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Abstract: The continuous wavelet transform in higher dimensions is used to prove the regularity of weak solutions
u € LP(R™) under Qu = f where f belongs to the Triebel-Lizorkin space F; ?(R™) where 1 < p,g < 00, 0 <7 <1,

and where @ = Z‘ sl<m c30” is a linear partial differential operator of order m > 0 with positive constant coefficients
ca.
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1. Introduction
According to [8], the continuous wavelet transform (CWT) for functions f in L*(R™) with respect to a function

h in L?(R") satisfying the admissibility condition
0<Chi= [ Ik
0

where h(z) = n(|z|), is given by

whan) = [ et = [ fw-gn ()

where  (J,h)(z) = g h(%), a > 0 is the dilation operator and  where

(Tyh)(z) = h(xz —b), x,b € R™ is the translation operator.

Moreover, the inversion (reconstruction) formula is given by

dbda
Ch/ /n th a, bTbJ h——— antl’ (1.1)

where the convergence is in the weak sense. It was proved in [4] that with appropriate assumptions on f € L?(R)

that (1.1) holds in the pointwise sense.
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On the other hand, when we extend the CWT for functions in LP(R™), where 1 < p < oo, different
types of convergence have been studied for the CWT in LP(R"™), see [1, 5-7, 10], and [11]. For example, in [6]
the dilation operator is defined so that it satisfies the L!-normalization and the convergence for the inversion
formula holds in the L sense, whereas the L?-normalization for the dilation operator is given in [2].

The regularity of functions has been studied through the characterization of these functions in different
spaces by means of the CWT. For instance, in [6], the CWT is used to determine if a function belongs to the
Besov spaces in one dimension.

In this paper, we follow the notations given in [1], [10], and [2] with
L?-normalization for the dilation operator to define the continuous wavelet transform for functions in LP(R™),
and we apply this transform to analyze the regularity of weak solutions u € L?(R™) under the equation Qu = f

where f belongs to the Triebel-Lizorkin space F;7q(R"), with 1 < p,g < o0 and 0 < r < 1, and where
Q= Z‘ Bl<m cp0® is a linear partial differential operator of order m with positive coefficients cg.

Next, we formalize these concepts for functions in LP(R™), 1 < p < co.

2. Preliminaries

The following definitions and results will be needed throughout the paper.

Definition 2.1 For h in L*(R")NL*(R"™), the dilation operator J, and the translation operator T, are defined

respectively as:
1) (Joh)(z) = a2 h(a~ '), where a >0 and z € R".

2) (Tyh)(x) = h(xz —b), where z,b € R™.

Definition 2.2 A function h in L*(R™) N L2(R™) is said to be admissible if

0<ChZ:/

(k) = / e~ 2mikT ] (0 o

2 1
[

E(k)] dk < oo, (2.1)

where

is the Fourier transform of h.

In what follows, C§°(R™) consists of those functions infinitely differentiable on R™ with compact support.

Lemma 2.3 Suppose that h € C§°(R™) and h # 0. If for any multiindex o € R™,

0<Caah I:/

~ 2
h(k)‘ k211" dk < oo,

then 0%h 1is admissible.

Proof The proof follows from Definition 2.2 and from the fact that 8/‘1\h(k:) = (2m’k)aﬁ(k). O
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Lemma 2.4 If g,h are admissible and g+ h # 0, then g+ h is admissible.
Proof The proof comes from the fact that for any 1 < p < co, we have |g + h|P < 2P(|g|? + |h|P). O

Given the admissibility condition, we extend the wavelet transform to LP(R™), where 1 < p < co.

Definition 2.5 Let f be in LP(R™) with 1 < p < co. Consider a >0 and b € R™. Let h be an admissible

function in L*(R™). The wavelet transform of f with respect to h is defined as

(Lnf)a,b) = | f@)Tdah(@)de = | fl@)—h (‘T — b) dz. (2.2)
R R

az a
Note that the wavelet transform can be written as
(Lnf)(a,b) = [(Jah)™ * f] (b), (2.3)

where % means convolution and ~A™ means h™(z) = h(—z).

Remark 2.6 According to (2.3), and since J,h € LY(R™) and f € LP(R™), it follows from Young’s Inequality
that (Joh)™~ * f € LP(R™) and ||(J.h)™ * fll, < a®||Juhl1||f|l,. That is,

I(Znf)(a ) p < a® Al £, (2.4)

In order to obtain a reconstruction formulae for the wavelet transform, we need the following result.

Lemma 2.7 Suppose h € LY(R") is admissible. If f € LP(R™) and g € LY(R"™) where 1 < p,q < oo with
1,01
5 + a = 1, th@n

fagite =g [ [ @ e s,

Rn
The integrals of the right hand side have to be taken in the sense of distributions.

Proof See [6]. O

Lemma 2.8 Consider f € LP(R™) with 1 < p < oo, and h € L*(R"™) admissible. Then

f(z) = (/}h/ooo/n(th)(a,b)algh (”” a_ b) db afil. (2.5)

The equality holds in the LP sense, and the integrals on the right-hand side have to be taken in the sense of
distributions.

Proof Sece [6]. O

So now, we proceed with the study of some differential aspects of the admisible functions, the wavelet
transform, and differential operators.
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Lemma 2.9 Let h be a differentiable function in an open set £ in R™. Then for b € R™, a > 0 and any
o r—>b 1 ., (x—b
7 ((252)) = Lo (720, o)

Proof The result comes from the chain rule. O

multiindex o in R™,

where =% € Q.

a

The subsequent result can be obtained by integration by parts. See also [3, Lemma 3.2].

Lemma 2.10 Let h be in C§°(R™) so that h is admissible, and let o be a multiindex in R™. Then for f and
0%f in LP(R™),1 < p < o0,

—1)lel
D )., 27

a|04‘

(Ln0* f)(a,b) =

Corollary 2.11 Suppose h € C§°(R™) is such that h and Qh are admissible, where Q) = Z ca0%, is a linear

|a]=m

operator with positive constant coefficients c,, of order m > 0. Then for f and Qf in LP(R™),1 <p < 0,

men@y = " wennn) (2.9

Proof It comes from Lemma 2.10. O

3. The continuous wavelet transform for functions in F}*(R")

In this section, we introduce the Triebel-Lizorkin spaces by the first differences [9], and we analyze the

boundedness for the continuous wavelet transform on these spaces.
Definition 3.1 Given f in LP(R™), with 1 < p < co define the first difference of f by the formula

(Acf)(@) = flz +c) = (=),

where x,c € R™.

Remark 3.2
(A )p =0 as c¢—0. (3.1)

Definition 3.3 For 1 <p,q <oo, c € R"\ {0} and 0 <r <1, the Triebel-Lizorkin space F;9(R™) is defined
as the space of all functions f € LP(R™) such that

H</Rn|(Acf)(.)|q|Ci1;n>; |

Remark 3.4 F'9(R") is a Banach space, where

< 00.

< 00.

</Rn|(Acf)(.)|qlclrj;l);

Il Epa @y = [1F1lp +

P
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Remark 3.5 For simplicity, from now on we set

1 AHO, = 1A Ol g

dec )
Yle|ratn

That is,

q de a
@Ol = ([ s (32)

(3.3)

Hence,

1l ey = 171 + |l AP O,

Definition 3.6 Consider r > 1 where r is not an integer. Then r can be written as r = [r] +t, where [r] is

the integral part of r and 0 <t < 1. Define the Triebel-Lizorkin space F;’Q(R”) as the space of all function
f € LP(R™) such that for any multiindex B € R™ with |B| < [r] we have 0P f € Ep4(R™).

Lemma 3.7 For a >0, 1 <p,gq<oo, 0<r <1, and h admissible in L'(R"),
Ln(a,-) : Fp9(R™) — FP9(R™)

is bounded. Moreover,
I(Znf)a M epa@ny < aZ Bl fllpa@n)-

Proof From (3.3),

I(Eah e rpsen = IEaf)@ Ol + Il Acaf)@ )], |

Firstly, note that by the Minkowski inequality for integrals,

laczap@ ll,, = NIl [ A+ atitiaylll,,
ga%/ 1] (Ach)ay + ) [[],., 1)l dy. (3-4)
That is,
laetun@ |, <o [ 1l @ea ], hwldy 3)

Again by the Minkowski inequality for integrals,

ot [ ety + )], bl dy

ot [ ii@nol,.],

_ a%HhHlH|||(Acf)(-)|||q,r

[l @cLunia) I, ||

p

IN

y)ldy

(3.6)
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That is,
[IlTaczafia

< a¥ A H||| AN,

g,

Thus, the proof comes from (2.4) and (3.7). O

Next result is used in the proof of the Theorem 4.1.

Corollary 3.8 Let a > 0, 1 < p,q < oo, 0 <r < 1. If f € FIR"), h is admissible in LY(R"™) and

[1@cnOlll,.| = o@), then

[l @czapy@ 1l |, = o). (33
Proof The proof comes from (3.7). O
Lemma 3.9 Suppose 1 < pgqg < oo, and 0 < r < 1. Suppose also that h is
admissible in L'(R"™)  such that h € F9(R™). If f € LP(R™)  and
Hm (LrAcf)(a H|qr =0(a2%") as a — 0, then f € F;9(R™).

P

Proof See appendix A. O

4. Main theorem

Now we are able to state the following result.

Theorem 4.1 Suppose 1 < p,g < oo, 0 <r <1, andlet Q = Z\ﬂ\<m 058[3 be a partial differential operator
of order m with positive coefficients cg. Let T = Z|5|<m cpd® and define Qp, := Z‘m:m Cgaﬁ, Suppose also

h is admissible in C§°(R™) so that Q*h € F"'(R"™), and f € LP(R™) with HH| (AH)() = 0O(a") as

ar|[

a—0. If ue W™P(R") is a weak solution of Qu = f and f € F}4(R™), then u € F**"9(R").

Proof
1) We prove first that u € Fz‘ﬂ‘“’q(R”) for each multiindex v € R™ with |y| < m.

since |[[|| (AN 0]l

= O(a"), then from (3.8),

Il aczif)a = O(a¥™7).

g,

On the other hand, since u is a weak solution of Qu = f, it follows that for T, J,h € C5°(R™), we have from
(2.8), that (Ly.f)(a,b) = S5 (Loru)(a,b). Hence, for |y| < [8] < m and for S := Y5, cs9°~7 we have
that for a — 0,

Hm (AcLsnd"u)(a = O(a2 BTy = 003 7).

.,
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Then by Lemma 3.9, we conclude that 97u € F*?(R"). This means that for each |y| < m, we have
ue FyIRY).

2) Now we prove that u € F,WM’Q (R™) for each multiindex v € R™ with |y|=m

For this purpose, we use induction over the number of terms in @Q,,. Suppose then that the cardinality
of Qp, is s.

i) Suppose first that Q. = c¢umo0,.,000"- Since Qu = Tu + Qnu, then
C(m,0,0,..,0007"u = f —Tu.

Since f €  FpI(R"), and since for [B] < m we have from part 1) that
o°f e F9(R™), then from (3.8),

Il acLaoraya ) ll,.,

< *Hm @aeLnf)a) I, |,

C(m,0,0,.

b Y oIl (AL
€(m,0,0,...,0) 1Bl<m

a7 p

1

€(m,0,0,...,0)

IN

O@@*™)+ > cs0(a®™")

|Bl<m

= O(a®*).

Then by Lemma 3.9,
o0"u € F9(R™). (4.1)

ii) Suppose now that Q. = c¢(m,0,0,...007" + C(m71,1,0,...,0)3{n_182- Then

C(m71,1,0,...,0)81n_132u =f- Z Cﬂaﬁ = C(m,0,0,...,0)01" U

[Bl<m

Since f € F»9(R"), from part 1) for [8] < m, o°f € F9(R™), and from (4.1), ¢(m0,0,...,0001"u €
F9(R™), then from (3.8),

11l (Lndgom)(a. )|

.

1
<o leempeo .|,
1
Yo 2 oIl |,
(m-1,1,0,...,) 18]<m 7l
1
o [l eLacnoo.. M,
:O(a%+r)'
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Then by Lemma 3.9,
A7 0yu € Fra(R™). (4.2)

Repeating this process s-times, we get that for any v € R" with |y| = m we have 07u € F*9(R").
Hence, from 1) and 2), u € F;**™(R"). This proves Theorem 4.1. O

5. Futher results
Lemma 5.1 Suppose f € Fg’q(R”) where 1 < p,q < oo and 0 < r < 1. Suppose also h is admissible in

LY(R™). If h(0) =1, then

Proof Note that from (3.3),

| @ - 56

Fp(Rr)

-[ s

A (5 Eania) - 10)

a2

q,T P

On the one hand, since ﬁ(()) =1, then

sy - 10 = | [

T
az

flay + b)h(y)dy] -0 [ Wy

n n

— [ Utay+5) ~ ORIy = [ (T )(0) = SO

Hence, by the Minkowski inequality for integrals,

|2z - 10

[ @ pC) = 5T dy

P ‘

[ @050 = 5 (o)l .

P

IN

That is,

Ha{é(th)(m ) =10

< [ IO = SOl (51)

Note that since h € L'(R™) and ||(T—qayf)(-) — f(*)|l, is bounded by 2|/f||, and from (3.1) tends to zero as

a — 0 for each y € R™, then by the dominated convergence theorem
i (T £)() — FO)llp = 0.

Hence,

lim
a—0

S (Luf)a, ) — £()

az
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On the other hand, by (5.1) and the Minkowski inequality for integrals,

|25 Enta - 10) (L)) = Af ()

q,r ‘

q,r
<||| [ 1w - @aenenma
n q)r
< /R [ (T—ayAcf)() = (Ach)C) M, [R(y)] dy.
Again by the Minkowski inequality for integrals,
1
|2 (@) -0)
a2 arll,
< [ il @ano - @no .| wwd.
Note that since h € L'(R") and H||| (Acf))l,r|| < oo, then
»lip
[Ty 2e$)O) = BDO | 100
<2[lHANO) lg,|| 1) € L* ™).
Hence,
|1 @ en)O) = @eDO N, | =0 as a=o.
That is,
ti 18 (G nnte) = 10) 1, | =
Therefore, the proof comes from (5.2) and (5.3).
As a consequence of Lemma 3.7, we have the following result.
Corollary 5.2 If fi, f2 € FY(R") and hy, hy are admissible in LY(R™), then
[(Ln, f1)(a; ) = (Lny f2) (@ )| mporen)
< a?|hy = hallill Al oy + a2 [hallillfi = fall o ey
A. Proof of Lemma 3.9
Proof From the reconstruction formula given in (2.5) for f

f(z) = Ii(x) 4+ I2(x), where

1 /! 1 z—b da
Il(ﬂf) = ?h/o /H(th)(avb)agh< a )dban+1’

LP(R™),
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and

1 [ 1 r—0b da
I = — h db——
2(7) Ch /1 /n( ( a ) antl’

1) We prove first that I; € F»9(R"). If y = mbe, then I; can be written as

da
I(z) Ch//nth (a,z — ay)h(y)dy—=— sy

Then for ¢ € R™ \ {0},

(Acy)( Ch_/ / (LrAcf)(a,x — ay)h(y)dy ii_H.

Hence, by the Minkowski inequality for integrals,

d
o, = mf//Lﬁf e,
! da
Again, by the Minkowski inequality for integrals,

[ieearorm N

d
< H //n\H (LuAof)(a —ay)mq,r|h(y)\dya?il

p
d
- // [ Eacn@ ], | 1) v
: //ICa§+T|h Ndy—=—= n+1
- K|h”1</ " 1d“>—’C||h|1<oo (A.2)
0

where K is a positive constant. Thus, I; € F*9(R").

2) Next, we prove that Iy € F*9(R").

Note that since (A.l2)(x) = I2(x + ¢) — I2(x), then

(Aclz)(z) = Cl,h/loo/”(th)(a,b) (Ach) <$;b> dba%iﬁﬂ
= da
= o [ s s w) @ 13
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Hence, by the Minkowski inequality for integrals,

o, = ([ 1emor)’
<(L (& [ [ -z dyd+)||d>

1

d 1 d
o[ [ (/ (L) —aywlmgh)(ynqwjﬂ) dy

L de v da
~o [ [ - ([ 1@l ) g

Let z =< | then

a

AL,

dz . da
— q
<o [T [ wne e[ @mwris) o
da

707/1 /Rn|(th)(a,-_ay)||||(Azh)(y)||’q’r dy -

Now, from (2.4), from hypothesis and again by the Minkowski inequality for integrals,
@O, |, = ([ ll@m@i,w)’
R’Vl
1 [ da |* v
<([l&] [ iwnae-aillanoll, a5 d
e N (I e
- | ([ @i el a2
Cn )y Jen Usn ’ z qr YW AT

d
<a | Liwneollenwll,, s
d
<o ([ amwll,a) ([ aznhnlnfnp@)
* da
1/1 W<OO

That is,

laoll,,],

= o1 [l A-m O,

This proves that I € Fj»9(R™).
Hence, from 1) and 2), f € F9(R").

(A.5)

(A.6)
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