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Abstract: This paper deals with the global solutions and exponential stability for a coupled system of Kirchhoff beam
weakly damping and with a logarithmic source. We apply the potential well and establish the global well-posedness by
using the Faedo–Galerkin approximations, taking into account that the initial data is located in a suitable set of stability
created from the Nehari manifold. Moreover, by using Nakao’s lemma, we prove the exponential stability of the solution.
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1. Introduction
In this paper, we consider a coupled system for a beam Kirchhoff system with a nonlinear logarithmic

source and frictional damping given by

utt +∆2u+M(|∇u|2 + |∇v|2)(−∆u) + ut = |u|p−2u ln |u|k, in Ω× (0,∞), (1.1)

vtt +∆2v +M(|∇u|2 + |∇v|2)(−∆v) + vt = |v|p−2v ln |v|k, in Ω× (0,∞), (1.2)

(u(x, 0), v(x, 0)) = (u0, v0), x ∈ Ω, (1.3)

(ut(x, 0), vt(x, 0)) = (u1, v1), x ∈ Ω, (1.4)

u(x, t) =
∂u

∂η
(x, t) = v(x, t) =

∂v

∂η
(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.5)

where Ω is a bounded domain with smooth boundary ∂Ω in Rn , M(s) is a continuous function on [0,∞) and

k is a positive real constant. Furthermore, we assume (u0, v0) ∈
[
H2

0 (Ω)
]2 and (u1, v1) ∈

[
L2(Ω)

]2 .

The nonlinear logarithmic source |u|p−2u ln |u|k arises in the inflation cosmology and supersymmetric
fields, see [16]. This kind of problems are truly interesting. For wave equation with strong damping and source
term f(u) ,

utt −∆u−∆ut = f(u), in Ω× (0,∞),

when the source term is just polynomial f(u) = |u|p−2u with 2 < p < ∞ for n = 1, 2 or 2 < p <
2n

n− 2
for
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n ≥ 3 under the appropriated conditions in [30] was proved that the weak solution blows up in finite time.
However, when we consider a source logarithmic f(u) = u ln |u|k in [26] was proved that the solution exists
globally or occurs infinite blow-up under some appropriate conditions. This is a significant difference between
the model with polynomial nonlinear source term and the model with logarithmic nonlinear source term.

The one-dimensional nonlinear equation of motion of an elastic string

∂2u

∂t2
−

(
τ0
m

+
k

2mL

∫ L

0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
= 0, (1.6)

where τ0 is the initial tension, m the mass of the string and k the Young’s modulus of the material of the string
in connection with some problems in nonlinear elasticity, was proposed by Kirchhoff (1883) [21] and rediscovered
by Carrier (1945) [8]. This model describes small vibrations of a stretched string of the length L when only the
transverse component of the tension is considered. For mathematical aspects of (1.6) see Bernstein (1940) [4].

The model (1.6) is a generalization of the linearized problem

∂2u

∂t2
− τ0

m

∂2u

∂x2
= 0,

obtained by Euler (1707–1783) and d’Alembert (1714–1793). A particular case of (1.6) can be written, in
general, as

∂2u

∂t2
−M

(∫
Ω

|∇u(x, t)|2dx
)
∆u = 0, (1.7)

or
∂2u

∂t2
+M

(
∥u(t)∥2

)
Au = 0, (1.8)

in the operator notation, where we consider the Hilbert spaces V ↪→ H ↪→ V ′ , where V ′ is the dual of V with
the immersions continuous and dense. By ∥ · ∥ we denote the norm in V and A : V → V ′ a bounded linear
operator.

Berger [3] established the equation

utt −
(
Q+

∫
Ω

|∇u|2dx
)
∆u = p(u, ut, x) (1.9)

which is called the Berger plate model [11], where the parameter Q describes in-plane forces applied to the
plate and the function p represents transverse loads which may depend on the displacement u and the velocity
ut . If n = 2 , Equation (1.9) represents the Berger approximation of the Von Kárman equations, modelling the
nonlinear vibrations of a plate (see [45], pp. 501-507).

One of the first mathematical analysis for the Kirchhoff-type beam equation

utt + uxxxx −M

(∫ L

0

|ux|2 dx

)
uxx = 0 (1.10)

was done by Ball [2]. Later Tucsnak [40] considered the beam equation for Ω ⊂ Rn

utt +∆2u+M(|∇u|2)(−∆u) = 0. (1.11)
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The authors in [14] have studied strong solutions as well as the exponential decay of the energy to the
mixed problem for the nonlinear beam equation in noncylindrical domain QT ⊂ R2

utt + uxxxx −M

(∫ L

0

|ux|2 dx

)
uxx + νut = 0. (1.12)

The authors considered M( · ) a real function such that M(λ) ≥ −m0, for all λ ≥ 0 and m0 > 0 .
The global existence and the longtime dynamics of solutions for an extensible beam equation with

nonlinear damping and source terms

utt +∆2u+M

(∫
Ω

|∇u|2 dx
)
(−∆u) + f(u) + g(ut) = h(x) in Ω× (0,∞), (1.13)

where Ω is a bounded domain of Rn with smooth boundary, was considered in [41].
The nonlinear and damped extensible plate (or beam) equation below was considered in [9],

utt +∆2u+ αu+M

(∫
Ω

|∇u|2 dx
)
(−∆u) + f(u) + g(ut) = 0 in Ω× (0,∞), (1.14)

where Ω is any bounded or unbounded open set of Rn, α > 0 and f, g are power like functions. The existence
of global solutions was proved by means of the fixed point theorem and continuity arguments.

Long-time behavior of solutions to the nonlinear plate equation with nonlocal weak damping given by

utt +∆2u+ g(u) +M

(∫
Ω

|∇u|2 dx
)
ut = f in Ω× (0,∞), (1.15)

where Ω is a bounded domain of Rn with smooth boundary and f, g are external forcing terms, was presented
in [20].

In the past years, several authors have been devoted to the study of qualitative properties of solutions for
nonlinear wave and beam equations with damping and source terms. In the sequel, we mention some of them.
The initial boundary problem for the two-dimensional Kirchhoff-type wave equation with an exponentially
growing source term was presented in [25]. Existence, decay and blow up of solutions for the extensible beam
equation with nonlinear damping and source terms was presented in [35]. Long-time behavior of extensible beam
equation with the nonlocal weak damping on a bounded smooth domain of Rn with hinged (clamped) boundary
condition was considered in [46]. The authors proved the well-posedness by employing the monotone operator
theory and the existence of a global attractor when the growth exponent of the nonlinearity is up to the critical
case in natural energy space. Global attractor is a basic concept in the study of longtime dynamics of nonlinear
evolution equations with various dissipation. The existence of an attractor for the Kirchhoff equation with a
strong dissipation was considered for instance in [12, 27, 42, 43]. Existence results for Kirchhoff-type boundary
value problems have been established by using variational methods and critical point theory in [5, 6, 17–19]. The
damped wave equation with a degenerate nonlocal weak damping and the nonlinear source was studied in [10].
Asymptotic stability of solutions of Kirchhoff systems, governed by the fractional p -Laplacian operator, with an
external force and nonlinear damping terms was considered in [39]. Existence and the energy decay estimate of
global solutions for an extensible beam equation with internal damping and source terms were studied in [33].
Blow-up of positive initial-energy solutions for the extensible beam equation with nonlinear damping and source
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terms were given in [37]. In [31], the existence of the solution to the mixed problem for coupled wave equation
of Kirchhoff type with nonlinear boundary damping and memory source term was proved. The global existence
of global solution and asymptotic behavior of the energy for wave equations of Kirchhoff type with nonlocal
boundary condition was proved in [15]. The existence, uniqueness, and uniform decay rates of the energy of
solution for a nonlinear degenerate coupled beams system with weak damping were presented in [23]. The
nonexistence of global solutions for positive initial energy was proved by Pişkin and Ekinci [36] for the coupled
nonlinear Kirchhoff type equation with degenerate damping and source terms. Nonexistence of solutions for a
Timoshenko equations with weak dissipation was give in [38]. The abstract formulation of the coupled system
was given by Pereira et al. In [34], the existence of solutions by Faedo-Galerkin’s method was studied and the
exponential decay by using Nakao’s Lemma was proved. Regarding problems with logarithmic nonlinearity, we
cite [26, 47] and references therein. In view of the works mentioned above, to our knowledge, much less effort has
been devoted to Coupled Kirchhoff beam equation with frictional damping and logarithmic source. Kirchhoff’s
function M( · ) considered in this manuscript is more general than in those in the previous works, since that,
we suppose just the continuity and moreover, it can even assume negative values. The outline of the paper is as
follows. In Section 2 we introduce some notations and present some hypotheses and previous lemmas needed in
the proof of our results. In Section 3 we introduce the stability set, associated with the nonlinear source term,
created from the Nehari manifold. In Section 4, we prove the existence of solution through the Faedo–Galerkin
method. By using a result of Nakao [29], the exponential stability is given in Section 5.

2. Assumptions and results
In this section, we give some assumptions and results, which play an essential role in proving our results.

We denote | · | the Lebesgue Space L2(Ω) norm and | · |p we denote the space Lp(Ω) norm.

(H.1) M ∈ C([0,∞),R) such that M(λ) ≥ −β , ∀ λ ≥ 0 , 0 < β < λ1 , λ1 the first eigenvalue of the problem
∆2u− λ(−∆u) = 0 .

Remark 2.1 Let λ1 be the first eigenvalue of ∆2u − λ(−∆u) = 0 with the campled boundary conditions

u
∣∣
∂Ω

=
∂u

∂η

∣∣∣∣
∂Ω

= 0 then, (see Miklin [28])

λ1 = inf
u∈H2

0 (Ω)

|∆u|2

|∇u|2
and |∇u|2 ≤ 1

λ1
|∆u|2.

(H.2) We suppose that 2 ≤ p < ∞ if n ≤ 2 and 2 ≤ p <
n+ 2

n− 2
if n ≥ 3 .

Lemma 2.2 (Nakao’s Lemma, [29]) Suppose that ϕ(t) is a bounded nonnegative function on R+ , satisfying

ess sup
t≤s≤t+1

ϕ(s) ≤ C0[ϕ(t)− ϕ(t+ 1)]

for t ≥ 0 , where C0 is a positive constant. Then,

ϕ(t) ≤ Ce−αt, for all t ≥ 0,

where C0 and α are positive constants.
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Lemma 2.3 (Sobolev-Poincaré inequality, [13]) Let p be a number with 2 < p < ∞ if n = 1, 2 or

2 ≤ p ≤ 2n

n− 2
if n ≥ 3 , then there exists a constant C > 0 such that

|u|p ≤ C|∇u|, for all u ∈ H1
0 (Ω).

3. Potential well
In this section, we use the potential well theory, a powerful tool in the study of the global existence of

solution to partial differential equation first developed by Payne and Sattinger [32].
It is well-known that the energy of a PDE system, in some sense, splits into kinetic and potential energy.
We define the energy of the system (1.1)–(1.5) by

E(t) =
1

2

[
|ut(t)|2 + |vt(t)|2 + |∆u(t)|2 + |∆v(t)|2 + M̂

(
|∇u(t)|2 + |∇v(t)|2

)]

+
k

p2
(
|u(t)|pp + |v(t)|pp

)
− 1

p

∫
Ω

|u(t)|p ln |u(t)|kdx+

∫
Ω

|v(t)|p ln |v(t)|kdx

 . (3.1)

Multiplying (1.1), (1.2) by ut , vt respectively, after we integrate over Ω , performing integration by parts
and using boundary conditions, we obtain

d

dt
E(t) = −|ut|2 − |vt|2. (3.2)

In general, it is possible that the energy from the source term causes the blow-up in a finite time. However,
the potential energy creates a valley or a well of the depth d . We can split the well into two sets. For solutions
with the initial data in the good part of the well, the potential energy of the solution can never escape and as
a result, the total energy of the solution remains finite for all interval [0, T ) , providing the global existence of
the solution.

By following the idea of Ye [44], we will construct the invariant stability set corresponding to the
logarithmic source term in the good part of the well. We proceed by defining the functionals I, J : [H2

0 (Ω)]
2 →

R .
By (H.1) we get

M̂
(
|∇u(t)|2 + |∇v(t)|2

)
≥ − β

λ1

(
|∆u(t)|2 + |∆v(t)|2

)
.

Then we introduce the functionals

I(t) =
1

2

[
|ut(t)|2 + |vt(t)|2 +

(
1− β

λ1

)(
|∆u|2 + |∆v|2

)]

+
k

p2
(
|u(t)|pp + |v(t)|pp

)
− 1

p

∫
Ω

|u(t)|p ln |u(t)|kdx+

∫
Ω

|v(t)|p ln |v(t)|kdx

 (3.3)

and

J(u, v)
def
=

1

2

(
1− β

λ1

)(
|∆u|2 + |∆v|2

)
+

k

p2
(
|u|pp + |v|pp

)
− 1

p

∫
Ω

|u|p ln |u|kdx+

∫
Ω

|v|p ln |v|kdx

 . (3.4)
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For λ ≥ 0 and (u, v) ∈ [H2
0 (Ω)]

2 we introduce the Nehari functional

J(λu, λv) =
λ2

2

(
1− β

λ1

)(
|∆u|2 + |∆v|2

)
+

kλp

p

(
|u|pp + |v|pp

)
− λp

p

∫
Ω

|u|p ln |u|kdx+

∫
Ω

|v|p ln |v|kdx

 .

(3.5)

Associated with J , we have the Nehari manifold

N def
=

{
(u, v) ∈ [H2

0 (Ω)]
2\{(0, 0)};

[
d

dt
J(λu, λv)

]
λ=1

= 0

}
. (3.6)

Equivalently

N =

(u, v) ∈
(
H2

0 (Ω)
)2 \{(0, 0)}; 1

2

(
1− β

λ1

)(
|∆u|2 + |∆v|2

)
=

1

p

∫
Ω

|u|p ln |u|kdx+

∫
Ω

|v|p ln |v|kdx

 .

(3.7)
We define as in the mountain pass theorem due to Ambrosetti and Rabinowitz [1],

d
def
= inf

(u,v)∈(H2
0 (Ω))2\{(0,0)}

sup
λ≥0

J(λu, λv). (3.8)

Similar to the results in [45] one has

0 < d = inf
(u,v)∈N

J(u, v). (3.9)

Now, we introduce the potential well

W =
{
(u, v) ∈ [H2

0 (Ω)]
2; J(u, v) < d

}
∪ {(0, 0)},

and partition it into two sets as follows:

W1=

(u, v) ∈ [H2
0 (Ω)]

2;
1

2

(
1− β

λ1

)(
|∆u|2+|∆v|2

)
>
1

p

∫
Ω

(
|u|p ln |u|k+|v|p ln |v|k

)
dx

 ∪ {(0, 0)}, (3.10)

W2=

(u, v) ∈ [H2
0 (Ω)]

2;
1

2

(
1− β

λ1

)(
|∆u|2+|∆v|2

)
<
1

p

∫
Ω

(
|u|p ln |u|kdx+ln |v|k

)
dx

 . (3.11)

Now, we define by W1 the set of stability for the problem (1.1)–(1.5). Before start the section of existence
and uniqueness of solution, we will prove that W1 is invariant set for subcritical initial energy E(0) < d .

Proposition 3.1 Let (u0, v0) ∈ [W1]
2 and (u1, v1) ∈ [L2(Ω)]2 . If E(0) < d then u(t) ∈ W1.

Proof Let T > 0 be the maximum existence time. From (3.2) we get

E(t) ≤ E(0) < d, for all t ∈ [0, T ).
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and then,

1

2

[
|ut(t)|2 + |vt(t)|2

]
+ J(u(t), v(t)) < d, for all t ∈ [0, T ). (3.12)

Note that in W1 we have I(u(t)) > 0 for all t ∈ (0, T ) . Arguing by contradiction, we suppose that there
exists a first t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u(t)) > 0 for all 0 ≤ t < t0 , that is,

1

2

[
|ut(t0)|2 + |vt(t0)|2

]
+ J(u(t0), v(t0)) = 0.

From the definition of N , we have that (u(t0), v(t0)) ∈ N , which leads to

J(u(t0), v(t0)) ≥ inf
(u(t),v(t))∈N

J(u(t), v(t)) = d.

We deduce
1

2

[
|ut(t0)|2 + |vt(t0)|2

]
+ J(u(t0), v(t0)) ≥ d,

which contradicts with (3.12). Then (u(t), v(t)) ∈ W1 for all t ∈ [0, T ) . 2

4. Existence of global solutions

In this section we prove the existence of global weak solutions of system (1.1)–(1.5).

Theorem 4.1 Let (u0, v0) ∈ [W1]
2 , (u1, v1) ∈ [L2(Ω)]2 and E(0) < d . If the hypothesis (H.1) and (H.2)

holds, then there exists functions u, v : [0, T ) → L2(Ω) in the class

(u, v) ∈
[
L∞(0, T ;H2

0 (Ω))
]2

, (4.1)

(ut, vt) ∈
[
L∞(0, T ;L2(Ω))

]2
, (4.2)

such that for all (w, z) ∈ [H2
0 (Ω)]

2

d

dt
(ut(t), w) + (∆u(t),∆w) +M

(
|∇u(t)|2 + |∇v(t)|2

)
(−∆u(t), w)

+(ut(t), w)− (|u(t)|p−2u(t) ln |u(t)|k, w) = 0, in D′(0, T ), (4.3)

d

dt
(vt(t), z) + (∆v(t),∆z) +M

(
|∇u(t)|2 + |∇v(t)|2

)
(−∆v(t), z)

+(vt(t), z)− (|v(t)|p−2v(t) ln |v(t)|k, z) = 0, in D′(0, T ), (4.4)

(u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1). (4.5)

Proof We use the Faedo–Galerkin’s method to prove the global existence of solutions. First the consider the
approximated problem. Then we obtain the a priori estimates needed to passage to the limit in the approximated
solutions. 2
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4.1. Approximated problem

Let (wν)ν∈N be a basis of H2
0 (Ω) by the eigenvectors of the operator −∆ , that is −∆wν = λνwν , with

λν → ∞ when ν → ∞ and wν

∣∣
∂Ω

=
∂wν

∂η

∣∣∣∣
∂Ω

= 0 .

Let Vm = Span[w1, w2, . . . , wm] and

um(t) =

m∑
j=1

gjm(t)wj , vm(t) =

m∑
j=1

hjm(t)wj

be a solution of the approximated system

(um
tt (t), w) + (∆um(t),∆w) +M

(
|∇um(t)|2 + |∇vm(t)|2

)
(−∆um(t), w)

+(um
t (t), w)− (|um(t)|p−2um(t) ln |um(t)|k, w) = 0, (4.6)

(vmtt (t), z) + (∆vm(t),∆z) +M
(
|∇um(t)|2 + |∇vm(t)|2

)
(−∆vm(t), z)

+(vmt (t), z)− (|vm(t)|p−2vm(t) ln |vm(t)|k, z) = 0, (4.7)

(um(0), vm(0)) = (u0m, v0m) → (u0, v0) strongly in [H2
0 (Ω)]

2, (4.8)

(um
t (0), vmt (0)) = (u1m, v1m) → (u1, v1) strongly in [L2(Ω)]2. (4.9)

The system (4.6)–(4.9) has a local solution in [0, tm) , 0 < tm ≤ T , by virtue of Carathéodory’s theorem,
see [7]. The following a priori estimates allow us to extend this solutions to the interval [0, T ) .

4.2. A priori estimates

Let w = um
t (t) and z = vmt (t) in (4.5) and (4.6), respectively, integrating from 0 to t , 0 ≤ t ≤ tm , and

summing up the results, we obtain

1

2

[
|um

t (t)|2 + |vmt (t)|2 + |∆um(t)|2 + |∆vm(t)|2 + M̂
(
|∇um(t)|2 + |∇vm(t)|2

)]
+

k

p2
(
|um(t)|pp + |vm(t)|pp

)
− 1

p

∫
Ω

|um(t)|p ln |um(t)|kdx+

∫
Ω

|vm(t)|p ln |vm(t)|kdx

+

t∫
0

(
|um

t (s)|2 + |vmt (s)|2
)
ds =

1

2

[
|u1m|2 + |v1m|2 + |∆u0m|2 + |∆v0m|2 + M̂

(
|∇u0m|2 + |∇v0m|2

)]
+

k

p2
(
|u0m|pp + |v0m|pp

)
− 1

p

∫
Ω

|u0m|p ln |u0m|kdx+

∫
Ω

|v0m|p ln |v0m|kdx

 , (4.10)

where

M̂(s) =

s∫
0

M(s)ds.
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Let

Em(t) =
1

2

[
|um

t (t)|2 + |vmt (t)|2 + |∆um(t)|2 + |∆vm(t)|2 + M̂
(
|∇um(t)|2 + |∇vm(t)|2

)]

+
k

p2
(
|um(t)|pp + |vm(t)|pp

)
− 1

p

∫
Ω

|um(t)|p ln |um(t)|kdx−
∫
Ω

|vm(t)|p ln |vm(t)|kdx

 . (4.11)

Then,

Em(t) +

t∫
0

(
|um

t (s)|2 + |vmt (s)|2
)
ds = Em(0). (4.12)

Now, by (H.2) it follows that

M̂
(
|∇um(t)|2 + |∇vm(t)|2

)
≥ − β

λ1

(
|∆um(t)|2 + |∆vm(t)|2

)
(4.13)

and

M̂
(
|∇u0m|2 + |∇v0m|2

)
≤ m0

λ1

(
|∆u0m|2 + |∆v0m|2

)
(4.14)

where m0 = max
0≤s≤|∇u0m|2+|∇v0m|2≤C

M(s) .

Then by (4.10)–(4.14), we have

1

2

[
|um

t (t)|2 + |vmt (t)|2 +
(
1− β

λ1

)(
|∆um(t)|2 + |∆vm(t)|2

)]
+

k

p2
(
|um(t)|pp + |vm(t)|pp

)
− 1

p

∫
Ω

|um(t)|p ln |um(t)|kdx+

∫
Ω

|vm(t)|p ln |vm(t)|kdx


≤ Em(t) ≤ Em(0) =

1

2
|u1m|2 + 1

2
|v1m|2 + C1J(u0m, v0m), (4.15)

where C1 = C1(m0, λ1, β) .
We have by (4.9) and J(u0, v0) < d , for sufficiently large m and t ≥ 0 , J(u0m, v0m) < d and

1

2

(
|u1m|2 + |v1m|2

)
≤ C1 , C1 > 0 constant independent of m and t . Hence, by (4.15)

1

2

[
|um

t (t)|2 + |vmt (t)|2 +
(
1− β

λ1

)(
|∆um(t)|2 + |∆vm(t)|2

)]
+

k

p2
(
|um(t)|pp + |vm(t)|pp

)
− 1

p

∫
Ω

|um(t)|p ln |um(t)|kdx+

∫
Ω

|vm(t)|p ln |vm(t)|kdx

 ≤ C2, (4.16)

C2 > 0 is a constant independent of m and t .
Then we can extended the approximated solutions (um(t), vm(t)) to the interval [0, T ) , T > 0 .
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So, by (4.12) and (4.16) it follows that

(um, vm) are bounded in
[
L∞ (0, T ;H2

0 (Ω)
)
∩ L∞ (0, T ;Lp(Ω))

]2
, (4.17)

(um
t , vmt ) are bounded in

[
L∞ (0, T ;L2(Ω)

)
∩ L2

(
0, T ;L2(Ω)

)]2
. (4.18)

4.3. Passage to the limit

From the estimates (4.17) and (4.18), there exists subsequences of (um)m∈N and (vm)m∈N , that we denote
by (um)m∈N and (vm)m∈N such that as m → ∞

(um, vm)
∗
⇀ (u, v) weakly star in

[
L∞(0, T ;H2

0 (Ω))
]2

, (4.19)

(um
t , vmt )

∗
⇀ (ut, vt) weakly star in

[
L∞(0, T ;L2(Ω))

]2
. (4.20)

From (4.19) and (4.20) and Aubin–Lions’s Lemma ([22] Theorem 5.1), we get

(um, vm) → (u, v) strongly in
[
L2(0, T ;H2

0 (Ω))
]2

. (4.21)

In particular,

(um, vm) → (u, v) strongly in
[
L2(0, T ;L2(Ω))

]2 (4.22)

and so
(um, vm) → (u, v) a.e. in Ω× (0, T ). (4.23)

Since M is continuos, it follows that

M(|∇um|2 + |∇vm|2) → M(|∇u|2 + |∇v|2) strongly in L2(0, T ). (4.24)

Therefore

M
(
|∇um|2 + |∇vm|2

)
(−∆um,−∆vm) ⇀ M

(
|∇u|2 + |∇v|2

)
(−∆u,−∆v)

weakly in [L2
(
0, T ;L2(Ω)

)
]2. (4.25)

Now, we observe that Sobolev inequality leads to

∫
Ω

∣∣∣|um(t)|p−2um(t) ln |um(t)|
∣∣∣2dx ≤ |um(t)|2p2p ≤ C2p|∇um|2p ≤ C2p

λp
1

|∆um|2 ≤ C3.

Similarly, ∫
Ω

∣∣∣|vm(t)|p−2vm(t) ln |vm(t)|
∣∣∣2dx ≤ C3,

with C3 > 0 constant independent of m and t .
Whence,(

|um|p−2um ln |um|k
)

and
(
|vm|p−2vm ln |vm|k

)
are bounded in L2

(
0, T ;L2(Ω)

)
. (4.26)
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By (4.22) we have (
|um|p−2um ln |um|k

)
→
(
|u|p−2u ln |u|k

)
a.e. in Ω× (0, T ), (4.27)(

|vm|p−2vm ln |vm|k
)
→
(
|v|p−2v ln |v|k

)
a.e. in Ω× (0, T ). (4.28)

So, by (4.26)–(4.28) and Lions’s Lemma [22], we have(
|um|p−2um ln |um|k, |vm|p−2vm ln |vm|k

)
⇀
(
|u|p−2u ln |u|k, |v|p−2v ln |v|k

)
weakly in

[
L2
(
0, T ;L2(Ω)

)]2
. (4.29)

By the convergence (4.19), (4.20), (4.24)–(4.29), we can pass to the limit approximated equations (4.6)
and (4.7) and obtain, for all w, z ∈ Vm , in D′(0, T )

d

dt
(ut(t), w) + (∆u(t),∆w) +M

(
|∇u(t)|2 + |∇v(t)|2

)
(−∆u(t), w) + (ut(t), w)− (|u|p−2u ln |u|k, w) = 0

(4.30)

and

d

dt
(vt(t), z) + (∆v(t),∆z) +M

(
|∇u(t)|2 + |∇v(t)|2

)
(−∆v(t), z) + (vt(t), z)− (|v|p−2v ln |v|k, z) = 0. (4.31)

As Vm is dense in H2
0 (Ω) , the equations (4.30) and (4.31) are valid for all w, z ∈ H2

0 (Ω) . The verification
of the initial data is obtained in a standard way. The proof of Theorem 4.1 is complete.

5. Exponential decay

In this section we study the asymptotic behavior of solutions to the system (1.1)–(1.5). We show using
the Nakao’s method that the energy associated the system is exponentially stable. The main result of this paper
is given by the following theorem.

Theorem 5.1 Under the hypotheses of Theorem 4.1 the energy associated to system (1.1)–(1.5) satisfies

E(t) ≤ C0e
−αt, for all t ≥ 0,

where C0 and α are positive constants.

Proof Let w = ut(t) and z = vt(t) in the equations (4.30) and (4.31), respectively, and summing up the
results, we obtain

d

dt

[
1

2
|ut(t)|2 +

1

2
|vt(t)|2 +

1

2
|∆u(t)|2 + 1

2
|∆u(t)|2 + 1

2
M̂
(
|∇u(t)|2 + |∇v(t)|2

)
+

k

p2
(
|u(t)|pp + |v(t)|pp

)
− 1

p

∫
Ω

|u(t)|p ln |u(t)|kdx+

∫
Ω

|v(t)|p ln |v(t)|kdx

+ |ut(t)|2 + |vt(t)|2 = 0.

(5.1)
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As the energy is given by

E(t) =
1

2

[
|ut(t)|2 + |vt(t)|2 + |∆u(t)|2 + |∆v(t)|2 + M̂

(
|∇u(t)|2 + |∇v(t)|2

)]

+
k

p2
(
|u(t)|pp + |v(t)|pp

)
− 1

p

∫
Ω

|u(t)|p ln |u(t)|kdx+

∫
Ω

|v(t)|p ln |v(t)|kdx

 , (5.2)

then by (5.1) and (5.2), we have
d

dt
E(t) + |ut(t)|2 + |vt(t)|2 ≤ 0. (5.3)

Integrating from t to t+ 1 , t ≥ 0 , we obtain

t+1∫
t

(
|ut(s)|2 + |vt(s)|2

)
ds ≤ E(t)− E(t+ 1)

def
= F 2(t). (5.4)

Thus, there exists t1 ∈
[
t, t+ 1

4

]
, t2 ∈

[
t+ 3

4 , t+ 1
]

such that

|ut(ti)|+ |vt(ti)| ≤ 4F (t), i = 1, 2. (5.5)

Let w = u(t) and z = v(t) in the equations (4.30) and (4.31), respectively. Integrating from t1 to t2 ,
summing up the results and using the hyphotesis (H.1), we have

t2∫
t1

(1− β

λ1

)(
|∆u(s)|2 + |∆v(s)|2

)
−
∫
Ω

|u(s)|p ln |u(s)|kdx −
∫
Ω

|v(s)|p ln |v(s)|kdx

 ds ≤

|ut(t1)||u(t1)|+ |ut(t2)||u(t2)|+ |vt(t1)||v(t1)|+ |vt(t2)||v(t2)|+

t2∫
t1

(|ut(s)||u(s)|+ |vt(s)||v(s)|) dx. (5.6)

From (5.5) and Sobolev-Poincaré inequality, we get

|ut(ti)||u(ti)|+ |vt(ti)||v(ti)| ≤ 8C̃F (t) (|∆u(ti)|+ |∆v(ti)|) ≤ 8C̃F (t) ess sup
t≤s≤t+1

E
1
2 (s), (5.7)

i = 1, 2 and C̃ > 0 constant such that |u| ≤ C̃|∆u| and

t2∫
t1

(|ut(s)||u(s)|+ |vt(s)||v(s)|) ds ≤ C̃

t2∫
t1

(|ut(s)||∆u(s)|+ |vt(s)||∆v(s)|) ds

≤ C̃2

δ
F 2(t) + δ

t2∫
t1

(
|∆u(s)|2 + |∆v(s)|2

)
ds, (5.8)

where 0 < δ < 1− β

λ1
.
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By (5.6)–(5.8), we obtain

t2∫
t1

(1− β

λ1
− δ

)(
|∆u(s)|2 + |∆v(s)|2

)
−
∫
Ω

|u(s)|p ln |u(s)|kdx −
∫
Ω

|u(s)|p ln |u(s)|kdx

 ds ≤

C1

[
F (t) ess sup

t≤s≤t+1
E

1
2 (s) + F 2(t)

]
def
= G2(t). (5.9)

From (5.3) and (5.8) it follows that

∫ t2

t1

E(s)ds ≤ C2[F
2(t) +G2(t)].

Then, there exists t∗ ∈ [t1, t2] such that

E(t∗) ≤ C3[F
2(t) +G2(t)]. (5.10)

From (5.3)

ess sup
t≤s≤t+1

E(s) ≤ E(t∗) +

t+1∫
t

(
|ut(s)|2 + |vt(s)|2

)
ds

≤ C4[F
2(t) +G2(t)] ≤ C5

[
F 2(t) + F (t) ess sup

t≤s≤t+1
E

1
2 (s)

]
≤ C6F

2(t) +
1

2
ess sup
t≤s≤t+1

E(s),

therefore, by (5.4), we get

esssup
t≤s≤t+1

E(s) ≤ C7F
2(t) = C7[E(t)− E(t+ 1)],

where Ci > 0 , i = 1, 2, . . . , 7 are positive constants.
By Lemma 2.2, we have

E(t) ≤ Ce−αt, for all t ≥ 0,

where C and α are positive constant.
2

6. Conclusion and open problems

Our approach was made to subcritical initial energy E(0) < d . We strongly use the fact that the initial energy
to be positive in the set of stability, created by the Nehari manifold. The cases for critical initial E(0) = d and
supercritical initial energy E(0) > d also can be analyzed. It is an interesting question to analyze the finite
time blow-up behavior in the instability set.
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