\right.}\right)
$$

That is,

$$
\begin{equation*}
\left\|\left\|\left(\Delta_{c} f\right)(\cdot) \mid\right\|_{q, r}=\left(\int_{\mathbb{R}^{n}}\left|\left(\Delta_{c} f\right)(\cdot)\right|^{q} \frac{d c}{|c|^{r q+n}}\right)^{\frac{1}{q}}\right. \tag{3.2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\|f\|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)}=\|f\|_{p}+\| \|\left\|\left(\Delta_{c} f\right)(\cdot) \mid\right\|_{q, r} \|_{p} \tag{3.3}
\end{equation*}
$$

Definition 3.6 Consider $r>1$ where r is not an integer. Then r can be written as $r=[r]+t$, where $[r]$ is the integral part of r and $0<t<1$. Define the Triebel-Lizorkin space $F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$ as the space of all function $f \in L^{p}\left(\mathbb{R}^{n}\right)$ such that for any multiindex $\beta \in \mathbb{R}^{n}$ with $|\beta| \leq[r]$ we have $\partial^{\beta} f \in F_{p}^{t, q}\left(\mathbb{R}^{n}\right)$.

Lemma 3.7 For $a>0,1<p, q<\infty, 0<r<1$, and h admissible in $L^{1}\left(\mathbb{R}^{n}\right)$,

$$
L_{h}(a, \cdot): F_{p}^{r, q}\left(\mathbb{R}^{n}\right) \rightarrow F_{p}^{r, q}\left(\mathbb{R}^{n}\right)
$$

is bounded. Moreover,

$$
\left\|\left(L_{h} f\right)(a, \cdot)\right\|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)} \leq a^{\frac{n}{2}}\|h\|_{1}\|f\|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)}
$$

Proof From (3.3),

$$
\left\|\left(L_{h} f\right)(a, \cdot)\right\|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)}=\left\|\left(L_{h} f\right)(a, \cdot)\right\|_{p}+\| \|\left\|\left(\Delta_{c} L_{h} f\right)(a, \cdot)\right\|\left\|_{q, r}\right\|_{p}
$$

Firstly, note that by the Minkowski inequality for integrals,

$$
\begin{align*}
\left\|\left(\Delta_{c} L_{h} f\right)(a, \cdot)\right\| \|_{q, r} & =\| \| \int_{\mathbb{R}^{n}}\left(\Delta_{c} f\right)(a y+\cdot) a^{\frac{n}{2}} \overline{h(y)} d y\| \|_{q, r} \\
& \leq a^{\frac{n}{2}} \int_{\mathbb{R}^{n}}\| \|\left(\Delta_{c} f\right)(a y+\cdot)\| \|_{q, r}|h(y)| d y \tag{3.4}
\end{align*}
$$

That is,

$$
\begin{equation*}
\left\|\left\|(\Delta _ { c } L _ { h } f) (a , \cdot) \left|\| _ { q , r } \leq a ^ { \frac { n } { 2 } } \int _ { \mathbb { R } ^ { n } } \| \left\|\left(\Delta_{c} f\right)(a y+\cdot)\left|\|\left.\right|_{q, r}\right| h(y) \mid d y\right.\right.\right.\right. \tag{3.5}
\end{equation*}
$$

Again by the Minkowski inequality for integrals,

$$
\begin{align*}
\left\|\left\|\left\|\left(\Delta_{c} L_{h} f\right)(a, \cdot)\right\|\right\|_{q, r}\right\|_{p} & \leq\left\|a ^ { \frac { n } { 2 } } \int _ { \mathbb { R } ^ { n } } \left|\left\|\left(\Delta_{c} f\right)(a y+\cdot)\right\|\left\|_{q, r}|h(y)| d y\right\|_{p}\right.\right. \\
& \leq a^{\frac{n}{2}} \int_{\mathbb{R}^{n}}\| \|\left\|\left(\Delta_{c} f\right)(\cdot)\right\|\left\|_{q, r}\right\|_{p}|h(y)| d y \\
& =a^{\frac{n}{2}}\|h\|_{1}\| \|\left(\Delta_{c} f\right)(\cdot)\| \|_{q, r} \|_{p} \tag{3.6}
\end{align*}
$$

That is,

$$
\begin{equation*}
\left\|\left\|\left\|\left(\Delta_{c} L_{h} f\right)(a, \cdot)\right\|\right\|_{q, r}\right\|_{p} \leq a^{\frac{n}{2}}\|h\|_{1}\| \|\left\|\left(\Delta_{c} f\right)(\cdot)\right\|\left\|_{q, r}\right\|_{p} \tag{3.7}
\end{equation*}
$$

Thus, the proof comes from (2.4) and (3.7).
Next result is used in the proof of the Theorem 4.1.

Corollary 3.8 Let $a>0,1<p, q<\infty, 0<r<1$. If $f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$, h is admissible in $L^{1}\left(\mathbb{R}^{n}\right)$ and $\left\|\left|\left\|\left(\Delta_{c} f\right)(\cdot) \mid\right\|_{q, r} \|_{p}=\mathcal{O}\left(a^{r}\right)\right.\right.$, then

$$
\begin{equation*}
\left\|\left\|\left\|\left(\Delta_{c} L_{h} f\right)(a, \cdot)\right\|\right\|_{q, r}\right\|_{p}=\mathcal{O}\left(a^{\frac{n}{2}+r}\right) \tag{3.8}
\end{equation*}
$$

Proof The proof comes from (3.7).

Lemma 3.9 Suppose $1<p, q<\infty$, and $0<r<1$. Suppose also that h is admissible in $L^{1}\left(\mathbb{R}^{n}\right)$ such that $h \quad \in \quad F_{1}^{r, q}\left(\mathbb{R}^{n}\right)$. If $f \quad \in \quad L^{p}\left(\mathbb{R}^{n}\right)$ and $\left\|\left\|\left\|\left(L_{h} \Delta_{c} f\right)(a, \cdot)\right\|\right\|_{q, r}\right\|_{p}=\mathcal{O}\left(a^{\frac{n}{2}+r}\right)$ as $a \rightarrow 0$, then $f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$.

Proof See appendix A.

4. Main theorem

Now we are able to state the following result.

Theorem 4.1 Suppose $1<p, q<\infty, 0<r<1$, and let $Q=\sum_{|\beta| \leq m} c_{\beta} \partial^{\beta}$ be a partial differential operator of order m with positive coefficients c_{β}. Let $T=\sum_{|\beta|<m} c_{\beta} \partial^{\beta}$ and define $Q_{m}:=\sum_{|\beta|=m} c_{\beta} \partial^{\beta}$. Suppose also h is admissible in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ so that $Q^{*} h \in F_{1}^{r, q}\left(\mathbb{R}^{n}\right)$, and $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $\left\|\left\|\left\|\left(\Delta_{c} f\right)(\cdot)\right\|\right\|_{q, r}\right\|_{p}=\mathcal{O}\left(a^{r}\right)$ as $a \rightarrow 0$. If $u \in W^{m, p}\left(\mathbb{R}^{n}\right)$ is a weak solution of $Q u=f$ and $f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$, then $u \in F_{p}^{m+r, q}\left(\mathbb{R}^{n}\right)$.

Proof

1) We prove first that $u \in F_{p}^{|\gamma|+r, q}\left(\mathbb{R}^{n}\right)$ for each multiindex $\gamma \in \mathbb{R}^{n}$ with $|\gamma|<m$.

Since $\left\|\left\|\left\|\left(\Delta_{c} f\right)(\cdot)\right\|\right\|_{q, r}\right\|_{p}=\mathcal{O}\left(a^{r}\right)$, then from (3.8),

$$
\left\|\left\|\left\|\left(\Delta_{c} L_{h} f\right)(a, \cdot)\right\|\right\|_{q, r}\right\|_{p}=\mathcal{O}\left(a^{\frac{n}{2}+r}\right)
$$

On the other hand, since u is a weak solution of $Q u=f$, it follows that for $T_{b} J_{a} h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we have from (2.8), that $\left(L_{h} f\right)(a, b)=\frac{(-1)^{|\beta|}}{a^{|\beta|}}\left(L_{Q h} u\right)(a, b)$. Hence, for $|\gamma|<|\beta| \leq m$ and for $S:=\sum_{|\beta| \leq m} c_{\beta} \partial^{\beta-\gamma}$ we have that for $a \rightarrow 0$,

$$
\left\|\left\|\left\|\left(\Delta_{c} L_{S h} \partial^{\gamma} u\right)(a, \cdot)\right\|\right\|_{q, r}\right\|_{p}=\mathcal{O}\left(a^{\frac{n}{2}+|\beta-\gamma|+r}\right)=\mathcal{O}\left(a^{\frac{n}{2}+r}\right)
$$

Then by Lemma 3.9, we conclude that $\partial^{\gamma} u \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$. This means that for each $|\gamma|<m$, we have $u \in F_{p}^{|\gamma|+r, q}\left(\mathbb{R}^{n}\right)$.
2) Now we prove that $u \in F_{p}^{|\gamma|+r, q}\left(\mathbb{R}^{n}\right)$ for each multiindex $\gamma \in \mathbb{R}^{n}$ with $|\gamma|=m$.

For this purpose, we use induction over the number of terms in Q_{m}. Suppose then that the cardinality of Q_{m} is s.
i) Suppose first that $Q_{m}=c_{(m, 0,0, \ldots, 0)} \partial_{1}^{m}$. Since $Q u=T u+Q_{m} u$, then $c_{(m, 0,0, \ldots, 0)} \partial_{1}^{m} u=f-T u$.

Since $f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$, and since for $|\beta|<m$ we have from part 1) that $\partial^{\beta} f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$, then from (3.8),

$$
\begin{aligned}
\left\|\left\|\left\|\left(\Delta_{c} L_{h} \partial_{1}^{m} u\right)(a, \cdot)\right\|\right\|_{q, r}\right\|_{p} & \leq \frac{1}{c_{(m, 0,0, \ldots, 0)}}\| \|\left\|\left(\Delta_{c} L_{h} f\right)(a, \cdot)\right\|\left\|_{q, r}\right\|_{p} \\
& +\frac{1}{c_{(m, 0,0, \ldots, 0)}} \sum_{|\beta|<m} c_{\beta}\| \|\left\|\left(\Delta_{c} L_{h} \partial^{\beta} u\right)(a, \cdot)\right\|\left\|_{q, r}\right\|_{p} \\
& \leq \frac{1}{c_{(m, 0,0, \ldots, 0)}}\left(\mathcal{O}\left(a^{\frac{n}{2}+r}\right)+\sum_{|\beta|<m} c_{\beta} \mathcal{O}\left(a^{\frac{n}{2}+r}\right)\right) \\
& =\mathcal{O}\left(a^{\frac{n}{2}+r}\right)
\end{aligned}
$$

Then by Lemma 3.9,

$$
\begin{equation*}
\partial_{1}^{m} u \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right) \tag{4.1}
\end{equation*}
$$

ii) Suppose now that $Q_{m}=c_{(m, 0,0, \ldots, 0)} \partial_{1}^{m}+c_{(m-1,1,0, \ldots, 0)} \partial_{1}^{m-1} \partial_{2}$. Then

$$
c_{(m-1,1,0, \ldots, 0)} \partial_{1}^{m-1} \partial_{2} u=f-\sum_{|\beta|<m} c_{\beta} \partial^{\beta}-c_{(m, 0,0, \ldots, 0)} \partial_{1}^{m} u
$$

Since $f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$, from part 1) for $|\beta|<m, \partial^{\beta} f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$, and from (4.1), $c_{(m, 0,0, \ldots, 0)} \partial_{1}^{m} u \in$ $F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$, then from (3.8),

$$
\begin{aligned}
& \left\|\left\|\left\|\left(\Delta_{c} L_{h} \partial_{1}^{m-1} \partial_{2} u\right)(a, \cdot)\right\|\right\|_{q, r}\right\|_{p} \\
& \quad \leq \frac{1}{c_{(m-1,1,0, \ldots, 0)}}\| \|\left\|\left(\Delta_{c} L_{h} f\right)(a, \cdot)\right\|\left\|_{q, r}\right\|_{p} \\
& \quad+\frac{1}{c_{(m-1,1,0, \ldots,)}} \sum_{|\beta|<m} c_{\beta}\| \|\left\|\left(\Delta_{c} L_{h} \partial^{\beta} u\right)(a, \cdot)\right\|\left\|_{q, r}\right\|_{p} \\
& \quad+\frac{1}{c_{(m-1,1,0, \ldots, 0)}}\| \|\left\|\left(\Delta_{c} L_{h} c_{(m, 0,0, \ldots, 0)} \partial_{1}^{m} u\right)(a, \cdot)\right\|\left\|_{q, r}\right\|_{p} \\
& \quad=\mathcal{O}\left(a^{\frac{n}{2}+r}\right)
\end{aligned}
$$

BAISÓN-OLMO et al./Turk J Math

Then by Lemma 3.9,

$$
\begin{equation*}
\partial_{1}^{m-1} \partial_{2} u \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right) \tag{4.2}
\end{equation*}
$$

Repeating this process s-times, we get that for any $\gamma \in \mathbb{R}^{n}$ with $|\gamma|=m$ we have $\partial^{\gamma} u \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$. Hence, from 1) and 2), $u \in F_{p}^{m+r, q}\left(\mathbb{R}^{n}\right)$. This proves Theorem 4.1.

5. Futher results

Lemma 5.1 Suppose $f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$ where $1<p, q<\infty$ and $0<r<1$. Suppose also h is admissible in $L^{1}\left(\mathbb{R}^{n}\right)$. If $\widehat{h}(0)=1$, then

$$
\lim _{a \rightarrow 0} \frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)=f(\cdot) \quad \text { in } \quad F_{p}^{r, q}\left(\mathbb{R}^{n}\right)
$$

Proof Note that from (3.3),

$$
\begin{aligned}
& \left\|\frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right\|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)} \\
& \quad=\left\|\frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right\|_{p}+\| \|\left\|_{c}\left(\frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right)\right\|\left\|_{q, r}\right\|_{p}
\end{aligned}
$$

On the one hand, since $\widehat{h}(0)=1$, then

$$
\begin{aligned}
& \frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, b)-f(b)=\left[\int_{\mathbb{R}^{n}} f(a y+b) \overline{h(y)} d y\right]-f(b) \int_{\mathbb{R}^{n}} \overline{h(y)} d y \\
& \quad=\int_{\mathbb{R}^{n}}[f(a y+b)-f(b)] \overline{h(y)} d y=\int_{\mathbb{R}^{n}}\left[\left(T_{-a y} f\right)(b)-f(b)\right] \overline{h(y)} d y
\end{aligned}
$$

Hence, by the Minkowski inequality for integrals,

$$
\begin{aligned}
\left\|\frac{1}{a}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right\|_{p} & =\left\|\int_{\mathbb{R}^{n}}\left[\left(T_{-a y} f\right)(\cdot)-f(\cdot)\right] \overline{h(y)} d y\right\|_{p} \\
& \leq \int_{\mathbb{R}^{n}}\left\|\left(T_{-a y} f\right)(\cdot)-f(\cdot)\right\|_{p}|h(y)| d y
\end{aligned}
$$

That is,

$$
\begin{equation*}
\left\|\frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right\|_{p} \leq \int_{\mathbb{R}^{n}}\left\|\left(T_{-a y} f\right)(\cdot)-f(\cdot)\right\|_{p}|h(y)| d y \tag{5.1}
\end{equation*}
$$

Note that since $h \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\left\|\left(T_{-a y} f\right)(\cdot)-f(\cdot)\right\|_{p}$ is bounded by $2\|f\|_{p}$ and from (3.1) tends to zero as $a \rightarrow 0$ for each $y \in \mathbb{R}^{n}$, then by the dominated convergence theorem

$$
\lim _{a \rightarrow 0}\left\|\left(T_{-a y} f\right)(\cdot)-f(\cdot)\right\|_{p}=0
$$

Hence,

$$
\begin{equation*}
\lim _{a \rightarrow 0}\left\|\frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right\|_{p}=0 \tag{5.2}
\end{equation*}
$$

On the other hand, by (5.1) and the Minkowski inequality for integrals,

$$
\begin{gathered}
\left\|\left\|\Delta_{c}\left(\frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right)\right\|\right\|_{q, r}=\| \| \frac{1}{a^{\frac{n}{2}}}\left(L_{h} \Delta_{c} f\right)(a, \cdot)-\Delta_{c} f(\cdot)\| \|_{q, r} \\
\leq\| \| \int_{\mathbb{R}^{n}}\left|\left(T_{-a y} \Delta_{c} f\right)(\cdot)-\left(\Delta_{c} f\right)(\cdot)\right||h(y)| d y\| \|_{q, r} \\
\leq \int_{\mathbb{R}^{n}}\left|\left\|\left(T_{-a y} \Delta_{c} f\right)(\cdot)-\left(\Delta_{c} f\right)(\cdot)\left|\|_{q, r}\right| h(y) \mid d y .\right.\right.
\end{gathered}
$$

Again by the Minkowski inequality for integrals,

$$
\begin{aligned}
& \left\|\left\|\left\|\Delta_{c}\left(\frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right)\right\|\right\|_{q, r}\right\|_{p} \\
& \quad \leq \int_{\mathbb{R}^{n}}\left\|\left|\left\|\left(T_{-a y} \Delta_{c} f\right)(\cdot)-\left(\Delta_{c} f\right)(\cdot)\right\|\left\|_{q, r}\right\|_{p}\right| h(y) \mid d y .\right.
\end{aligned}
$$

Note that since $h \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\left\|\left\|\left\|\left(\Delta_{c} f\right)(\cdot) \mid\right\|\right\|_{q, r}\right\|_{p}<\infty$, then

$$
\begin{aligned}
\|\mid\|\left(T_{-a y} \Delta_{c} f\right)(\cdot)- & \left(\Delta_{c} f\right)(\cdot)\left\|\left\|_{q, r}\right\|_{p}|h(y)|\right. \\
& \leq 2\| \|\left\|\left(\Delta_{c} f\right)(\cdot)\left|\left\|_{q, r}\right\|_{p}\right| h(y) \mid \in L^{1}\left(\mathbb{R}^{n}\right) .\right.
\end{aligned}
$$

Hence,

$$
\left\|\left\|\left\|\left(T_{-a y} \Delta_{c} f\right)(\cdot)-\left(\Delta_{c} f\right)(\cdot)\right\|\right\|_{q, r}\right\|_{p} \rightarrow 0 \quad \text { as } \quad a \rightarrow 0
$$

That is,

$$
\begin{equation*}
\lim _{a \rightarrow 0}\| \|\left\|\Delta_{c}\left(\frac{1}{a^{\frac{n}{2}}}\left(L_{h} f\right)(a, \cdot)-f(\cdot)\right)\right\|\left\|_{q, r}\right\|_{p}=0 . \tag{5.3}
\end{equation*}
$$

Therefore, the proof comes from (5.2) and (5.3).
As a consequence of Lemma 3.7, we have the following result.
Corollary 5.2 If $f_{1}, f_{2} \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$ and h_{1}, h_{2} are admissible in $L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{aligned}
& \left\|\left(L_{h_{1}} f_{1}\right)(a, \cdot)-\left(L_{h_{2}} f_{2}\right)(a, \cdot)\right\|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)} \\
\leq & a^{\frac{n}{2}}\left\|h_{1}-h_{2}\right\|\left\|_{1}\right\| f_{1}\left\|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)}+a^{\frac{n}{2}}\right\| h_{2}\left\|_{1}\right\| f_{1}-f_{2} \|_{F_{p}^{r, q}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

A. Proof of Lemma 3.9

Proof From the reconstruction formula given in (2.5) for $f \in L^{p}\left(\mathbb{R}^{n}\right)$, $f(x)=I_{1}(x)+I_{2}(x)$, where

$$
I_{1}(x)=\frac{1}{C_{h}} \int_{0}^{1} \int_{\mathbb{R}^{n}}\left(L_{h} f\right)(a, b) \frac{1}{a^{\frac{n}{2}}} h\left(\frac{x-b}{a}\right) d b \frac{d a}{a^{n+1}}
$$

BAISÓN-OLMO et al./Turk J Math

and

$$
I_{2}(x)=\frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left(L_{h} f\right)(a, b) \frac{1}{a^{\frac{n}{2}}} h\left(\frac{x-b}{a}\right) d b \frac{d a}{a^{n+1}}
$$

1) We prove first that $I_{1} \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$. If $y=\frac{x-b}{a}$, then I_{1} can be written as

$$
I_{1}(x)=\frac{1}{C_{h}} \int_{0}^{1} \int_{\mathbb{R}^{n}}\left(L_{h} f\right)(a, x-a y) h(y) d y \frac{d a}{a^{\frac{n}{2}+1}}
$$

Then for $c \in \mathbb{R}^{n} \backslash\{0\}$,

$$
\left(\Delta_{c} I_{1}\right)(x)=\frac{1}{C_{h}} \int_{0}^{1} \int_{\mathbb{R}^{n}}\left(L_{h} \Delta_{c} f\right)(a, x-a y) h(y) d y \frac{d a}{a^{\frac{n}{2}+1}}
$$

Hence, by the Minkowski inequality for integrals,

$$
\begin{gather*}
\left\|\left\|\left(\Delta_{c} I_{1}\right)(\cdot)\right\|\right\|_{q, r}=\left\|\frac{1}{C_{h}} \int_{0}^{1} \int_{\mathbb{R}^{n}}\left(L_{h} \Delta_{c} f\right)(a, \cdot-a y) h(y) d y \frac{d a}{a^{\frac{n}{2}+1}}\right\| \|_{q, r} \\
\leq \frac{1}{C_{h}} \int_{0}^{1} \int_{\mathbb{R}^{n}}\| \|\left(L_{h} \Delta_{c} f\right)(a, \cdot-a y)\| \|_{q, r}|h(y)| d y \frac{d a}{a^{\frac{n}{2}+1}} \tag{A.1}
\end{gather*}
$$

Again, by the Minkowski inequality for integrals,

$$
\begin{align*}
&\left\|\left\|\left\|\left(\Delta_{c} I_{1}\right)(\cdot)\right\|\right\|\right\|_{q, r} \|_{p} \\
& \leq\left\|\frac{1}{C_{h}} \int_{0}^{1} \int_{\mathbb{R}^{n}}\right\|\left\|\left(L_{h} \Delta_{c} f\right)(a, \cdot-a y)\right\|\left\|_{q, r}|h(y)| d y \frac{d a}{a^{\frac{n}{2}+1}}\right\|_{p} \\
& \leq \frac{1}{C_{h}} \int_{0}^{1} \int_{\mathbb{R}^{n}}\| \|\left\|\left(L_{h} \Delta_{c} f\right)(a, \cdot)\right\|\left\|_{q, r}\right\|_{p}|h(y)| d y \frac{d a}{a^{\frac{n}{2}+1}} \\
& \leq \frac{1}{C_{h}} \int_{0}^{1} \int_{\mathbb{R}^{n}} \mathcal{K} a^{\frac{n}{2}+r}|h(y)| d y \frac{d a}{a^{\frac{n}{2}+1}} \\
&=\frac{1}{C_{h}} \mathcal{K}\|h\|_{1}\left(\int_{0}^{1} a^{r-1} d a\right)=\frac{1}{C_{h}} \mathcal{K}\|h\|_{1} \frac{1}{r}<\infty \tag{A.2}
\end{align*}
$$

where \mathcal{K} is a positive constant. Thus, $I_{1} \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$.
2) Next, we prove that $I_{2} \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$.

Note that since $\left(\Delta_{c} I_{2}\right)(x)=I_{2}(x+c)-I_{2}(x)$, then

$$
\begin{align*}
\left(\Delta_{c} I_{2}\right)(x) & =\frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left(L_{h} f\right)(a, b)\left(\Delta_{\frac{c}{a}} h\right)\left(\frac{x-b}{a}\right) d b \frac{d a}{a^{\frac{n}{2}+n+1}} \\
& =\frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left(L_{h} f\right)(a, x-a y)\left(\Delta_{\frac{c}{a}} h\right)(y) d y \frac{d a}{a^{\frac{n}{2}+1}} \tag{A.3}
\end{align*}
$$

Hence, by the Minkowski inequality for integrals,

$$
\begin{align*}
& \left\|\left\|\left(\Delta_{c} I_{2}\right)(\cdot)|\||_{q, r}=\left(\int_{\mathbb{R}^{n}}\left|\left(\Delta_{c} I_{2}\right)(\cdot)\right|^{q} \frac{d c}{|c|^{r q+n}}\right)^{\frac{1}{q}}\right.\right. \\
& \quad \leq\left(\int_{\mathbb{R}^{n}}\left(\frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left|\left(L_{h} f\right)(a, \cdot-a y)\right|\left|\left(\Delta_{\frac{c}{a}} h\right)(y)\right| d y \frac{d a}{a^{\frac{n}{2}+1}}\right)^{q} \frac{d c}{\mid c^{r q+n}}\right)^{\frac{1}{q}} \\
& \quad \leq \frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\left(L_{h} f\right)(a, \cdot-a y)\right|^{q}\left|\left(\Delta_{\frac{c}{a}} h\right)(y)\right|^{q} \frac{d c}{\mid c^{r q+n}}\right)^{\frac{1}{q}} d y \frac{d a}{a^{\frac{n}{2}+1}} \\
& \quad=\frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left|\left(L_{h} f\right)(a,-a y)\right|\left(\int_{\mathbb{R}^{n}}\left|\left(\Delta_{\frac{c}{a}} h\right)(y)\right|^{q} \frac{d c}{\mid c^{r q+n}}\right)^{\frac{1}{q}} d y \frac{d a}{a^{\frac{n}{2}+1}} . \tag{A.4}
\end{align*}
$$

Let $z=\frac{c}{a}$, then

$$
\begin{align*}
\| & \left.\left\|\left(\Delta_{c} I_{2}\right)(\cdot)\right\|\right|_{q, r} \\
& \leq \frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left|\left(L_{h} f\right)(a, \cdot-a y)\right|\left(\int_{\mathbb{R}^{n}}\left|\left(\Delta_{z} h\right)(y)\right|^{q} \frac{d z}{|z|^{r q+n}}\right)^{\frac{1}{q}} d y \frac{d a}{a^{\frac{n}{2}+1+r}} \\
& =\frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left|\left(L_{h} f\right)(a, \cdot-a y)\right| \|\left.\left|\left(\Delta_{z} h\right)(y)\right|\right|_{q, r} d y \frac{d a}{a^{\frac{n}{2}+1+r}} \tag{A.5}
\end{align*}
$$

Now, from (2.4), from hypothesis and again by the Minkowski inequality for integrals,

$$
\begin{align*}
& \left\|\left\|\left\|\left(\Delta_{c} I_{2}\right)(\cdot)\right\|\right\|_{q, r}\right\|_{p}=\left(\int_{\mathbb{R}^{n}}\left\|\left(\Delta_{c} I_{2}\right)(x)\right\| \|_{q, r}^{p} d x\right)^{\frac{1}{p}} \\
& \left.\quad \leq\left.\left(\int_{\mathbb{R}^{n}}\left|\frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\right|\left(L_{h} f\right)(a, x-a y)|\|| \Delta_{z} h\right)(y)\| \|_{q, r} d y \frac{d a}{a^{\frac{n}{2}+1}}\right|^{p} d x\right)^{\frac{1}{p}} \\
& \quad \leq \frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\left(L_{h} f\right)(a, x-a y)\right|^{p}\left\|\left|\left(\Delta_{z} h\right)(y)\right|\right\|_{q, r}^{p} d x\right)^{\frac{1}{p}} d y \frac{d a}{a^{\frac{n}{2}+1}} \\
& \left.\quad=\frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\left(L_{h} f\right)(a, w)\right|^{p} d w\right)^{\frac{1}{p}}\| \|\left(\Delta_{z} h\right)(y) \right\rvert\, \|_{q, r} d y \frac{d a}{a^{\frac{n}{2}+1}} . \tag{A.6}
\end{align*}
$$

That is,

$$
\begin{align*}
& \left\|\left\|\left\|\left(\Delta_{c} I_{2}\right)(\cdot)\right\|\right\|_{q, r}\right\|_{p} \leq \frac{1}{C_{h}} \int_{1}^{\infty} \int_{\mathbb{R}^{n}}\left\|\left(L_{h} f\right)(a, \cdot)\right\|_{p}\| \|\left(\Delta_{z} h\right)(y)\| \|_{q, r} d y \frac{d a}{a^{\frac{n}{2}+1}} \\
& \quad \leq \frac{1}{C_{h}}\left(\int_{\mathbb{R}^{n}}\| \|\left(\Delta_{z} h\right)(y)\| \|_{q, r} d y\right)\left(\int_{1}^{\infty} a^{\frac{n}{2}}\|h\|_{1}\|f\|_{p} \frac{d a}{a^{\frac{n}{2}+1+r}}\right) \\
& \quad=\frac{1}{C_{h}}\|h\|_{1}\|f\|_{p}\| \|\left\|\left(\Delta_{z} h\right)(\cdot)\right\|\left\|_{q, r}\right\|_{1} \int_{1}^{\infty} \frac{d a}{a^{1+r}}<\infty \tag{A.7}
\end{align*}
$$

This proves that $I_{2} \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$.
Hence, from 1) and 2), $f \in F_{p}^{r, q}\left(\mathbb{R}^{n}\right)$.

BAISÓN-OLMO et al./Turk J Math

References

[1] Chuong NM, Duong DV. Boundedness of the wavelet integral operator on weighted function spaces. Russian Journal of Mathematics and Physics 2013; 20 (3): 268-275. doi: 10.1134/S1061920813030023
[2] Chuong NM, Tri TN. The integral wavelet transform in $L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$. Fractional Calculus and Applied Analysis 2000; 3 (2): 133-140.
[3] Chuong NM, Tri TN. The integral wavelet transform in weighted Sobolev spaces, Abstract and Applied Analysis 2002; 7 (3): 135-142. doi: 10.1155/S1085337502000775
[4] Holschneider M, Tchamitchian P. Régularité locale de la fonction "non-differentiable" de Riemann. In: LeMarie PG, (editor). Les Ondelettes in 1989. Lecture Notes in Mathematics, vol 1438. Springer, Berlin, Heidelberg, 1990, pp. 102-124.
[5] Li K, Sun W. Pointwise convergence of the Calderon reproducing formula, J. Journal of Fourier Analysis and Applications 2012; 18: 439-455. doi: 10.1007/s00041-011-9211-4
[6] Perrier V, Basdevant C. Besov norm in terms of the continuous wavelet transform. Applications to structure functions. Mathematical Models and Methods in Applied Sciences 1996; 6: 649-664. doi: 10.1142/S0218202596000262
[7] Szarvas K, Weisz F. Continuous wavelet transform in variable Lebesgue spaces, Studia Universitatis Babeş-Bolyai Mathematica 2014; 59 (14): 497-512. doi: 10.1134/s1063774514030055
[8] Tang R. Local regularity of continuous wavelet transform in n dimensions, Journal of Hunan University 1995; 22: 6-12.
[9] Triebel H. Theory of function spaces, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010.
[10] Weisz F. Inversion formulas for the continuous wavelet transform, Acta Mathematica Hungarica 2012; 138 (3): 237-258. doi: $10.1007 /$ s10474-012-0263-y
[11] Wilson M. How fast and in what sense(s) does the Calderon reproducing formula converge? Journal of Fourier Analysis and Applications 2010; 16: 768-785. doi: 10.1007/s00041-009-9109-6

[^0]: *Correspondence: albo@azc.uam.mx
 2010 AMS Mathematics Subject Classification: 35A22, 44A05, 44A15, 35B65, 44C40.

