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Abstract: In this paper, we establish infinitely many positive solutions for the iterative system of conformable fractional
order dynamic equations on time scales

T ∆
α

[
T ∆
β

(
ϑn(t)

)]
= φ(t)fn (ϑn+1(t)) , t ∈ (0, 1)T, 1 < α,β ≤ 2,

ϑ1(t) = ϑℓ+1(t), t ∈ (0, 1)T, n = 1, 2, · · · , ℓ,

satisfying two-point Riemann–Stieltjes integral boundary conditions

ϑn(0) = 0, ϑn(1) =

∫ 1

0

ϑn(τ)2g(τ), n = 1, 2, · · · , ℓ,

(T ∆
β ϑn)(0) = 0, (T ∆

β ϑn)(1) =

∫ 1

0

(T ∆
β ϑn)(τ)2g(τ), n = 1, 2, · · · , ℓ,

where T ∆
⋆ denotes the conformable fractional derivative of order ⋆ ∈ {α,β} on time scale T, by an application of

Krasnoselskii’s fixed point theorem on a Banach space.

Key words: Conformable fractional derivative, time scale, positive solution, fixed point theorem, cone

1. Introduction
Fractional calculus is a generalization of classical integer order calculus and has gained momentum recently.
Unlike integer order derivatives, the fractional derivative is a nonlocal operator, which gives the future states
depend on the current state as well as the history of all previous states. From this point of view, fractional
differential equations provide a powerful tool for mathematical modeling of complex phenomena in science and
engineering practices, see [5, 6, 8, 17, 18, 23, 29, 30, 32, 37] and references therein. In the theory of classical
and fractional order differential equations, various theorems have been extensively deployed by researchers in
establishing the existence, uniqueness and multiple solutions of boundary value problems, see [26–28, 38] and
the references therein.

The differential equations, difference equations and dynamic equations on time scales are three theories
which play important role for modeling in the environment. Among them, the theory of dynamic equations
∗Correspondence: khuddush89@gmail.com
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on time scales is recent and was introduced by Hilger [22] in his PhD thesis in 1988 with three main features:
unification, extension and discretization. Time scale is any closed and nonempty subset of the real numbers,
so we can extend known results from continuous and discrete analysis to a more general settings. As a matter
of fact, this theory allows us to consider time scales which possess hybrid behaviours both continuous and
discrete. These types of time scales play an important role for applications, since most of the phenomena in the
environment are neither only discrete nor only continuous, but they possess both behaviors [7, 9, 35]. Moreover,
basic results on this issue have been well documented in the articles [2, 3] and monographs of Bohner and
Peterson[15, 16].

Many researchers have started to deal with discrete versions of fractional calculus using the theory of
time scales, see [1, 34, 36] and references therein. Recently, Benkhettou et al. [11] introduced a conformable
fractional(CF) calculus on an arbitrary time scale, which provides a natural extension of the conformable
fractional calculus. For more results in this line, see [19, 25, 33]. In [31], Sheng et al. studied existence and
multiplicity of positive solutions to the CF dynamic boundary value problem,

T ∆
α

[
φp

(
T ∆
α

(
ϑ(t)

))]
= f (t, ϑ(t)) , t ∈ [0, 1]T, 1 < α ≤ 2,

ϑ(0) = ϑ(σ(1)) = T ∆
α ϑ(0) = T ∆

α ϑ(σ(1)) = 0

by an application of fixed point theorems on cone. In [20], Gulsen et al. derived sufficient conditions for the
existence of a solution to the CF Sturm–Liouville boundary value problem

T ∆
α

[
T ∆
α

(
ϑ(t)

)]
+ λφ(t)f (t, ϑ(t)) = 0, t ∈ [ρ(a), b]T, 0 < α ≤ 1,

T ∆
α (ρ(ϑ(a))) = δϑ(b) + βT ∆

α ϑ(b) = 0,

by an application of Schauder’s fixed point theorem. In [10], Bendouma and Hammoudi established the existence
of solutions for the CF dynamic boundary value problem

T ∆
α ϑ(t) = f(t,σ(ϑ(t))), t ∈ [a, b]T, 0 < α ≤ 1,

B(ϑ(a), ϑ) = 0 or H(ϑ, ϑ(σ(b))) = 0,

by means of the upper and lower solutions method together with Schauder’s fixed point theorem. In [13],
Bohner and Hatipoglu established the general solutions and stability criteria for the following CF dynamic
cobweb model on time scales,

D(σ(t)) = a(t) + b(t)[p(t) + T ∆
α p(t)], t ∈ Tk, 0 < α ≤ 1,

S(σ(t)) = a1(t) + b1(t)p(t),

D(t) = S(t),

with initial condition p(t0) = p0. Motivated by aforementioned studies, in this paper we consider the CF
dynamic boundary value problem on time scales,

T ∆
α

[
T ∆
β

(
ϑn(t)

)]
= φ(t)fn (ϑn+1(t)) , t ∈ (0, 1)T, 1 < α,β ≤ 2,

ϑ1(t) = ϑℓ+1(t), t ∈ (0, 1)T, n = 1, 2, · · · , ℓ,

}
(1.1)
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satisfying two-point Riemann–Stieltjes integral boundary conditions

ϑn(0) = 0, ϑn(1) =

∫ 1

0

ϑn(τ)2g(τ), n = 1, 2, · · · , ℓ,

(T ∆
β ϑn)(0) = 0, (T ∆

β ϑn)(1) =

∫ 1

0

(T ∆
β ϑn)(τ)2g(τ), n = 1, 2, · · · , ℓ,

 (1.2)

where T ∆
⋆ denotes the conformable fractional derivative of order ⋆ ∈ {α,β} on time scale T, φ(t) =

∏m
j=1 φj(t)

and φj(t) ∈ L
pj
∆ [0, 1]T(pj ≥ 1) has a singularity in (0, 1/2)T,

∫ 1

0
ϑn(τ)2g(τ) denotes Riemann–Stieltjes integral

of ϑn(τ) with respect to g, g : [0, 1]T → R is a function of bounded variation and 2g is a signed measure
and established infinitely many positive solutions by an application of Krasnoselskii’s fixed point theorem on a
Banach space. We assume the following conditions hold throughout the paper:

(H1) fn : [0,+∞) → [0,+∞) is continuous for n = 1, 2, · · · , ℓ,

(H2) there exists a sequence {tk}∞k=1 such that 0 < tk+1 < tk < 1
2 ,

lim
k→∞

tk = t∗ <
1

2
, lim
t→tk

φj(t) = +∞, k ∈ N, j = 1, 2, 3, · · · ,m

and each φj(t) does not vanish identically on any subinterval of [0, 1]T. Moreover, there exists φ∗
j > 0

such that
φ∗
j < φj(t) < ∞ a.e. on [0, 1]T.

(H3) g be nondecreasing and of bounded variation function such that 0 < g∗ < 1, where

g∗ =

∫ 1

0

τ2g(τ).

2. Preliminaries and Green’s function
A time scale T is a nonempty closed subset of the real numbers R. T has the topology that it inherits from the
real numbers with the standard topology. It follows that the jump operators σ, ρ : T → T, and the graininess
µ : T → [0,+∞) are defined by σ(t) = inf{τ ∈ T : τ > t}, ρ(t) = sup{τ ∈ T : τ < t}, and µ(t) = ρ(t) − t,

respectively.

• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) = t,

σ(t) > t, respectively.

• If T has a right-scattered minimum m , then Tk = T\{m} ; otherwise Tk = T.

• If T has a left-scattered maximum m , then Tk = T\{m} ; otherwise Tk = T.

• A function f : T → R is called rd-continuous provided it is continuous at right-dense points in T and its
left-sided limits exist (finite) at left-dense points in T. The set of all rd-continuous functions f : T → R
is denoted by Crd = Crd(T) = Crd(T,R).
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• A function f : T → R is called ld-continuous provided it is continuous at left-dense points in T and its
right-sided limits exist (finite) at right-dense points in T. The set of all ld-continuous functions f : T → R
is denoted by Cld = Cld(T) = Cld(T,R).

• By an interval time scale, we mean the intersection of a real interval with a given time scale. i.e.
[a, b]T = [a, b] ∩ T other intervals can be defined similarly. Moreover, if I = [a, b]T then we define
I∆ = [a, ρ(b)]T and I∇ = [σ(a), b]T. By I2 we denote one of them, where 2 means either ∆ or ∇.

Similarly, we use 2 as a common notation for the two kinds of derivatives on time scales: one can read
f2 either as f∆ or as f∇.

Let f be a real valued and bounded function on the interval I. Let us take a partition P = {t0, t1, · · · , tn}
of I. Denote I2j = [tj−1, tj ]2, j = 1, 2, · · · , n, and

m2j = inf
t∈I2j

f(t), M2j = sup
t∈I2j

f(t).

The upper Darboux–Stieltjes 2 -sum of f with respect to the partition P, denoted by U2(P, f, g), is defined by

U2(P, f, g) =

n∑
j=1

M2j∆gj ,

and the lower Darboux–Stieltjes 2 -sum of f with respect to the partition P, denoted by L2(P, f, g), is defined
by

L2(P, f, g) =

n∑
j=1

m2j∆gj ,

where g is a continuous function on I and ∆gj = g(tj)− g(tj−1). For more details, see [24].

Definition 2.1 [24] Let I = [a, b]T, where a, b ∈ T and P(I) the set of all partitions of I. The upper Darboux–
Stieltjes 2-integral from a to b with respect to function g is defined by

∫ b

a

f2g = inf
P∈P(I)

U2(P, f, g).

Similarly we can define the upper Darboux–Stieltjes 2-integral. If
∫ b

a
f(t)2g(t) =

∫ b

a
f(t)2g(t) then we say that f

is 2-integrable with respect to g on I, and the common value of the integrals, denoted by
∫ b

a
f(t)2g(t) =

∫ b

a
f2g

is called the Riemann–Stieltjes (or simply Stieltjes) 2-integral of f with respect to g on I.

Definition 2.2 [14] Let µ∆ and µ∇ be the Lebesgue ∆− measure and the Lebesgue ∇− measure on T,
respectively. If A ⊂ T satisfies µ∆(A) = µ∇(A), then we call A is measurable on T, denoted µ(A) and this
value is called the Lebesgue measure of A. Let P denote a proposition with respect to t ∈ T.

(i) If there exists E1 ⊂ A with µ∆(E1) = 0 such that P holds on A\E1, then P is said to hold ∆–a.e. on
A.
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(ii) If there exists E2 ⊂ A with µ∇(E2) = 0 such that P holds on A\E2, then P is said to hold ∇–a.e. on
A.

Definition 2.3 [4] Let E ⊂ T be a ∆–measurable set and p ∈ R̄ ≡ R∪ {−∞,+∞} be such that p ≥ 1 and let
f : E → R̄ be ∆-measurable function. We say that f belongs to Lp

∇(E) provided that either

∫
E

|f|p(τ)∆τ < ∞ if p ∈ R,

or there exists a constant M ∈ R such that

|f| ≤ M, ∆− a.e. on E if p = +∞.

Lemma 2.4 [12] Let (X,M,µ∆) and (Y, L, ν∆) be two finite-dimensional time scales measure spaces. If
f : X × Y → R is a ∆-integrable function and if we define the functions

φ(y) =

∫
X

f(x, y)dµ∆(x) for y ∈ Y,

and

Q(x) =

∫
Y

f(x, y)dν∆(y) for x ∈ X,

then φ is ∆-integrable on Y and is ∆-integrable on X and∫
X

dµ∆(x)

∫
Y

f(x, y)dν∆(y) =

∫
Y

dν∆(y)

∫
X

f(x, y)dµ∆(x).

Definition 2.5 [11] Let α ∈ (1, 2] and f : T → R, t ∈ Tk. For t > 0, we define T ∆
α f(t) to be the number

(provided it exists) with the property that, given any ε > 0, there is a δ-neighborhood Vt ⊂ T of t, δ > 0, such
that ∣∣[f(σ(t))− f(τ)]t2−α − T ∆

α f(t)[σ(t)− τ]
∣∣ ≤ ε|σ(t)− τ|.

We call T ∆
α f(t) the conformable fractional derivative of f of order α at t, and we define the conformable

fractional derivative at 0 as
T ∆
α f(0) = lim

t→0+
T ∆
α f(t).

Definition 2.6 [11] Let α ∈ (1, 2] and f be two times delta differentiable at t ∈ Tk. Then

T ∆
α f(t) = t2−αf(t).

Definition 2.7 [31] Let f : T → R be a regulated function and α ∈ (1, 2]. Then the α-fractional integral of f

is defined by

Iαf(t) = I2
(
tα−2f(t)

)
=

∫ 1

0

(t− τ)τα−2f(τ)∆τ.
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Lemma 2.8 [31] Let t > 0,α ∈ (1, 2] and the function f : [0,∞)T → R be rd-continuous, then

T ∆
α Iαf(t) = f(t).

Lemma 2.9 [31] Let α ∈ (1, 2], f be a α-differentiable function at t > 0, then T ∆
α f(t) = 0 for t ∈ [0, 1]T if

and only if f(t) = a0 + a1t, where a0 and a1 are real constants.

Lemma 2.10 [31] Assume that ϑ ∈ C(0,+∞)T with a fractional derivative of order α ∈ (1, 2]. Then

IαT ∆
α ϑ(t) = ϑ(t) + c0 + c1t,

where c0, c1 are real constants.

Lemma 2.11 Let y ∈ C((0, 1)T). Then the boundary value problem

T ∆
β ϑ1(t) + y(t) = 0, t ∈ (0, 1)T, (2.1)

ϑ1(0) = 0, ϑ1(1) =

∫ 1

0

ϑ1(τ)2g(τ), (2.2)

has a unique solution

ϑ1(t) =

∫ 1

0

ℵβ(t, τ)y(τ)dτ, (2.3)

where ℵβ(t, τ) is the Green’s function and is given by

ℵβ(t, τ) = Kβ(t, τ) +
t

1− g∗
Gβ(τ),

Kβ(t, τ) =

{
τβ−1(1− t), τ ≤ t,

t(1− τ)τβ−2, t ≤ τ,

and

Gβ(τ) =

∫ 1

0

Kβ(τ1, τ)2g(τ1).

Proof From Lemma 2.10, the equivalent integral equation to (2.1) is given by

ϑ1(t) = −Iβy(t) +A+Bt

= −
∫ t

0

(t− τ)τβ−2y(τ)∆τ+A+Bt,

for some A,B ∈ R. Using boundary conditions (2.2), we obtain A = 0 and

B =

∫ 1

0

ϑ1(τ)2g(τ) +

∫ 1

0

(1− τ)τβ−2y(τ)∆τ.
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So,

ϑ1(t) = −
∫ t

0

(t− τ)τβ−2y(τ)∆τ+ t

∫ 1

0

(1− τ)τβ−2y(τ)∆τ+ t

∫ 1

0

ϑ1(τ)2g(τ)

=

∫ 1

0

Kβ(t, τ)y(τ)∆τ+ t

∫ 1

0

ϑ1(τ)2g(τ). (2.4)

By simple algebraic calculations, we get

∫ 1

0

ϑ1(τ)2g(τ) =
1

1− g∗

∫ 1

0

∫ 1

0

Kβ(τ1, τ)2g(τ1)∆τ. (2.5)

Substituing (2.5) into (2.4), we finally have (2.3). 2

Lemma 2.12 The function Kβ(t, τ) has the following properties:

(i) Kβ(t, τ) is nonnegative and continuous on [0, 1]T × [0, 1]T,

(ii) Kβ(t, τ) ≤ Kβ(τ, τ) for t, τ ∈ [0, 1]T,

(iii) there exists λ ∈ (0, 1/2)T such that λKβ(τ, τ) ≤ Kβ(t, τ) for t ∈ [λ, 1− λ]T, τ ∈ [0, 1]T.

Proof It is easy to establish the result (i). It can be seen that Kβ(t, τ) is decreasing with respect to t for
τ ≤ t and increasing with respect to t for t ≤ s. So, by this monotonicity of Kβ(t, τ), we have

Kβ(t, τ) ≤ Kβ(τ, τ) = τβ−1(1− τ), τ ∈ [0, 1]T.

This proves (ii). Now we prove (iii). For τ ≤ t, we have

Kβ(t, τ)

Kβ(τ, τ)
=

τβ−1(1− t)

τβ−1(1− τ)
=

1− t

1− τ
≥ 1− t ≥ λ,

and for t ≤ τ,

Kβ(t, τ)

Kβ(τ, τ)
=

t(1− τ)τβ−2

τβ−1(1− τ)
=

t

τ
≥ λ

τ
≥ λ.

This completes proof. 2

Lemma 2.13 Let G∗
β(τ) = Kβ(τ, τ) +

1
1−g∗

Gβ(τ). Then the Green’s function ℵβ(t, τ) has the following
properties:

(i) ℵβ(t, τ) is nonnegative and continuous on [0, 1]T × [0, 1]T,

(ii) ℵβ(t, τ) ≤ G∗
β(τ) for t, τ ∈ [0, 1]T,

(iii) there exists λ ∈ (0, 1/2)T such that λG∗
β(τ) ≤ ℵβ(t, τ) for t ∈ [λ, 1− λ]T, τ ∈ [0, 1]T.
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Proof The results (i) and (ii) are obvious. To prove (iii), let λ ∈ (0, 1/2)T and τ ∈ [0, 1]T. Then from
Lemma 2.12, we have

ℵβ(t, τ) = Kβ(t, τ) +
t

1− g∗
Gβ(τ) ≥ λKβ(τ, τ) +

λ

1− g∗
Gβ(τ) = λG∗

β(τ).

This completes proof. 2

Lemma 2.14 Let z ∈ C((0, 1)T). Then the boundary value problem

T ∆
α

[
T ∆
β

(
ϑℓ(t)

)]
= z(t), t ∈ (0, 1)T, (2.6)

ϑ1(0) = 0, ϑ1(1) =

∫ 1

0

ϑ1(τ)2g(τ),

(T ∆
β ϑ1)(0) = 0, (T ∆

β ϑ1)(1) =

∫ 1

0

(T ∆
β ϑ1)(τ)2g(τ),

 (2.7)

has a unique solution

ϑ1(t) =

∫ 1

0

ℵβ(t, τ)

[∫ 1

0

ℵα(τ, s)z(s)∆s

]
∆τ, (2.8)

where ℵβ(t, τ) is defined in Lemma 2.11 and

ℵα(t, τ) = Kα(t, τ) +
t

1− g∗
Gα(τ),

Kα(t, τ) =

{
τα−1(1− t), τ ≤ t,

t(1− τ)τα−2, t ≤ τ,

and

Gα(τ) =

∫ 1

0

Kα(τ1, τ)2g(τ1).

Proof Let y1(t) = T ∆
β ϑ1(t) for 0 < t < 1. Then the boundary value problem

T ∆
α

[
T ∆
β

(
ϑ1(t)

)]
− z(t) = 0, t ∈ [0, 1]T,

T ∆
β ϑ1(0) = 0, T ∆

β ϑ1(1) =

∫ 1

0

(T ∆
β ϑ1)(τ)2g(τ)

is equivalent to the problem
T ∆
α y1(t)− z(t) = 0, t ∈ [0, 1]T,

y1(0) = 0, y1(1) =

∫ 1

0

y1(τ)2g(τ).

 (2.9)

By Lemma 2.11, the boundary value problem (2.9) has unique solution y1(t) = −
∫ 1

0
ℵα(t, τ)z(τ)∆τ. That is

T ∆
β ϑ1(t) +

∫ 1

0

ℵα(t, τ)z(τ)∆τ = 0. (2.10)
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Again by Lemma 2.11, the differential equation (2.10) with boundary conditions

ϑ1(0) = 0 and ϑ1(1) =

∫ 1

0

ϑ1(τ)2g(τ)

has a unique solution

ϑ1(t) =

∫ 1

0

ℵβ(t, τ)

[∫ 1

0

ℵα(τ, s)z(s)∆s

]
∆τ.

This completes the proof. 2

Lemma 2.15 The function Kα(t, τ) has the following properties:

(i) Kα(t, τ) is nonnegative and continuous on [0, 1]T × [0, 1]T,

(ii) Kα(t, τ) ≤ Kα(τ, τ) for t, τ ∈ [0, 1]T,

(iii) there exists λ ∈ (0, 1/2)T such that λKα(τ, τ) ≤ Kα(t, τ) for t ∈ [λ, 1− λ]T, τ ∈ [0, 1]T.

Lemma 2.16 Let G∗
α(τ) = Kα(τ, τ) +

1
1−g∗

Gα(τ). Then the Green’s function ℵα(t, τ) has the following
properties:

(i) ℵα(t, τ) is nonnegative and continuous on [0, 1]T × [0, 1]T,

(ii) ℵα(t, τ) ≤ G∗
α(τ) for t, τ ∈ [0, 1]T,

(iii) there exists λ ∈ (0, 1/2)T such that λG∗
α(τ) ≤ ℵα(t, τ) for t ∈ [λ, 1− λ]T, τ ∈ [0, 1]T.

Note that an ℓ–tuple (ϑ1, ϑ2, · · · , ϑℓ) is a solution of (1.1)–(1.2) if and only if

ϑ1(t) =

∫ 1

0

ℵβ(t, τ1)
[ ∫ 1

0

ℵα(τ1, τ2)φ(τ2)f1

[ ∫ 1

0

ℵβ(τ2, τ3)
[ ∫ 1

0

ℵα(τ3, τ4)φ(τ4)f2 · · ·

fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1 · · ·∆τ2

]
∆τ1

and

ϑn(t) =

∫ 1

0

ℵβ(t, τ)

[∫ 1

0

ℵα(τ, s)φ(s)fn(ϑn+1(s))∆s

]
∆τ, n = 2, 3, · · · , ℓ,

ϑℓ+1(t) = ϑ1(t), t ∈ (0, 1)T.

Denote the Banach space C((0, 1)T,R) by B with the norm ∥ϑ∥ = max
t∈[0,1]

|ϑ(t)|. For λ ∈ (0, 1/2)T, the

cone Nλ ⊂ B is defined by

Nλ =
{
ϑ ∈ B : x(t) ≥ 0, min

t∈[λ, 1−λ]
ϑ(t) ≥ λ∥ϑ∥

}
,
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For any ϑ1 ∈ Nλ, define an operator Ω : Nλ → B by

(Ωϑ1)(t) =

∫ 1

0

ℵβ(t, τ1)
[ ∫ 1

0

ℵα(τ1, τ2)φ(τ2)f1

[ ∫ 1

0

ℵβ(τ2, τ3)
[ ∫ 1

0

ℵα(τ3, τ4)φ(τ4)f2 · · ·

fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1 · · ·∆τ2

]
∆τ1.

Lemma 2.17 For each λ ∈ (0, 1/2)T, Ω(Nλ) ⊂ Nλ and Ω : Nλ → Nλ is completely continuous.

Proof Let λ ∈ (0, 1/2)T . Since fℓ(ϑℓ+1(τ)) is nonnegative for τ ∈ [0, 1]T, ϑ1 ∈ Nλ. Since ℵβ(t, τ), ℵα(t, τ)

are nonnegative for all t, τ ∈ [0, 1]T, it follows that Ω(ϑ1(t)) ≥ 0 for all t ∈ [0, 1]T, ϑ1 ∈ Nλ Now, by Lemma
2.13 and 2.16, we have

min
t∈[λ,1−λ]T

(Ωϑ1)(t)

= min
t∈[λ,1−λ]T

{∫ 1

0

ℵβ(t, τ1)
[ ∫ 1

0

ℵα(τ1, τ2)φ(τ2)f1

[ ∫ 1

0

ℵβ(τ2, τ3)
[ ∫ 1

0

ℵα(τ3, τ4)φ(τ4)f2 · · ·

fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1 · · ·∆τ2

]
∆τ1

}

≥ λ

∫ 1

0

G∗
β(τ1)

[ ∫ 1

0

ℵα(τ1, τ2)φ(τ2)f1

[ ∫ 1

0

ℵβ(τ2, τ3)
[ ∫ 1

0

ℵα(τ3, τ4)φ(τ4)f2 · · ·

fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1 · · ·∆τ2

]
∆τ1

≥ λ

{∫ 1

0

ℵβ(t, τ1)
[ ∫ 1

0

ℵα(τ1, τ2)φ(τ2)f1

[ ∫ 1

0

ℵβ(τ2, τ3)
[ ∫ 1

0

ℵα(τ3, τ4)φ(τ4)f2 · · ·

fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1 · · ·∆τ2

]
∆τ1

}
≥ λ max

t∈[0,1]T
|Ωϑ1(t)|.

Thus Ω(Nλ) ⊂ Nλ. Therefore, the operator Ω is completely continuous by standard methods and by the
Arzela–Ascoli theorem. 2

3. infinitely many positive solutions

In establishing the existence of infinitely many positive solutions for the boundary value problem (1.1)–(1.2),
we utilize following theorems.

Theorem 3.1 [21] Let B be a cone in a Banach space X and Q1, Q2 are open sets with 0 ∈ Q1, Q1 ⊂ Q2. Let
Ω : B ∩ (Q2\Q1) → B be a completely continuous operator such that

(a) ∥Ωϑ∥ ≤ ∥ϑ∥, ϑ ∈ B ∩ ∂Q1, and ∥Ωϑ∥ ≥ ∥ϑ∥, ϑ ∈ B ∩ ∂Q2, or
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(b) ∥Ωϑ∥ ≥ ∥ϑ∥, ϑ ∈ B ∩ ∂Q1, and ∥Ωϑ∥ ≤ ∥ϑ∥, ϑ ∈ B ∩ ∂Q2.

Then Ω has a fixed point in B ∩ (Q2\Q1).

Theorem 3.2 (Hölder’s inequality [4]) Let f ∈ Lpi

∆ (J) with pi > 1, for j = 1, 2, · · · , n and
∑n

j=1
1
pj

= 1.

Then
∏n

j=1 fj ∈ L1
∆(J) and

∥∥∥∏n
j=1 fj

∥∥∥
1
≤

∏n
j=1 ∥fj∥pj . Further, if f ∈ L1

∆(J) and g ∈ L∞
∆ (J). Then

fg ∈ L1
∆(J) and ∥fg∥1 ≤ ∥f∥1∥g∥∞, where

∥f∥p :=


[∫

J

|f |p(s)∆s
] 1

p

, p ∈ R,

inf
{
M ∈ R / |f | ≤ M ∆− a.e., on J

}
, p = ∞,

and J = [a, b)T.

For φ ∈ Lpi

∆ ([0, 1]T), we have three possible cases:

n∑
j=1

1

pj
< 1,

n∑
j=1

1

pj
= 1,

n∑
j=1

1

pj
> 1.

Firstly, we establish infinitely many positive solutions for the case
n∑

j=1

1

pj
< 1.

Theorem 3.3 Assume that (H1) − (H3) hold, let {λk}∞k=1 be such that tk+1 < λk < tk, k = 1, 2, 3, · · · . Let
{Rk}∞k=1 and {rk}∞k=1 be such that Rk+1 < λkrk < Lrk < Rk, k ∈ N, where

L = max


λ21 n∏

j=1

φ∗
j

∫ 1−λ1

λ1

G∗
β(τ)∆τ

[ ∫ 1−λ1

λ1

G∗
α(τ)∆τ

]−1

, 1

 .

Further, assume that fi satisfies

(J1) fℓ(ϑ(t)) ≤ A1Rk for all 0 ≤ ϑ(t) ≤ Rk, t ∈ [0, 1]T, where A1 <

∥G∗
α∥q

n∏
j=1

∥φj∥pj

∫ 1

0

G∗
β(τ)∆τ

−1

.

(J2) fℓ(ϑ(t)) ≥ Lrk for all λkrk ≤ ϑ(t) ≤ rk, t ∈ [λk, 1− λk]T.

The iterative system (1.1)–(1.2) has infinitely many solutions {(ϑ[k]
1 , ϑ

[k]
2 , · · ·, ϑ[k]

n )}∞k=1 such that ϑ
[k]
ℓ (t) ≥ 0 on

(0, 1)T, ℓ = 1, 2, · · ·, n and k ∈ N.

Proof Consider the sequences {Q1,k}∞k=1 and {Q2,k}∞k=1 of open subsets of B defined by

Q1,k = {ϑ ∈ B : ∥ϑ∥ < Rk}, Q2,k = {ϑ ∈ B : ∥ϑ∥ < rk}.
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Let {λk}∞k=1 be as in the hypothesis and note that t∗ < tk+1 < λk < tk < 1
2 , for all k ∈ N . For each k ∈ N,

define the cone Nλk
by

Nλk
=

{
ϑ ∈ B : ϑ(t) ≥ 0 and min

t∈[λk, 1−λk]
ϑ(t) ≥ λk∥ϑ∥

}
.

Let ϑ1 ∈ Nλk
∩ ∂Q1,k. Then, ϑ1(τ) ≤ Rk = ∥ϑ1∥ for all τ ∈ [0, 1]T. By (J1) and 0 < τ2ℓ−2 < 1, we have

∫ 1

0

ℵβ(τ2ℓ−2,τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

≤
∫ 1

0

G∗
β(τ2ℓ−1)

[ ∫ 1

0

G∗
α(τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)

[ ∫ 1

0

G∗
α(τ2ℓ)φ(τ2ℓ)∆τ2ℓ

]
∆τ2ℓ−1.

There exists a q > 1 such that 1

q
+

n∑
j=1

1

pj
= 1. By the first part of Theorem 3.2, we have

∫ 1

0

ℵβ(τ2ℓ−2,τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)∆τ2ℓ−1

[ ∫ 1

0

G∗
α(τ2ℓ)φ(τ2ℓ)∆τ2ℓ

]
≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)∆τ2ℓ−1∥G∗

α∥q ∥φ∥pj ≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)∆τ2ℓ−1∥G∗

α∥q
n∏

j=1

∥φj∥pj

≤ Rk.

It follows in similar manner (for 0 < τ2ℓ−4 < 1) that

∫ 1

0

ℵβ(τ2ℓ−4, τ2ℓ−3)
[ ∫ 1

0

ℵα(τ2ℓ−3, τ2ℓ−2)φ(τ2ℓ−2)

× fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

]
∆τ2ℓ−2

]
∆τ2ℓ−3

≤
∫ 1

0

ℵβ(τ2ℓ−4, τ2ℓ−3)
[ ∫ 1

0

ℵα(τ2ℓ−3, τ2ℓ−2)φ(τ2ℓ−2)fℓ−1(Rk)∆τ2ℓ−2

]
∆τ2ℓ−3

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−3)

[ ∫ 1

0

G∗
α(τ2ℓ−2)φ(τ2ℓ−2)∆τ2ℓ−2

]
∆τ2ℓ−3

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)∆τ2ℓ−1∥G∗

α∥q ∥φ∥pj ≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)∆τ2ℓ−1∥G∗

α∥q
n∏

j=1

∥φj∥pj

≤ Rk.
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Continuing with this bootstrapping argument, we get

(Ωϑ1)(t) =

∫ 1

0

ℵβ(t, τ1)
[ ∫ 1

0

ℵα(τ1, τ2)φ(τ2)f1

[ ∫ 1

0

ℵβ(τ2, τ3)
[ ∫ 1

0

ℵα(τ3, τ4)φ(τ4)f2 · · ·

fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1 · · ·∆τ2

]
∆τ1 ≤ Rk.

Since Rk = ∥ϑ1∥ for ϑ1 ∈ Nλk
∩ ∂Q1,k, we get

∥Ωϑ1∥ ≤ ∥ϑ1∥. (3.1)

Let t ∈ [λk, 1 − λk]T. Then, rk = ∥ϑ1∥ ≥ ϑ1(t) ≥ mint∈[λk,1−λk]T ϑ1(t) ≥ λk∥ϑ1∥ ≥ λkrk. By (J2) and for
τ2ℓ−2 ∈ [λk, 1− λk]T, we have∫ 1

0

ℵβ(τ2ℓ−2,τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

≥ λk

∫ 1

0

G∗
β(τ2ℓ−1)

[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

≥ λk

∫ 1−λk

λk

G∗
β(τ2ℓ−1)

[
λk

∫ 1−λk

λk

G∗
α(τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

≥ λ2k

∫ 1−λk

λk

G∗
β(τ2ℓ−1)

[
Lrk

n∏
j=1

φ∗
j

∫ 1−λk

λk

G∗
α(τ2ℓ)∆τ2ℓ

]
∆τ2ℓ−1

≥ Lrkλ
2
1

n∏
j=1

φ∗
j

∫ 1−λ1

λ1

G∗
β(τ2ℓ−1)∆τ2ℓ−1

[ ∫ 1−λ1

λ1

G∗
α(τ2ℓ)∆τ2ℓ

]
≥ rk.

Continuing with bootstrapping argument, we get

(Ωϑ1)(t) =

∫ 1

0

ℵβ(t, τ1)
[ ∫ 1

0

ℵα(τ1, τ2)φ(τ2)f1

[ ∫ 1

0

ℵβ(τ2, τ3)
[ ∫ 1

0

ℵα(τ3, τ4)φ(τ4)f2 · · ·

fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1 · · ·∆τ2

]
∆τ1 ≥ rk.

Thus, if ϑ1 ∈ Nλk
∩ ∂Q2,k, then

∥Ωϑ1∥ ≥ ∥ϑ1∥. (3.2)

It is evident that 0 ∈ Q2,k ⊂ Q2,k ⊂ Q1,k. From (3.1) and (3.2), it follows from Theorem 3.1 that the operator Ω

has a fixed point ϑ
[k]
1 ∈ Nλk

∩
(
Q1,k\Q2,k

)
such that ϑ

[k]
1 (t) ≥ 0 on (0, 1)T, and k ∈ N. Next setting ϑn+1 = ϑ1,

we obtain infinitely many positive solutions {(ϑ[k]
1 , ϑ

[k]
2 , · · ·, ϑ[k]

n )}∞k=1 of (1.1)–(1.2) given iteratively by

ϑℓ(t) =

∫ 1

0

ℵβ(t, τ)

[∫ 1

0

ℵα(τ, s)fℓ(ϑℓ+1(s))∆s

]
∆τ, ℓ = n, n− 1, · · · , 2, 1.

The proof is completed. 2

For
∑n

j=1 pj = 1, we have the following theorem.
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Theorem 3.4 Assume that (H1) − (H3) hold, let {λk}∞k=1 be such that tk+1 < λk < tk, k = 1, 2, 3, · · · . Let
{Rk}∞k=1 and {rk}∞k=1 be such that Rk+1 < λkrk < Lrk < Rk, k ∈ N, where

L = max


λ21 n∏

j=1

φ∗
j

∫ 1−λ1

λ1

G∗
β(τ)∆τ

[ ∫ 1−λ1

λ1

G∗
α(τ)∆τ

]−1

, 1

 .

Further, assume that fi satisfies

(J3) fℓ(ϑ(t)) ≤ A2Rk for all 0 ≤ ϑ(t) ≤ Rk, t ∈ [0, 1]T, where

A2 <

∥G∗
α∥∞

n∏
j=1

∥φj∥pj

∫ 1

0

G∗
β(τ)∆τ

−1

.

(J4) fℓ(ϑ(t)) ≥ Lrk for all λkrk ≤ ϑ(t) ≤ rk, t ∈ [λk, 1− λk]T.

The iterative system (1.1)–(1.2) has infinitely many solutions {(ϑ[k]
1 , ϑ

[k]
2 , · · ·, ϑ[k]

n )}∞k=1 such that ϑ
[k]
ℓ (t) ≥ 0 on

(0, 1)T, ℓ = 1, 2, · · ·, n and k ∈ N.

Proof For a fixed k, let Q1,k be as in the proof of Theorem 3.3 and let ϑ1 ∈ Nλk
∩ ∂Q1,k. Again

ϑ1(τ) ≤ Rk = ∥ϑ1∥, for all τ ∈ [0, 1]T. By (J3) and for τ2ℓ−2 ∈ [0, 1]T, we have

∫ 1

0

ℵβ(τ2ℓ−2,τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

≤
∫ 1

0

G∗
β(τ2ℓ−1)

[ ∫ 1

0

G∗
α(τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)

[ ∫ 1

0

G∗
α(τ2ℓ)φ(τ2ℓ)∆τ2ℓ

]
∆τ2ℓ−1

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)∆τ2ℓ−1∥G∗

α∥∞ ∥φ∥pj

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)∆τ2ℓ−1∥G∗

α∥∞
n∏

j=1

∥φj∥pj

≤ Rk.
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It follows in similar manner (for τ2ℓ−4 ∈ [0, 1]T, ) that

∫ 1

0

ℵβ(τ2ℓ−4, τ2ℓ−3)
[ ∫ 1

0

ℵα(τ2ℓ−3, τ2ℓ−2)φ(τ2ℓ−2)

× fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1

]
∆τ2ℓ−2

]
∆τ2ℓ−3

≤
∫ 1

0

ℵβ(τ2ℓ−4, τ2ℓ−3)
[ ∫ 1

0

ℵα(τ2ℓ−3, τ2ℓ−2)φ(τ2ℓ−2)fℓ−1(Rk)∆τ2ℓ−2

]
∆τ2ℓ−3

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−3)

[ ∫ 1

0

G∗
α(τ2ℓ−2)φ(τ2ℓ−2)∆τ2ℓ−2

]
∆τ2ℓ−3

≤ A1Rk

∫ 1

0

G∗
β(τ2ℓ−1)∆τ2ℓ−1∥G∗

α∥∞
n∏

j=1

∥φj∥pj

≤ Rk.

Continuing with this bootstrapping argument, we get

(Ωϑ1)(t) =

∫ 1

0

ℵβ(t, τ1)
[ ∫ 1

0

ℵα(τ1, τ2)φ(τ2)f1

[ ∫ 1

0

ℵβ(τ2, τ3)
[ ∫ 1

0

ℵα(τ3, τ4)φ(τ4)f2 · · ·

fℓ−1

[ ∫ 1

0

ℵβ(τ2ℓ−2, τ2ℓ−1)
[ ∫ 1

0

ℵα(τ2ℓ−1, τ2ℓ)φ(τ2ℓ)fℓ(ϑ1(τ2ℓ))∆τ2ℓ

]
∆τ2ℓ−1 · · ·∆τ2

]
∆τ1 ≤ Rk.

Since Rk = ∥ϑ1∥ for ϑ1 ∈ Nλk
∩ ∂Q1,k, we get

∥Ωϑ1∥ ≤ ∥ϑ1∥. (3.3)

Now define Q2,k = {ϑ ∈ B : ∥ϑ∥ < rk}. Let ϑ ∈ Nλk
∩ ∂Q2,k and let τ ∈ [λk, 1 − λk]T. Then, the argument

leading to (3.2) can be done to the present case. This completes the proof. 2

Finally, for
∑n

j=1 pj > 1, we have the following theorem.

Theorem 3.5 Assume that (H1) − (H3) hold, let {λk}∞k=1 be such that tk+1 < λk < tk, k = 1, 2, 3, · · · . Let
{Rk}∞k=1 and {rk}∞k=1 be such that

Rk+1 < λkrk < Lrk < Rk, k ∈ N,

where

L = max


λ21 n∏

j=1

φ∗
j

∫ 1−λ1

λ1

G∗
β(τ)∆τ

[ ∫ 1−λ1

λ1

G∗
α(τ)∆τ

]−1

, 1

 .

Further, assume that fi satisfies

(J5) fℓ(ϑ(t)) ≤ A3Rk for all 0 ≤ ϑ(t) ≤ Rk, t ∈ [0, 1]T, where A3 <

∥G∗
α∥∞

n∏
j=1

∥φj∥1
∫ 1

0

G∗
β(τ)∆τ

−1

.
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(J6) fℓ(ϑ(t)) ≥ Lrk for all λkrk ≤ ϑ(t) ≤ rk, t ∈ [λk, 1− λk]T.

The iterative system (1.1)–(1.2) has infinitely many solutions {(ϑ[k]
1 , ϑ

[k]
2 , · · ·, ϑ[k]

n )}∞k=1 such that ϑ
[k]
ℓ (t) ≥ 0 on

(0, 1)T, ℓ = 1, 2, · · ·, n and k ∈ N.

Proof The proof is similar to the proof of Theorem 3.3. So, we omit the details here. 2

4. Examples
In this section, we provide two examples to check the validity of our main results.

Example 4.1 Consider the following boundary value problem on T = [0, 1].

T3/2
(
T3/2ϑn(t)

)
+ φ(t)fn(ϑn+1(t)) = 0, 0 < t < 1, n = 1, 2,

ϑ3(t) = ϑ1(t), 0 < t < 1,

}
(4.1)

ϑn(0) = 0, ϑn(1) =

∫ 1

0

ϑn(τ)dg(τ), n = 1, 2,

T3/2ϑn(0) = 0, T3/2ϑn(1) =

∫ 1

0

ϑn(τ)dg(τ), n = 1, 2,

 (4.2)

where
φ(t) = φ1(t)φ2(t)

in which

φ1(t) =
1

|t− 1
4 |

and φ2(t) =
1

|t− 1
3 |
,

f1(ϑ) = f2(ϑ) =



188× 10−4, ϑ ∈ (10−4,+∞),

51×10−(4k+2)−188×10−4k

10−(4k+2)−10−4k (ϑ− 10−4k) + 188× 10−4k,

ϑ ∈
[
10−(4k+2), 10−4k

]
,

51× 10−(4k+2), ϑ ∈
(

1
5
× 10−(4k+2), 10−(4k+2)

)
,

51×10−(4k+2)−188×10−(4k+4)

1
5
×10−(4k+2)−10−(4k+4) (ϑ− 10−(4k+4)) + 188× 10−(4k+4),

ϑ ∈
(
10−(4k+4), 1

5
× 10−(4k+2)

]
,

0, ϑ = 0,

g(t) =


t, t ∈ [0, 1/2) ∪ [2/3, 5/6),

1
2 , t ∈ [1/2, 2/3),

5
6 , t ∈ [5/6, 1].
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Let

tk =
31

64
−

k∑
r=1

1

4(r + 1)4
, λk =

1

2
(tk + tk+1), k = 1, 2, 3, · · · ,

then

λ1 =
15

32
− 1

648
<

15

32

and

tk+1 < λk < tk, λk >
1

5
.

It is easy to see

t1 =
15

32
<

1

2
, tk − tk+1 =

1

4(k + 2)4
, k = 1, 2, 3, · · · .

Since
∞∑
k=1

1

k4
=

π4

90
and

∞∑
k=1

1

k2
=

π2

6
, it follows that

t∗ = lim
k→∞

tk =
31

64
−

∞∑
i=1

1

4(i+ 1)4
=

47

64
− π4

360
>

1

5
,

φ1, φ2 ∈ Lp
∆[0, 1]T for all 0 < p < 2, so φ∗

1 = φ∗
2 =

1

3
.

λ21

n∏
j=1

φ∗
j

∫ 1−λ1

λ1

G∗
β(τ)dτ

[ ∫ 1−λ1

λ1

G∗
α(τ)dτ

]
≈ 0.02,

L = max


λ21 n∏

j=1

φ∗
j

∫ 1−λ1

λ1

G∗
β(τ)dτ

[ ∫ 1−λ1

λ1

G∗
α(τ)dτ

]−1

, 1


= {50, 1} = 50.

and

∥G∗
α∥2 ≈ 12.08,

∫ 1

0

G∗
β(τ)dτ ≈ 3.22.

Next, let 0 < a < 1 be fixed. Then φ1, φ2 ∈ L1+a[0, 1]. It follows that

∥φ1∥1+a =

[
−4a(1 + 3−a)

a

] 1
1+a

,

∥φ2∥1+a =

[
−3a(1 + 2−a)

a

] 1
1+a

.

So, for 0 < a < 1, we have

189.825 ≤

∥G∗
α∥q

n∏
j=1

∥φj∥pj

∫ 1

0

G∗
β(τ)dτ

−1

.
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Taking A1 = 189. In addition if we take

Rk = 10−4k, rk = 10−(4k+2),

then

Rk+1 = 10−(4k+4) <
1

5
× 10−(4k+2) < λkrk

< rk = 10−(4k+2) < Rk = 10−4k,

Lrk = 50 × 10−(4k+2) < 189 × 10−4k = A1Rk, k = 1, 2, 3, · · · , and g1 and g2 satisfies the following growth
conditions:

f1(ϑ) = f2(ϑ) ≤ A1Rk = 189× 10−4k, ϑ ∈
[
0, 10−4k

]
f1(ϑ) = f2(ϑ) ≥ Lrk = 50× 10−(4k+2), ϑ ∈

[
1

5
× 10−(4k+2), 10−(4k+2)

]
.

All the conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, the boundary value problem
(4.1)–(4.2) has infinitely many positive solutions {ϑ[k]}∞k=1 such that 10−(4k+2) ≤ ∥ϑ[k]∥ ≤ 10−4k for each
k = 1, 2, 3, · · · .

Example 4.2 Let T = {0} ∪ [1/2, 1] ∪
{

1

2n+1
: n ∈ N

}
. Consider the boundary value problem

T7/4
(
T5/4ϑn(t)

)
+ φ(t)fn(ϑn+1(t)) = 0, t ∈ (0, 1)T, n = 1, 2,

ϑ3(t) = ϑ1(t), t ∈ (0, 1)T,

}
(4.3)

ϑn(0) = 0, ϑn(1) =

∫ 1

0

ϑn(τ)∆g(τ), n = 1, 2,

T5/4ϑn(0) = 0, T5/4ϑn(1) =

∫ 1

0

ϑn(τ)∆g(τ), n = 1, 2,

 (4.4)

where

φ(t) = φ1(t)φ2(t)

in which

φ1(t) =
1

|t− 3
5 |

and φ2(t) =
1

|t− 4
5 |
,
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f1(ϑ) = f2(ϑ) =



0.2× 10−5, ϑ ∈ (10−5,+∞),

110×10−(4k+4)−0.2×10−(4k+1)

10−(4k+4)−10−(4k+1) (ϑ− 10−(4k+1)) + 0.2× 10−(4k+1),

ϑ ∈
[
10−(4k+4), 10−(4k+1)

]
,

110× 10−(4k+4), ϑ ∈
(

1
5
× 10−(4k+4), 10−(4k+4)

)
,

110×10−(4k+4)−0.2×10−(4k+5)

1
5
×10−(4k+4)−10−(4k+5) (ϑ− 10−(4k+5)) + 0.2× 10−(4k+5),

ϑ ∈
(
10−(4k+5), 1

5
× 10−(4k+4)

]
,

0, ϑ = 0,

g(t) =

{
0, t ∈ [0, 1/2),

t, t ∈ [1/2, 1].

Let tk, λk be the same as in example 4.1. Then λ1 = 15
32 − 1

648 < 15
32 , tk+1 < λk < tk, λk > 1

5 and

t1 = 15
32 < 1

2 , tk − tk+1 = 1
4(k+2)4 , k = 1, 2, 3, · · · . Also, t∗ = limk→∞ tk = 31

64 −
∑∞

i=1
1

4(i+1)4 = 47
64 − π4

360 > 1
5 .

By simple calculations, we obtain g∗ = 1
4 , φ

∗
1 = φ∗

2 = 5/3, G∗
x(τ) = Kx(τ, τ) +

4
3Gx(τ), x ∈ {α,β}, where

Gα(τ) =

∫ 1

0

Kα(τ1, τ)∆g(τ1) =

∫ 1

1/2

Kα(τ1, τ)∆τ1 =
1

8τ1/4
(4τ2 − 1)(1− τ) +

1

2
τ3/4(τ− 1)2,

and

Gβ(τ) =

∫ 1

0

Kβ(τ1, τ)∆g(τ1) =

∫ 1

1/2

Kβ(τ1, τ)∆τ1 =
1

8τ3/4
(4τ2 − 1)(1− τ) +

1

2τ1/4
(τ− 1)2.

So, we get

λ21

n∏
j=1

φ∗
j

∫ 1−λ1

λ1

G∗
β(τ)dτ

[ ∫ 1−λ1

λ1

G∗
α(τ)dτ

]
≈ 0.009191748427,

L = max


λ21 n∏

j=1

φ∗
j

∫ 1−λ1

λ1

G∗
β(τ)dτ

[ ∫ 1−λ1

λ1

G∗
α(τ)dτ

]−1

, 1


= {108.793, 1} = 108.793,

∥G∗
α∥2 ≈ 0.03517346,

∫ 1

0
G∗
β(τ)dτ ≈ 3.038214786, ∥φ1∥3 ≈ 6.699800077, ∥φ2∥6 ≈ 5.839258384.

0.2410292729 ≤

∥G∗
α∥q

n∏
j=1

∥φj∥pj

∫ 1

0

G∗
β(τ)dτ

−1

.
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Taking A1 = 0.24. In addition, if we take Rk = 10−(4k+1), rk = 10−(4k+4), then

Rk+1 = 10−(4k+5) <
1

5
× 10−(4k+4) < λkrk

< rk = 10−(4k+4) < Rk = 10−(4k+1),

Lrk = 108.793 × 10−(4k+4) < 0.24 × 10−(4k+1) = A1Rk, k = 1, 2, 3, · · · , and g1 and g2 satisfies the following
growth conditions:

f1(ϑ) = f2(ϑ) ≤ A1Rk = 0.24× 10−(4k+1), ϑ ∈
[
0, 10−(4k+1)

]
f1(ϑ) = f2(ϑ) ≥ Lrk = 108.793× 10−(4k+4), ϑ ∈

[
1

5
× 10−(4k+4), 10−(4k+2)

]
.

All the conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, the boundary value problem
(4.3)–(4.4) has infinitely many positive solutions {ϑ[k]}∞k=1 such that 10−(4k+4) ≤ ∥ϑ[k]∥ ≤ 10−(4k+1) for each
k = 1, 2, 3, · · · .
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