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Abstract: An analytical solution to the incompressible Navier–Stokes momentum equations for a divergence-free flow
∇ · u⃗ (x⃗, t) = 0 with time-dependent dynamic viscosity µ (t) is presented. The demonstrated methodology holds for the
physically relevent three dimensions. The constructed flow velocities u⃗ (x⃗, t) are eigenvectors of the vector operator curl.

Moreover, vortex ω⃗ (x⃗, t) , helicity H (x⃗, t) , enstrophy E (t) and enstrophy evolution dE(t)
dt

are explicitly determined.
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1. Introduction
Flows are of major interest for scientific and engineering applications. Important exemplary utilizations include
blood flows, astrophysics, plasma magneto-hydrodynamics, pollution analyses, ocean currents, and weather
forecasting as well as automobiles, air conditioners, fans, water flows in pipes and power station designs
[2, 14, 21, 22, 26, 28]. Especially in the aerospace industry flows play an essential role since the behavior around
the wing is decisive for the flight attitude of aircraft. However, obtaining quantitative results is extremely
complex since the mathematical structure of the underlying equations is quite involved. As a consequence,
research on fluid mechanics is one of the main operation domains for high-performance computers [29, 35].

Flows of linear-viscous Newtonian fluids are characterized by the Navier–Stokes momentum equations
obtained from the conservation laws for energy, momentum and mass whereas the Euler equations are describing
inviscid flows [11, 12], which can equally be derived from self-gravitating dust matter hydrodynamic equations
if pressure is included [1]. Basically, the Navier–Stokes momentum equations declare Newton’s second law for
fluid motion in combination with the observation that the internal stress within a fluid correlates to pressure and
the diffusive viscous term. In addition, magnetohydrodynamics can be studied by Navier–Stokes momentum
equations if they are coupled with Maxwell’s equations. Note that turbulence theory is also an important area
of fluid mechanics studied by Navier–Stokes momentum equations [18].

The modern approach for studying Navier–Stokes momentum equations by numerical methods is the
adoption of advanced computational fluid dynamics, which would be unreasonably time-consuming in the
absence of scientific computing. Nonetheless, in some functional utilizations, despite this advanced numerical
ansatz obtaining results might get too complex such that investigations depend on statistical approaches for
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constructing solutions to the equations. Moreover, quantum computing and direct simulation Monte Carlo
approaches are of major relevance [10, 16]. A separate method is the analytical investigation of the associated
equations for deriving elementary characteristics such as the existence and smoothness of Navier–Stokes solutions
on R3 or R3/Z3 . Accordingly, constructing exact solutions is quite relevant and was studied for special cases
[15, 17, 20, 36, 37]. Furthermore, practical applications like designing an aircraft by analytical results is of great
relevance [30].

The purpose of this study is the investigation and construction of a novel exact solution class to the
incompressible Navier–Stokes momentum equations with time-dependent dynamic viscosity and divergence-free
flow u⃗ (x⃗, t) . In conjunction with the flow u⃗ (x⃗, t) , analytical results for the vortex ω⃗ (x⃗, t) , helicity H (x⃗, t) ,

enstrophy E (t) and enstrophy evolution dE(t)
dt were derived. The class of solutions is related to well-known

[4–6, 34] Beltrami vector fields. Correspondingly, various Beltrami vector fields are derived for the purpose of
constructing Navier–Stokes solutions.

Exact solutions are of particular interest since they can be used for stability analyses and control purposes
of numerical solutions while also revealing relationships between various physical parameters. A number of
exact solutions are well-known [31, 32], whereby typically three approaches (similarity solutions, consideration
of basically unidirectional flows or Beltrami flows) were used to derive these. Exact solutions based on Beltrami
flows were generally used in the literature for cases where (i) two of the three components of the vortex are equal
to zero corresponding to planar or axisymmetric two-dimensional flows and zero cross-flows [13], (ii) pseudo-plane
flows are considered and only the third component vanishes [24, 25], (iii) the third component of the vortex is
determined by the streamfunction while an addition of an auxiliary function is performed [33] and generalizations
are considered [3, 7], (iv) Beltrami-Trkal flows are of relevance [19, 27]. Typically, a constant dynamic viscosity is
considered in these cases. In contrast, this study thematises time-dependent dynamic viscosities in combination
with a gravitational potential. Moreover, the presented vortex has in general nonvanishing three components. In
particular, the solutions are generalizations of Trkalian fluid flows. Furthermore, to the best of our knowledge,
four of the five presented expressions for Beltrami vector fields are novel.

2. Construction of various Beltrami vector fields

A three-dimensional Beltrami vector field F⃗ (x⃗) , which is parallel to its own curl [8] and thus satisfies

∇× F⃗ (x⃗) = λF⃗ (x⃗) , (2.1)

where λ is a constant, can be expressed by

F⃗ (x⃗) = ∇× ψ⃗ (x⃗) +
1

λ
∇×∇× ψ⃗ (x⃗) , △ψ⃗ (x⃗) = −λ2ψ⃗ (x⃗) , (2.2)

while ψ⃗ (x⃗) satisfies the Helmholtz equation [5]. Solving this equation in spherical coordinates (r, θ, φ) is
well-known and yields

ψ⃗ (r, θ, φ) =

3∑
k=1

∞∑
l=0

l∑
m=−l

(aklmjl (λr) + bklmyl (λr))Y
m
l (θ, φ) e⃗k, (2.3)

where aklm as well as bklm are arbitrary constants, jl (x) as well as yl (x) are spherical Bessel functions,
Y m
l (θ, φ) are spherical harmonics and the set of vectors {⃗e1, e⃗2, e⃗3} is the standard basis of the three-dimensional
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space R3 .
Reinserting this expression in Eq. (2.2) while assuming spherical symmetry, i.e. independence from

azimuthal angle θ as well as polar angle φ , and setting ak00

2
√
πλ

= c1ak , bk00

2
√
πλ

= c2ak as well as ψ (r) =

c1
sin(λr)

r + c2
cos(λr)

r results in

F⃗ (r, θ, φ) = ψ′ (r) e⃗r × a⃗+

(
λψ (r) +

ψ′ (r)

λr

)
a⃗+

1

λ

(
ψ′′ (r)− ψ′ (r)

r

)
(⃗er · a⃗) e⃗r, (2.4)

where the set of vectors {⃗er, e⃗θ, e⃗φ} is the basis given by spherical unit vectors. Note that F⃗ (r, θ, φ) is

rotationally invariant. Moreover, it is linear with regard to a⃗ =
∑3

k=1 ak e⃗k , i.e. a linear combination of
these Beltrami vector fields with varying vectors a⃗j leads again to a Beltrami vector field containing the same

symmetry. Due to the relevance of a⃗ these class of Beltrami vector fields are denoted as F⃗1 (x⃗, a⃗) . These vector
fields are well-known for the case c2 = 0 and are applied in plasma physics for studying optimal force-free
spherical plasma configurations [23].

In addition, F⃗2 (x⃗, a⃗) = ∇a⃗F⃗1 (x⃗, a⃗) is also a Beltrami vector field with rotational symmetry around the
axis a⃗ . It simplifies to

F⃗2 (x⃗, a⃗) =

(
ψ′′ (r)− ψ′ (r)

r

)
(⃗er · a⃗) e⃗r × a⃗+

(
λψ′ (r) +

2

λr

(
ψ′′ (r)− ψ′ (r)

r

))
(⃗er · a⃗) a⃗

+
1

λ

((
3

r2
ψ′ (r)− 3

r
ψ′′ (r) + ψ′′′ (r)

)
(⃗er · a⃗)2 +

(
ψ′′ (r)− ψ′ (r)

r

)
a⃗2

r

)
e⃗r (2.5)

while

e⃗r · F⃗2 (x⃗, a⃗)
∣∣∣
λ=1

=
1

r3

(
3− r2

r
sin r − 3 cos r

)(
a⃗2 − 3 (⃗er · a⃗)2

)
(2.6)

holds for λ = 1 . Thus, all spheres with radii rj satisfying 3−r2j
rj

sin rj − 3 cos rj = 0 are invariant submanifolds

for any Beltrami vector field F⃗2 (x⃗, a⃗)
∣∣∣
λ=1

. Note that a linear combination of F⃗1 (x⃗, a⃗) with arbitrary vectors

a⃗1 , a⃗2 and a⃗3 results in an axisymmetric Beltrami vector field while this property does not hold for F⃗2 (x⃗, a⃗) .
Furthermore, a third class of Beltrami vector fields is given by

F⃗3

(
x⃗, a⃗, b⃗

)
= F⃗2

(
x⃗, a⃗+ b⃗

)∣∣∣
λ=1

− F⃗2 (x⃗, a⃗)
∣∣∣
λ=1

− F⃗2

(
x⃗, b⃗

)∣∣∣
λ=1

(2.7)

and simplifies to

F⃗3

(
x⃗, a⃗, b⃗

)
=

1

r2

(
3− r2

r
sin r − 3 cos r

)(
(⃗er · a⃗) e⃗r × b⃗+

(⃗
er · b⃗

)
e⃗r × a⃗

)
+

2

r3

((
6r2 − 15

r
sin r −

(
r2 − 15

)
cos r

)
(⃗er · a⃗)

(⃗
er · b⃗

)
+

(
3− r2

r
sin r − 3 cos r

)(
a⃗ · b⃗

))
e⃗r

+
1

r3

(
6− 3r2

r
sin r +

(
r2 − 6

)
cos r

)(
(⃗er · a⃗) b⃗+

(⃗
er · b⃗

)
a⃗
)
, (2.8)
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where similar to F⃗2 (x⃗, a⃗)

e⃗r · F⃗3

(
x⃗, a⃗, b⃗

)
=

2

r3

(
3− r2

r
sin r − 3 cos r

)(
a⃗ · b⃗− 3 (⃗er · a⃗)

(⃗
er · b⃗

))
(2.9)

holds. Hence, all spheres with radii rj satisfying 3−r2j
rj

sin rj − 3 cos rj = 0 are also invariant submanifolds for

any Beltrami vector field F⃗3

(
x⃗, a⃗, b⃗

)
.

Moreover, another Beltrami vector field is given by

F⃗4 (x⃗, ξ, ζ) = F⃗2 (x⃗, e⃗3)
∣∣∣
λ=1

+ ξ F⃗2 (x⃗, e⃗1)
∣∣∣
λ=1

+ ζF⃗3 (x⃗, e⃗2, e⃗3) (2.10)

and simplifies to

F⃗4 (x⃗, ξ, ζ) =
1

r4

((
3− r2

r
sin r − 3 cos r

)(
(1− 2ξ)x+ yz + ζ

(
y2 − z2

))
+
x

r2

(
6r2 − 15

r
sin r −

(
r2 − 15

)
cos r

)

·
(
z2 − ξ

(
y2 + z2

)
+ 2ζyz

))
e⃗1

+
1

r4

((
3− r2

r
sin r − 3 cos r

)
((1 + ξ) y − (1− ξ)xz − ζ (3z + xy))

+
1

r2

(
6r2 − 15

r
sin r −

(
r2 − 15

)
cos r

)

·
((
ξx2 + z2

)
y + ζz

(
y2 − x2 − z2

)))
e⃗2

+
1

r4

((
3− r2

r
sin r − 3 cos r

)
((ξ − 2) z − ξxy − ζ (3y − xz))

+
1

r2

(
6r2 − 15

r
sin r −

(
r2 − 15

)
cos r

)

·
((
(ξ − 1)x2 − y2

)
z + ζy

(
z2 − x2 − y2

)))
e⃗3, (2.11)

where ξ as well as ζ are arbitrary constants and r =
√
x2 + y2 + z2 . Note that expression (2.11) is written

down in Cartesian coordinates in contrast to Eqs. (2.5) and (2.8) formulated in spherical coordinates because
the formulation in (2.11) becomes even more bulky otherwise. Moreover, the expression exhibits no symmetry.

Furthermore, in analogy to the previous vector fields all spheres with radii rj satisfying 3−r2j
rj

sin rj−3 cos rj = 0

are invariant submanifolds for any Beltrami vector field F⃗4 (x⃗, ξ, ζ) since

e⃗r · F⃗4 (x⃗, ξ, ζ) =
1

r3

(
3− r2

r
sin r − 3 cos r

)
·
(
(ξ − 2) cos2 θ − ξ − 2 + 3ξ cos (2φ)

2
sin2 θ − 3ζ sin (2θ) sinφ

)
(2.12)
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holds. Therefore, spheres with radii 0 ≤ r ≤ rj and spherical shells characterized by rj ≤ r ≤ r1+j are compact
invariant regions if rj are sorted in an increasing manner for increasing j .

Note that any kind of Beltrami vector field can be expressed by

F⃗5 (x⃗) =

∫
S2

d2k
(
cos

(
λk⃗ · x⃗

)
k⃗ × T⃗

(
k⃗
)
+ sin

(
λk⃗ · x⃗

)
T⃗
(
k⃗
))

, (2.13)

where the integral is taken over the unit sphere S2 and k⃗2 = 1 . Moreover, T⃗
(
k⃗
)

is a smooth arbitrarily chosen

vector field tangent, i.e. k⃗ · T⃗
(
k⃗
)

= 0 . Remarkably, this vector field does not possess any symmetries. In

addition, its norm has an upper boundary given by∣∣∣F⃗5 (x⃗)
∣∣∣ ≤ ∫

S2

d2k
∣∣∣T⃗ (

k⃗
)∣∣∣ (2.14)

due to the norm k⃗2 = 1 and orthogonality k⃗ · T⃗
(
k⃗
)
= 0 .

The presented vector fields F⃗1 (x⃗, a⃗) , F⃗2 (x⃗, a⃗) , F⃗3

(
x⃗, a⃗, b⃗

)
, F⃗4 (x⃗, ξ, ζ) and F⃗5 (x⃗) satisfy

∇×∇× F⃗ (x) = λ2F⃗ (x) (2.15)

and are therefore indeed Beltrami vector fields. Moreover, Eq. (2.13) can be derived by use of the Fourier
method. In addition, all presented Beltrami vector fields satisfy (2.1).

3. Constructing solutions to the incompressible Navier–Stokes momentum equations for divergence-
free flows

The incompressible Navier–Stokes momentum equation for divergence-free flows ∇ · u⃗ (x⃗, t) = 0 , where x⃗ is the
position vector and t the time, is given by

∂tu⃗ (x⃗, t) + (u⃗ (x⃗, t) ·∇) u⃗ (x⃗, t) = −1

ρ
∇p (x⃗, t) +

µ (t)

ρ
△u⃗ (x⃗, t) +∇φ (x⃗) (3.1)

with constant density ρ , pressure p (x⃗, t) , time-dependent dynamic viscosity µ (t) and gravitational potential
φ (x⃗) .

Assuming separation of variables for the flow velocity u⃗ (x⃗, t) , i.e.

u⃗ (x⃗, t) = f (t) U⃗ (x⃗) (3.2)

with U⃗ (x⃗) being a Beltrami vector field, and

p (x⃗, t) = c3 + ρφ (x⃗)− ρ

2
u⃗2 (x⃗, t) (3.3)

as pressure simplifies the Navier–Stokes momentum equation (3.1) to

△u⃗ (x⃗, t) = −λ2f (t) U⃗ (x⃗) , f ′ (t) = −λ
2

ρ
µ (t) f (t) . (3.4)
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Thus, f (t) is given by

f (t) = c4 e−
λ2

ρ

∫ t
0
dτ µ(τ), (3.5)

where c3 and c4 are arbitrary constants. Hence, the flow velocity (3.2) in combination with Eq. (3.5) and the
pressure (3.3) represent a novel class of solutions to the incompressible Navier–Stokes momentum equation for
divergence-free flows u⃗ (x⃗, t) . Note that any kind of Beltrami vector field can be chosen in this class of solutions
while the exponential part in Eq. (3.5) leads to damping depending on λ , density ρ and dynamic viscosity
µ (t) .

For our further purposes we consider the Beltrami vector fields F⃗4 (x⃗, ξ, ζ) and F⃗5 (x⃗) , i.e. U⃗ (x⃗) is
replaced by F⃗4 (x⃗, ξ, ζ) and F⃗5 (x⃗) . On one hand, in the case of the Beltrami vector field F⃗5 (x⃗) the solution
of the incompressible Navier-Stokes momentum equation involves two arbitrary piecewise continuous functions
expressed in Eq. (2.13) and does not have geometric symmetries, which is unusual in comparison with previously
known exact solutions [15, 17, 20, 31, 36, 37]. Furthermore, if µ (t) ≥ µ̃ > 0 holds, exact solutions (3.2) involve

the constants µ̃ , λ and
∫
S2 d

2k
∣∣∣T⃗ (

k⃗
)∣∣∣ which define the Reynolds number

Re =
1

µ̃ |λ|

∫
S2

d2k
∣∣∣T⃗ (

k⃗
)∣∣∣ . (3.6)

Furthermore, considering the norm of the velocity u⃗ (x⃗, t) leads to

|u⃗ (x⃗, t)| ≤ µ̃ |λ| Re e−
λ2µ̃t

ρ (3.7)
∞∫
0

dt |u⃗ (x⃗ (t) , t)| ≤ ρ

|λ|
Re (3.8)

with u⃗ (x⃗, t) = ˙⃗x (t) due to Eqs. (2.14), (3.2), (3.5) and (3.6). Thus, both expressions in Eqs. (3.7) and (3.8)
have a finite upper bound.

On the other hand, choosing F⃗4 (x⃗, ξ, ζ) as Beltrami vector field in Eq. (3.2) in combination with
r (t) = |x⃗ (t)| leads to

ṙ (t) =
c4

r4 (t)
e−

λ2

ρ

∫ t
0
dτ µ(τ)

(
3− r2 (t)

r (t)
sin r (t)− 3 cos r (t)

)
·
(
(ξ − 2) cos2 θ (t)− ξ − 2 + 3ξ cos (2φ (t))

2
sin2 θ (t)− 3ζ sin (2θ (t)) sinφ (t)

)
, (3.9)

which describes the dynamical system with regard to the radius r (t) and depends on the arbitrary parameters
c4 , ξ and ζ . However, for φ (t) = 0 the dependence on ζ vanishes. Obviously, the system has in general no

symmetries or conserved quantities. Moreover, all spheres with radii rj satisfying 3−r2j
rj

sin rj − 3 cos rj = 0 are

invariant submanifolds of this system. Thus, the radii of these spheres satisfy tan rj =
3rj
3−r2j

which has infinitely

many roots. Any sphere with 0 ≤ r ≤ rj and any spherical shell with rj ≤ r ≤ r1+j are invariant compact

regions to the obtained dynamical system. Note that tan rj =
3rj
3−r2j

simplifies to 0 = − 3
πj +O

(
j−3

)
for rj = πj

which shows that the radii are asymptotically (j → ∞) given by rj = πj .
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In addition to the flow u⃗ (x⃗, t) the vortex ω⃗ (x⃗, t) and the helicity H (x⃗, t) are explicitly determined as

ω⃗ (x⃗, t) = ∇× u⃗ (x⃗, t) = λf (t) U⃗ (x⃗) , H (x⃗, t) = u⃗ (x⃗, t) · ω⃗ (x⃗, t) = λf2 (t) U⃗2 (x⃗) (3.10)

while the enstrophy E (t) and its evolution dE(t)
dt simplify to

E (t) =

∫
R3

d3x ω⃗2 (x⃗, t) = λ2f2 (t)

∫
R3

d3x U⃗2 (x⃗) , (3.11)

dE (t)

dt
= −2λ4

ρ
µ (t) f2 (t)

∫
R3

d3x U⃗2 (x⃗) . (3.12)

Remarkably, solutions for enstrophy are generally constructed by studying a closure problem derived by use of
the nonlinearity. Nonetheless, the analytical expression (3.2) grants permission to a direct analysis, leading to
the expressions for the enstrophy (3.11) and the enstrophy evolution (3.12). Note that due to the construction,
the strong Beltrami property, i.e. ω⃗ (x⃗, t) × u⃗ (x⃗, t) = 0 , holds. Furthermore, the sign of the helicity H (x⃗, t)

obviously depends just on the sign of λ . Thus, the chirality of the flow is completely determined by λ which
is a constant embedded in the framework of Beltrami vector fields as denoted in Eq. (2.1).

Note that in agreement with the literature [9, 37] all presented solutions for the flow velocity u⃗ (x⃗, t) ,

vortex ω⃗ (x⃗, t) , helicity H (x⃗, t) , enstrophy E (t) and enstrophy evolution dE(t)
dt show no singularity or blow-up

with regard to the time t (if the dynamic viscosity µ (t) is integrable) and are smooth since the flow velocity
is divergence-free, i.e. ∇ · u⃗ (x⃗, t) = 0 . Moreover, solution (3.2) is a generalization of well-known [27] Trkalian
fluid flows characterized by a constant dynamic viscosity µ .

4. Conclusions
A three-dimensional exact solution to the incompressible Navier–Stokes momentum equations for divergence-
free fluids with time-dependent dynamic viscosity µ (t) was derived. Analytic results for flows u⃗ (x⃗, t) that

generalize Trkalian fluid flows, i.e. flows with f (t) = c4 e−
λ2µt

ρ , in combination with expressions for the vortex

ω⃗ (x⃗, t) , helicity H (x⃗, t) , enstrophy E (t) and enstrophy evolution dE(t)
dt were obtained. All results are smooth

with regard to the time t as expected due to the flow u⃗ (x⃗, t) being divergence-free.
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