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Abstract: The continuous wavelet transform in higher dimensions is used to prove the regularity of weak solutions
u ∈ Lp(Rn) under Qu = f where f belongs to the Triebel-Lizorkin space F r,q

p (Rn) where 1 < p, q < ∞ , 0 < r < 1 ,

and where Q =
∑

|β|≤m cβ∂
β is a linear partial differential operator of order m > 0 with positive constant coefficients

cβ .

Key words: Admissible function, continuous wavelet transform, Triebel-Lizorkin spaces, weak solution, regularity,
differential operators.

1. Introduction
According to [8], the continuous wavelet transform (CWT) for functions f in L2(Rn) with respect to a function
h in L2(Rn) satisfying the admissibility condition

0 < Ch :=

∫ ∞

0

|η(k)|2 dk
k

< ∞,

where ĥ(x) = η(|x|) , is given by

(Lhf)(a, b) =

∫
Rn

f(x)TbJah(x)dx =

∫
Rn

f(x)
1

a
n
2
h

(
x− b

a

)
dx,

where (Jah)(x) = 1

a
n
2
h(xa ) , a > 0 is the dilation operator and where

(Tbh)(x) = h(x− b) , x, b ∈ Rn is the translation operator.
Moreover, the inversion (reconstruction) formula is given by

f =
1

Ch

∫ ∞

0

∫
Rn

(Lhf)(a, b)TbJah
dbda

an+1
, (1.1)

where the convergence is in the weak sense. It was proved in [4] that with appropriate assumptions on f ∈ L2(R)
that (1.1) holds in the pointwise sense.
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On the other hand, when we extend the CWT for functions in Lp(Rn) , where 1 < p < ∞ , different
types of convergence have been studied for the CWT in Lp(Rn) , see [1, 5–7, 10], and [11]. For example, in [6]
the dilation operator is defined so that it satisfies the L1 -normalization and the convergence for the inversion
formula holds in the Lp sense, whereas the L2 -normalization for the dilation operator is given in [2].

The regularity of functions has been studied through the characterization of these functions in different
spaces by means of the CWT. For instance, in [6], the CWT is used to determine if a function belongs to the
Besov spaces in one dimension.

In this paper, we follow the notations given in [1], [10], and [2] with
L2 -normalization for the dilation operator to define the continuous wavelet transform for functions in Lp(Rn) ,
and we apply this transform to analyze the regularity of weak solutions u ∈ Lp(Rn) under the equation Qu = f

where f belongs to the Triebel-Lizorkin space F r,q
p (Rn) , with 1 < p, q < ∞ and 0 < r < 1 , and where

Q =
∑

|β|≤m cβ∂
β is a linear partial differential operator of order m with positive coefficients cβ .

Next, we formalize these concepts for functions in Lp(Rn) , 1 < p < ∞ .

2. Preliminaries
The following definitions and results will be needed throughout the paper.

Definition 2.1 For h in L1(Rn)∩L2(Rn) , the dilation operator Ja and the translation operator Tb are defined
respectively as:

1) (Jah)(x) = a−
n
2 h(a−1x) , where a > 0 and x ∈ Rn .

2) (Tbh)(x) = h(x− b) , where x, b ∈ Rn .

Definition 2.2 A function h in L1(Rn) ∩ L2(Rn) is said to be admissible if

0 < Ch :=

∫
Rn

∣∣∣ĥ(k)∣∣∣2 1

|k|n
dk < ∞, (2.1)

where

ĥ(k) =

∫
Rn

e−2πik·xh(x) dx

is the Fourier transform of h .

In what follows, C∞
0 (Rn) consists of those functions infinitely differentiable on Rn with compact support.

Lemma 2.3 Suppose that h ∈ C∞
0 (Rn) and h ̸= 0 . If for any multiindex α ∈ Rn ,

0 < C∂αh :=

∫
Rn

∣∣∣ĥ(k)∣∣∣2 |k|2|α|−n dk < ∞,

then ∂αh is admissible.

Proof The proof follows from Definition 2.2 and from the fact that ∂̂αh(k) = (2πik)αĥ(k) . 2
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Lemma 2.4 If g, h are admissible and g + h ̸= 0 , then g + h is admissible.

Proof The proof comes from the fact that for any 1 < p < ∞ , we have |g + h|p ≤ 2p(|g|p + |h|p) . 2

Given the admissibility condition, we extend the wavelet transform to Lp(Rn) , where 1 < p < ∞ .

Definition 2.5 Let f be in Lp(Rn) with 1 < p < ∞ . Consider a > 0 and b ∈ Rn . Let h be an admissible
function in L1(Rn) . The wavelet transform of f with respect to h is defined as

(Lhf)(a, b) =

∫
Rn

f(x)TbJah(x)dx =

∫
Rn

f(x)
1

a
n
2
h

(
x− b

a

)
dx. (2.2)

Note that the wavelet transform can be written as

(Lhf)(a, b) =
[
(Jah)

∼ ∗ f
]
(b), (2.3)

where ∗ means convolution and h∼ means h∼(x) = h(−x).

Remark 2.6 According to (2.3), and since Jah ∈ L1(Rn) and f ∈ Lp(Rn) , it follows from Young’s Inequality
that (Jah)

∼ ∗ f ∈ Lp(Rn) and ∥(Jah)∼ ∗ f∥p ≤ a
n
2 ∥Jah∥1∥f∥p . That is,

∥(Lhf)(a, ·)∥p ≤ a
n
2 ∥h∥1∥f∥p. (2.4)

In order to obtain a reconstruction formulae for the wavelet transform, we need the following result.

Lemma 2.7 Suppose h ∈ L1(Rn) is admissible. If f ∈ Lp(Rn) and g ∈ Lq(Rn) where 1 < p, q < ∞ with
1
p + 1

q = 1 , then ∫
Rn

f(x)g(x)dx =
1

Ch

∫ ∞

0

∫
Rn

(Lhf)(a, b)(Lhg)(a, b)db
da

an+1
.

The integrals of the right hand side have to be taken in the sense of distributions.

Proof See [6]. 2

Lemma 2.8 Consider f ∈ Lp(Rn) with 1 < p < ∞ , and h ∈ L1(Rn) admissible. Then

f(x) =
1

Ch

∫ ∞

0

∫
Rn

(Lhf)(a, b)
1

a
n
2
h

(
x− b

a

)
db

da

an+1
. (2.5)

The equality holds in the Lp sense, and the integrals on the right-hand side have to be taken in the sense of
distributions.

Proof See [6]. 2

So now, we proceed with the study of some differential aspects of the admisible functions, the wavelet
transform, and differential operators.
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Lemma 2.9 Let h be a differentiable function in an open set Ω in Rn . Then for b ∈ Rn , a > 0 and any
multiindex α in Rn ,

∂α
x

(
h

(
x− b

a

))
=

1

a|α|
∂αh

(
x− b

a

)
, (2.6)

where x−b
a ∈ Ω .

Proof The result comes from the chain rule. 2

The subsequent result can be obtained by integration by parts. See also [3, Lemma 3.2].

Lemma 2.10 Let h be in C∞
0 (Rn) so that h is admissible, and let α be a multiindex in Rn . Then for f and

∂αf in Lp(Rn), 1 < p < ∞ ,

(Lh∂
αf)(a, b) =

(−1)|α|

a|α|
(L∂αhf)(a, b). (2.7)

Corollary 2.11 Suppose h ∈ C∞
0 (Rn) is such that h and Qh are admissible, where Q =

∑
|α|=m

cα∂
α , is a linear

operator with positive constant coefficients cα of order m ≥ 0 . Then for f and Qf in Lp(Rn), 1 < p < ∞ ,

(LhQf)(a, b) =
(−1)m

am
(LQhf)(a, b). (2.8)

Proof It comes from Lemma 2.10. 2

3. The continuous wavelet transform for functions in F r,q
p (Rn)

In this section, we introduce the Triebel-Lizorkin spaces by the first differences [9], and we analyze the
boundedness for the continuous wavelet transform on these spaces.

Definition 3.1 Given f in Lp(Rn) , with 1 < p < ∞ define the first difference of f by the formula

(∆cf)(x) = f(x+ c)− f(x),

where x, c ∈ Rn .

Remark 3.2
∥(∆cf)(·)∥p → 0 as c → 0. (3.1)

Definition 3.3 For 1 < p, q < ∞ , c ∈ Rn \ {0} and 0 < r < 1 , the Triebel-Lizorkin space F r,q
p (Rn) is defined

as the space of all functions f ∈ Lp(Rn) such that∥∥∥∥∥
(∫

Rn

|(∆cf)(·)|q
dc

|c|rq+n

) 1
q

∥∥∥∥∥
p

< ∞.

Remark 3.4 F r,q
p (Rn) is a Banach space, where

∥f∥F r,q
p (Rn) = ∥f∥p +

∥∥∥∥∥
(∫

Rn

|(∆cf)(·)|q
dc

|c|rq+n

) 1
q

∥∥∥∥∥
p

< ∞.
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Remark 3.5 For simplicity, from now on we set∣∣∣∣∣∣ (∆cf)(·)
∣∣∣∣∣∣

q,r
:= ∥(∆cf)(·)∥Lq(Rn, dc

|c|rq+n ).

That is, ∣∣∣∣∣∣ (∆cf)(·)
∣∣∣∣∣∣

q,r
=

(∫
Rn

|(∆cf)(·)|q
dc

|c|rq+n

) 1
q

. (3.2)

Hence,

∥f∥F r,q
p (Rn) = ∥f∥p +

∥∥∥∣∣∣∣∣∣ (∆cf)(·)
∣∣∣∣∣∣

q,r

∥∥∥
p
. (3.3)

Definition 3.6 Consider r > 1 where r is not an integer. Then r can be written as r = [r] + t , where [r] is
the integral part of r and 0 < t < 1 . Define the Triebel-Lizorkin space F r,q

p (Rn) as the space of all function

f ∈ Lp(Rn) such that for any multiindex β ∈ Rn with |β| ≤ [r] we have ∂βf ∈ F t,q
p (Rn) .

Lemma 3.7 For a > 0 , 1 < p, q < ∞ , 0 < r < 1 , and h admissible in L1(Rn) ,

Lh(a, ·) : F r,q
p (Rn) → F r,q

p (Rn)

is bounded. Moreover,
∥(Lhf)(a, ·)∥F r,q

p (Rn) ≤ a
n
2 ∥h∥1∥f∥F r,q

p (Rn).

Proof From (3.3),

∥(Lhf)(a, ·)∥F r,q
p (Rn) = ∥(Lhf)(a, ·)∥p +

∥∥∥∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p
.

Firstly, note that by the Minkowski inequality for integrals,

∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r
=

∣∣∣∣∣∣ ∫
Rn

(∆cf)(ay + ·)an
2 h(y) dy

∣∣∣∣∣∣
q,r

≤ a
n
2

∫
Rn

∣∣∣∣∣∣ (∆cf)(ay + ·)
∣∣∣∣∣∣

q,r
|h(y)| dy . (3.4)

That is,

∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r
≤ a

n
2

∫
Rn

∣∣∣∣∣∣ (∆cf)(ay + ·)
∣∣∣∣∣∣

q,r
|h(y)| dy . (3.5)

Again by the Minkowski inequality for integrals,

∥∥∥∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p

≤
∥∥∥∥ an

2

∫
Rn

∣∣∣∣∣∣ (∆cf)(ay + ·)
∣∣∣∣∣∣

q,r
|h(y)| dy

∥∥∥∥
p

≤ a
n
2

∫
Rn

∥∥∥∣∣∣∣∣∣ (∆cf)(·)
∣∣∣∣∣∣

q,r

∥∥∥
p
|h(y)| dy

= a
n
2 ∥h∥1

∥∥∥∣∣∣∣∣∣ (∆cf)(·)
∣∣∣∣∣∣

q,r

∥∥∥
p
. (3.6)
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That is, ∥∥∥∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p
≤ a

n
2 ∥h∥1

∥∥∥∣∣∣∣∣∣ (∆cf)(·)
∣∣∣∣∣∣

q,r

∥∥∥
p
. (3.7)

Thus, the proof comes from (2.4) and (3.7). 2

Next result is used in the proof of the Theorem 4.1.

Corollary 3.8 Let a > 0 , 1 < p, q < ∞ , 0 < r < 1 . If f ∈ F r,q
p (Rn) , h is admissible in L1(Rn) and∥∥∥∣∣∣∣∣∣ (∆cf)(·)

∣∣∣∣∣∣
q,r

∥∥∥
p
= O(ar) , then

∥∥∥∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p
= O(a

n
2 +r). (3.8)

Proof The proof comes from (3.7). 2

Lemma 3.9 Suppose 1 < p, q < ∞ , and 0 < r < 1 . Suppose also that h is
admissible in L1(Rn) such that h ∈ F r,q

1 (Rn) . If f ∈ Lp(Rn) and∥∥∥∣∣∣∣∣∣ (Lh∆cf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p
= O(a

n
2 +r) as a → 0 , then f ∈ F r,q

p (Rn) .

Proof See appendix A. 2

4. Main theorem
Now we are able to state the following result.

Theorem 4.1 Suppose 1 < p, q < ∞ , 0 < r < 1 , and let Q =
∑

|β|≤m cβ∂
β be a partial differential operator

of order m with positive coefficients cβ . Let T =
∑

|β|<m cβ∂
β and define Qm :=

∑
|β|=m cβ∂

β . Suppose also

h is admissible in C∞
0 (Rn) so that Q∗h ∈ F r,q

1 (Rn) , and f ∈ Lp(Rn) with
∥∥∥||| (∆cf)(·) |||q,r

∥∥∥
p
= O(ar) as

a → 0 . If u ∈ Wm,p(Rn) is a weak solution of Qu = f and f ∈ F r,q
p (Rn) , then u ∈ Fm+r,q

p (Rn) .

Proof
1) We prove first that u ∈ F

|γ|+r,q
p (Rn) for each multiindex γ ∈ Rn with |γ| < m .

Since
∥∥∥∣∣∣∣∣∣ (∆cf)(·)

∣∣∣∣∣∣
q,r

∥∥∥
p
= O(ar) , then from (3.8),

∥∥∥∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p
= O(a

n
2 +r).

On the other hand, since u is a weak solution of Qu = f , it follows that for TbJah ∈ C∞
0 (Rn) , we have from

(2.8), that (Lhf)(a, b) =
(−1)|β|

a|β| (LQhu)(a, b). Hence, for |γ| < |β| ≤ m and for S :=
∑

|β|≤m cβ∂
β−γ we have

that for a → 0 , ∥∥∥∣∣∣∣∣∣ (∆cLSh∂
γu)(a, ·)

∣∣∣∣∣∣
q,r

∥∥∥
p
= O(a

n
2 +|β−γ|+r) = O(a

n
2 +r).
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Then by Lemma 3.9, we conclude that ∂γu ∈ F r,q
p (Rn) . This means that for each |γ| < m , we have

u ∈ F
|γ|+r,q
p (Rn) .

2) Now we prove that u ∈ F
|γ|+r,q
p (Rn) for each multiindex γ ∈ Rn with |γ| = m .

For this purpose, we use induction over the number of terms in Qm. Suppose then that the cardinality
of Qm is s .

i) Suppose first that Qm = c(m,0,0,...,0)∂
m
1 . Since Qu = Tu + Qmu , then

c(m,0,0,...,0)∂
m
1 u = f − Tu .

Since f ∈ F r,q
p (Rn) , and since for |β| < m we have from part 1) that

∂βf ∈ F r,q
p (Rn) , then from (3.8),

∥∥∥∣∣∣∣∣∣ (∆cLh∂
m
1 u)(a, ·)

∣∣∣∣∣∣
q,r

∥∥∥
p

≤ 1

c(m,0,0,...,0)

∥∥∥∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p

+
1

c(m,0,0,...,0)

∑
|β|<m

cβ

∥∥∥∣∣∣∣∣∣ (∆cLh∂
βu)(a, ·)

∣∣∣∣∣∣
q,r

∥∥∥
p

≤ 1

c(m,0,0,...,0)

O(a
n
2 +r) +

∑
|β|<m

cβO(a
n
2 +r)


= O(a

n
2 +r).

Then by Lemma 3.9,
∂m
1 u ∈ F r,q

p (Rn). (4.1)

ii) Suppose now that Qm = c(m,0,0,...,0)∂
m
1 + c(m−1,1,0,...,0)∂

m−1
1 ∂2 . Then

c(m−1,1,0,...,0)∂
m−1
1 ∂2u = f −

∑
|β|<m

cβ∂
β − c(m,0,0,...,0)∂

m
1 u.

Since f ∈ F r,q
p (Rn) , from part 1) for |β| < m , ∂βf ∈ F r,q

p (Rn) , and from (4.1), c(m,0,0,...,0)∂
m
1 u ∈

F r,q
p (Rn) , then from (3.8),

∥∥∥∣∣∣∣∣∣ (∆cLh∂
m−1
1 ∂2u)(a, ·)

∣∣∣∣∣∣
q,r

∥∥∥
p

≤ 1

c(m−1,1,0,...,0)

∥∥∥∣∣∣∣∣∣ (∆cLhf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p

+
1

c(m−1,1,0,...,)

∑
|β|<m

cβ

∥∥∥∣∣∣∣∣∣ (∆cLh∂
βu)(a, ·)

∣∣∣∣∣∣
q,r

∥∥∥
p

+
1

c(m−1,1,0,...,0)

∥∥∥∣∣∣∣∣∣ (∆cLhc(m,0,0,...,0)∂
m
1 u)(a, ·)

∣∣∣∣∣∣
q,r

∥∥∥
p

= O(a
n
2 +r).
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Then by Lemma 3.9,
∂m−1
1 ∂2u ∈ F r,q

p (Rn). (4.2)

Repeating this process s -times, we get that for any γ ∈ Rn with |γ| = m we have ∂γu ∈ F r,q
p (Rn) .

Hence, from 1) and 2), u ∈ Fm+r,q
p (Rn) . This proves Theorem 4.1. 2

5. Futher results
Lemma 5.1 Suppose f ∈ F r,q

p (Rn) where 1 < p, q < ∞ and 0 < r < 1 . Suppose also h is admissible in

L1(Rn) . If ĥ(0) = 1 , then

lim
a→0

1

a
n
2
(Lhf)(a, ·) = f(·) in F r,q

p (Rn).

Proof Note that from (3.3),∥∥∥∥ 1

a
n
2
(Lhf)(a, ·)− f(·)

∥∥∥∥
F r,q

p (Rn)

=

∥∥∥∥ 1

a
n
2
(Lhf)(a, ·)− f(·)

∥∥∥∥
p

+

∥∥∥∥∥
∣∣∣∣∣∣∣∣∣∣∣∣∆c

(
1

a
n
2
(Lhf)(a, ·)− f(·)

)∣∣∣∣∣∣∣∣∣∣∣∣
q,r

∥∥∥∥∥
p

.

On the one hand, since ĥ(0) = 1 , then

1

a
n
2
(Lhf)(a, b)− f(b) =

[∫
Rn

f(ay + b)h(y) dy

]
− f(b)

∫
Rn

h(y) dy

=

∫
Rn

[f(ay + b)− f(b)]h(y) dy =

∫
Rn

[(T−ayf)(b)− f(b)]h(y) dy.

Hence, by the Minkowski inequality for integrals,∥∥∥∥1a (Lhf)(a, ·)− f(·)
∥∥∥∥
p

=

∥∥∥∥∫
Rn

[(T−ayf)(·)− f(·)]h(y) dy
∥∥∥∥
p

≤
∫
Rn

∥(T−ayf)(·)− f(·)∥p|h(y)| dy.

That is, ∥∥∥∥ 1

a
n
2
(Lhf)(a, ·)− f(·)

∥∥∥∥
p

≤
∫
Rn

∥(T−ayf)(·)− f(·)∥p|h(y)| dy. (5.1)

Note that since h ∈ L1(Rn) and ∥(T−ayf)(·) − f(·)∥p is bounded by 2∥f∥p and from (3.1) tends to zero as
a → 0 for each y ∈ Rn , then by the dominated convergence theorem

lim
a→0

∥(T−ayf)(·)− f(·)∥p = 0.

Hence,

lim
a→0

∥∥∥∥ 1

a
n
2
(Lhf)(a, ·)− f(·)

∥∥∥∥
p

= 0. (5.2)
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On the other hand, by (5.1) and the Minkowski inequality for integrals,∣∣∣∣∣∣∣∣∣∣∣∣∆c

( 1

a
n
2
(Lhf)(a, ·)− f(·)

) ∣∣∣∣∣∣∣∣∣∣∣∣
q,r

=

∣∣∣∣∣∣∣∣∣∣∣∣ 1

a
n
2
(Lh∆cf)(a, ·)−∆cf(·)

∣∣∣∣∣∣∣∣∣∣∣∣
q,r

≤
∣∣∣∣∣∣∣∣∣∣∣∣ ∫

Rn

|(T−ay∆cf)(·)− (∆cf)(·)| |h(y)| dy
∣∣∣∣∣∣∣∣∣∣∣∣

q,r

≤
∫
Rn

||| (T−ay∆cf)(·)− (∆cf)(·) |||q,r |h(y)| dy.

Again by the Minkowski inequality for integrals,∥∥∥∥∥
∣∣∣∣∣∣∣∣∣∣∣∣∆c

(
1

a
n
2
(Lhf)(a, ·)− f(·)

) ∣∣∣∣∣∣∣∣∣∣∣∣
q,r

∥∥∥∥∥
p

≤
∫
Rn

∥∥∥||| (T−ay∆cf)(·)− (∆cf)(·) |||q,r
∥∥∥
p
|h(y)| dy.

Note that since h ∈ L1(Rn) and
∥∥∥||| (∆cf)(·) |||q,r

∥∥∥
p
< ∞ , then

∥∥∥||| (T−ay∆cf)(·)− (∆cf)(·) |||q,r
∥∥∥
p
|h(y)|

≤ 2
∥∥∥||| (∆cf)(·) |||q,r

∥∥∥
p
|h(y)| ∈ L1(Rn).

Hence, ∥∥∥||| (T−ay∆cf)(·)− (∆cf)(·) |||q,r
∥∥∥
p
→ 0 as a → 0.

That is,

lim
a→0

∥∥∥∥∣∣∣∣∣∣∆c

(
1

a
n
2
(Lhf)(a, ·)− f(·)

) ∣∣∣∣∣∣
q,r

∥∥∥∥
p

= 0. (5.3)

Therefore, the proof comes from (5.2) and (5.3). 2

As a consequence of Lemma 3.7, we have the following result.

Corollary 5.2 If f1, f2 ∈ F r,q
p (Rn) and h1, h2 are admissible in L1(Rn) , then

∥(Lh1
f1)(a, ·)− (Lh2

f2)(a, ·)∥F r,q
p (Rn)

≤ a
n
2 ∥h1 − h2∥1∥f1∥F r,q

p (Rn) + a
n
2 ∥h2∥1∥f1 − f2∥F r,q

p (Rn).

A. Proof of Lemma 3.9

Proof From the reconstruction formula given in (2.5) for f ∈ Lp(Rn) ,
f(x) = I1(x) + I2(x) , where

I1(x) =
1

Ch

∫ 1

0

∫
Rn

(Lhf)(a, b)
1

a
n
2
h

(
x− b

a

)
db

da

an+1
,
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and

I2(x) =
1

Ch

∫ ∞

1

∫
Rn

(Lhf)(a, b)
1

a
n
2
h

(
x− b

a

)
db

da

an+1
,

1) We prove first that I1 ∈ F r,q
p (Rn) . If y = x−b

a , then I1 can be written as

I1(x) =
1

Ch

∫ 1

0

∫
Rn

(Lhf)(a, x− ay)h(y)dy
da

a
n
2 +1

.

Then for c ∈ Rn \ {0} ,

(∆cI1)(x) =
1

Ch

∫ 1

0

∫
Rn

(Lh∆cf)(a, x− ay)h(y)dy
da

a
n
2 +1

.

Hence, by the Minkowski inequality for integrals,

∣∣∣∣∣∣(∆cI1)(·)
∣∣∣∣∣∣

q,r
=

∣∣∣∣∣∣ 1

Ch

∫ 1

0

∫
Rn

(Lh∆cf)(a, · − ay)h(y)dy
da

a
n
2 +1

∣∣∣∣∣∣
q,r

≤ 1

Ch

∫ 1

0

∫
Rn

∣∣∣∣∣∣ (Lh∆cf)(a, · − ay)
∣∣∣∣∣∣

q,r
|h(y)| dy da

a
n
2 +1

. (A.1)

Again, by the Minkowski inequality for integrals,

∥∥∥∣∣∣∣∣∣ (∆cI1)(·)
∣∣∣∣∣∣

q,r

∥∥∥
p

≤
∥∥∥∥ 1

Ch

∫ 1

0

∫
Rn

∣∣∣∣∣∣ (Lh∆cf)(a, · − ay)
∣∣∣∣∣∣

q,r
|h(y)| dy da

a
n
2 +1

∥∥∥∥
p

≤ 1

Ch

∫ 1

0

∫
Rn

∥∥∥∣∣∣∣∣∣ (Lh∆cf)(a, ·)
∣∣∣∣∣∣

q,r

∥∥∥
p
|h(y)| dy da

a
n
2 +1

≤ 1

Ch

∫ 1

0

∫
Rn

Ka
n
2 +r |h(y)| dy da

a
n
2 +1

=
1

Ch
K∥h∥1

(∫ 1

0

ar−1 da

)
=

1

Ch
K∥h∥1

1

r
< ∞, (A.2)

where K is a positive constant. Thus, I1 ∈ F r,q
p (Rn) .

2) Next, we prove that I2 ∈ F r,q
p (Rn) .

Note that since (∆cI2)(x) = I2(x+ c)− I2(x) , then

(∆cI2)(x) =
1

Ch

∫ ∞

1

∫
Rn

(Lhf)(a, b)
(
∆ c

a
h
)(x− b

a

)
db

da

a
n
2 +n+1

=
1

Ch

∫ ∞

1

∫
Rn

(Lhf)(a, x− ay)
(
∆ c

a
h
)
(y) dy

da

a
n
2 +1

. (A.3)
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Hence, by the Minkowski inequality for integrals,

∣∣∣∣∣∣ (∆cI2)(·)
∣∣∣∣∣∣

q,r
=

(∫
Rn

|(∆cI2)(·)|q
dc

|c|rq+n

) 1
q

≤
(∫

Rn

(
1

Ch

∫ ∞

1

∫
Rn

|(Lhf)(a, · − ay)| |(∆ c
a
h)(y)| dy da

a
n
2 +1

)q
dc

|c|rq+n

) 1
q

≤ 1

Ch

∫ ∞

1

∫
Rn

(∫
Rn

|(Lhf)(a, · − ay)|q |(∆ c
a
h)(y)|q dc

|c|rq+n

) 1
q

dy
da

a
n
2 +1

=
1

Ch

∫ ∞

1

∫
Rn

|(Lhf)(a, · − ay)|
(∫

Rn

|(∆ c
a
h)(y)|q dc

|c|rq+n

) 1
q

dy
da

a
n
2 +1

. (A.4)

Let z = c
a , then∣∣∣∣∣∣ (∆cI2)(·)

∣∣∣∣∣∣
q,r

≤ 1

Ch

∫ ∞

1

∫
Rn

|(Lhf)(a, · − ay)|
(∫

Rn

|(∆zh)(y)|q
dz

|z|rq+n

) 1
q

dy
da

a
n
2 +1+r

=
1

Ch

∫ ∞

1

∫
Rn

|(Lhf)(a, · − ay)|
∣∣∣∣∣∣(∆zh)(y)

∣∣∣∣∣∣
q,r

dy
da

a
n
2 +1+r

. (A.5)

Now, from (2.4), from hypothesis and again by the Minkowski inequality for integrals,

∥∥∥∣∣∣∣∣∣ (∆cI2)(·)
∣∣∣∣∣∣

q,r

∥∥∥
p
=

(∫
Rn

∣∣∣∣∣∣ (∆cI2)(x)
∣∣∣∣∣∣p

q,r
dx

) 1
p

≤
(∫

Rn

∣∣∣∣ 1

Ch

∫ ∞

1

∫
Rn

|(Lhf)(a, x− ay)|
∣∣∣∣∣∣(∆zh)(y)

∣∣∣∣∣∣
q,r

dy
da

a
n
2 +1

∣∣∣∣p dx)
1
p

≤ 1

Ch

∫ ∞

1

∫
Rn

(∫
Rn

|(Lhf)(a, x− ay)|p
∣∣∣∣∣∣(∆zh)(y)

∣∣∣∣∣∣p
q,r

dx

) 1
p

dy
da

a
n
2 +1

=
1

Ch

∫ ∞

1

∫
Rn

(∫
Rn

|(Lhf)(a,w)|p dw
) 1

p ∣∣∣∣∣∣(∆zh)(y)
∣∣∣∣∣∣

q,r
dy

da

a
n
2 +1

. (A.6)

That is, ∥∥∥∣∣∣∣∣∣ (∆cI2)(·)
∣∣∣∣∣∣

q,r

∥∥∥
p
≤ 1

Ch

∫ ∞

1

∫
Rn

∥(Lhf)(a, ·)∥p
∣∣∣∣∣∣(∆zh)(y)

∣∣∣∣∣∣
q,r

dy
da

a
n
2 +1

≤ 1

Ch

(∫
Rn

∣∣∣∣∣∣(∆zh)(y)
∣∣∣∣∣∣

q,r
dy

)(∫ ∞

1

a
n
2 ∥h∥1∥f∥p

da

a
n
2 +1+r

)
=

1

Ch
∥h∥1∥f∥p

∥∥∥∣∣∣∣∣∣(∆zh)(·)
∣∣∣∣∣∣

q,r

∥∥∥
1

∫ ∞

1

da

a1+r
< ∞. (A.7)

This proves that I2 ∈ F r,q
p (Rn) .

Hence, from 1) and 2), f ∈ F r,q
p (Rn) .

2
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