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1. Introduction
FH Jackson firstly introduced the subject of q -derivative and q -difference operator for a function f on [0,∞)

by

Dqf(t) =
f(qt)− f(t)

(q − 1)t
, t ̸= 0, (1.1)

Dqf(0) = lim
t→0

Dqf(t), t = 0, (1.2)

and gave its properties in a systematic way [20]. Carmichael presented the general theory of linear quantum
difference equations [7]. This subject has gained an important place in the literature with the results obtained
from various studies, see [1–4, 9, 12, 14, 19, 25, 29].

One of the reasons why quantum calculus is so important is that it has various applications in physics,
e.g., [10, 11, 13, 24]. Studies on quantum calculus have revealed postquantum calculus. While quantum
calculus deals with a q -number with one base, the postquantum calculus deals with p and q -numbers with two
independent variables p and q . Many mathematicians and physicists have studied the (p, q) -calculus in many
different research fields, we refer the readers to [6, 8, 18, 21, 27, 28] for details. One of these fields is related
with (p, q) -difference equations.

Boundary value problems are studied for (p, q) -difference equations as in q -difference equations, e.g.,
[15, 22, 26]. In [26], the authors studied existence and uniqueness of solutions for a boundary value problem
(p, q) -differential equation with nonlocal integral boundary condition. They presented some results by using
Banach fixed point theorem, Boyd and Wong fixed point theorems for nonlinear contractions, and Leray–
Schauder nonlinear alternative.
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In this paper, we study the existence of solution for a (p, q) -difference equation with integral boundary
conditions of the form 

D2
p,qu(t) + f(t, u(t)) = 0, t ∈ (0, 1) ,

u(0) =

1∫
0

u(t)dp,qt, u(1) =

1∫
0

tu(t)dp,qt,
(1.3)

where 0 < q < p ≤ 1, Dp,q is (p, q) -difference operator and f : [0, 1]× R → R is a given function.
A main motivation of our study is the following boundary value problem:


u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1) ,

u(0) =

1∫
0

u(t)dt, u(1) =

1∫
0

tu(t)dt
(1.4)

which Guezane-Lakoud et al. obtained by using Banach contraction principle and Leray–Schauder nonlinear
alternative (see [17]). In addition, in [30], the authors studied the existence results for the following second-order
boundary value problem:


D2

qu(t) + f(t, u(t)) = 0, t ∈ (0, 1) ,

u(0) =

1∫
0

u(t)dqt, u(1) =

1∫
0

tu(t)dqt,
(1.5)

by using Banach’s contraction principle, Leray–Schauder nonlinear alternative, Boyed and Wong fixed point
theorem, and Krasnoselskii’s fixed point theorem.

At the end of this section, we state the organization of the paper as follows. Section 2 contains some
basic definitions and lemmas of the (p, q) -calculus that will be needed in the next sections. The main existence
results are given in Section 3. Finally, in Section 4, some illustrative examples are given to justify the obtained
results.

2. Preliminaries

In this section, we review some of the standard facts on (p, q) -calculus (see [27]). Without loss of generality,
we can assume that p+ q ̸= 1 for 0 < q < p ≤ 1 throughout the paper.

Assume that f : [0, T ] → R, T > 0 . Then the (p, q) -derivative of function f is defined by the formula

Dp,qf(t) =
f(pt)− f(qt)

(p− q)t
, t ̸= 0, (2.1)

Dp,qf(0) = lim
t→0

Dp,qf(t), t = 0. (2.2)

Remark 2.1 We note that the function Dp,qf(t) is defined on [0, T/p] which is extended from [0, T ] of a
function f(t) . Moreover, f is called (p, q)-differentiable on [0, T/p] if Dp,qf(t) exists ∀t ∈ [0, T/p] .
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Assume that f : [0, T ] → R, T > 0 . We define the (p, q) -integral of f by the formula

t∫
0

f(s)dp,qs = (p− q)t

∞∑
n=0

qn

pn+1
f

(
qn

pn+1
t

)
(2.3)

whenever the right hand side converges.

Remark 2.2 We note that the domain of function
t∫
0

f(s)dp,qs is [0, pT ] which constricts from [0, T ] of a

function f(t) since 0 < p ≤ 1 .

In the following theorem, we have compiled some basic facts properties of (p, q) -differentiation and (p, q) -
integration, respectively.

Theorem 2.3 Assume that f, g : [0, T ] → R, T > 0, are (p, q)-differentiable functions on [0, T/p] . Then

(i.) f + g : [0, T ] → R is (p, q)-differentiable on [0, T/p] and

Dp,q (f(t) + g(t)) = Dp,qf(t) +Dp,qg(t). (2.4)

(ii.) For any constant c , cf : [0, T ] → R is (p, q)-differentiable on [0, T/p] and

Dp,q (cf(t)) = cDp,qf(t). (2.5)

(iii.) fg : [0, T ] → R is (p, q)-differentiable on [0, T/p] and

Dp,q (fg) (t) = f(pt)Dp,qg(t) + g(qt)Dp,qf(t), (2.6)

Dp,q (fg) (t) = g(pt)Dp,qf(t) + f(qt)Dp,qg(t). (2.7)

(iv.) If g(t) ̸= 0 , then f/g is (p, q)-differentiable on [0, T/p] with

Dp,q

(
f

g

)
(t) =

g(qt)Dp,qf(t)− f(qt)Dp,qg(t)

g(pt)g(qt)
, (2.8)

Dp,q

(
f

g

)
(t) =

g(pt)Dp,qf(t)− f(pt)Dp,qg(t)

g(pt)g(qt)
. (2.9)

Theorem 2.4 Assume that f, g : [0, T ] → R, T > 0 are continuous functions and constants 0 < q < p ≤
1, a, b ∈ [0, T ] . The following formulas hold:

(i.) The (p, q)-integration by parts is given by

b∫
a

f(pt)Dp,qg(t)dp,qt = f(t)g(t)
∣∣∣b
a
−

b∫
a

g(qt)Dp,qf(t)dp,qt. (2.10)

(ii.)

Dp,q

t∫
0

f(s)dp,qs = f(t). (2.11)
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(iii.)
t∫

0

Dp,qf(s)dp,qs = f(t)− f(0). (2.12)

(iv.)
t∫

a

Dp,qf(s)dp,qs = f(t)− f(a) for a ∈ (0, t). (2.13)

Theorem 2.5 Assume that a function f : [0, T ] → R, T > 0 . Then for t ∈ [0, p2T ] , we have

t∫
0

s∫
0

f(r)dp,qrdp,qs =
1

p

t∫
0

(t− qs)f

(
s

p

)
dp,qs. (2.14)

Proof Using integration by parts formula (2.10), we have

t∫
0

s∫
0

f(r)dp,qrdp,qs =

t∫
0

Dp,q(s)

s∫
0

f(r)dp,qrdp,qs

=

s s/p∫
0

f(r)dp,qr

∣∣∣∣∣
s=t

s=0

− 1

p

t∫
0

qsf

(
s

p

)
dp,qs

=t

t/p∫
0

f(s)dp,qs−
1

p

t∫
0

qsf

(
s

p

)
dp,qs.

By changing variables in the first integrand of the right side of the last equality, we obtain (2.14). 2

Remark 2.6 Another proof of Theorem 2.5 is given in [15, 26].

Remark 2.7 We note that in a particular case of p = 1 , all of the above theorems, then all of the presented
results are reduced to corresponding results of the usual q -calculus.

Lemma 2.8 For any h ∈ C([0, 1],R) , the boundary value problem


D2

p,qu(t) + h(t) = 0,

u(0) =
1∫
0

u(t)dp,qt, u(1) =
1∫
0

tu(t)dp,qt
(2.15)

is equivalent to the integral equation
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u(t) =− 1

p

t∫
0

(t− qs)h

(
s

p

)
dp,qs+

1

p

p+ q

p+ q − 1

1∫
0

(1− qs)h

(
s

p

)
dp,qs

−
(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((1− t)(p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

])
h

(
s

p2

)
dp,qs.

(2.16)

Proof Applying double (p, q) -integration to the first equation of (2.15), then changing the order of (p, q) -
integration, we have

u(t) = A+Bt− 1

p

t∫
0

(t− qs)h(s/p)dp,qs. (2.17)

Using the first integral condition, we get

u(0) = A =

1∫
0

u(s)dp,qs. (2.18)

By replacing A in (2.17), we get

u(t) =

1∫
0

u(s)dp,qs+Bt− 1

p

t∫
0

(t− qs)h(s/p)dp,qs. (2.19)

Using the second integral condition, we obtain

B =
1

p

1∫
0

(1− qs)h(s/p)dp,qs−
1∫

0

u(s)dp,qs+

1∫
0

su(s)dp,qs. (2.20)

By replacing B in (2.19), we have

u(t) =− 1

p

t∫
0

(t− qs)h(s/p)dp,qs+
t

p

1∫
0

(1− qs)h(s/p)dp,qs

+ (1− t)

1∫
0

u(s)dp,qs+ t

1∫
0

su(s)dp,qs. (2.21)

Integrating (2.21) over [0, 1] , we obtain
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1∫
0

u(s)dp,qs =− p2 − q2

p3

1∫
0

(s− qs2)h

(
s

p2

)
dp,qs

+
1

p

1∫
0

(1− qs)h

(
s

p

)
dp,qs+

1∫
0

su(s)dp,qs. (2.22)

Substituting (2.22) in (2.21), we have

u(t) =− 1

p

t∫
0

(t− qs)h

(
s

p

)
dp,qs+

1

p

1∫
0

(1− qs)h

(
s

p

)
dp,qs

−
(1− t)

(
p2 − q2

)
p3

1∫
0

(s− qs2)h

(
s

p2

)
dp,qs+

1∫
0

su(s)dp,qs. (2.23)

By integrating the equality (2.23) multiplied by s over [0, 1] , we obtain

1∫
0

su(s)dp,qs =− (p− q)(p+ q)

p3(p+ q − 1)

1∫
0

(s2 − qs3)h

(
s

p2

)
dp,qs+

1

p(p+ q − 1)

1∫
0

(1− qs)h

(
s

p

)
dp,qs

−
(
p2 − q2

)
p3

(
p2 + (p+ q)(q − 1)

)
(p+ q − 1) (pq + p2 + q2)

1∫
0

(s− qs2)h

(
s

p2

)
dp,qs.

(2.24)

On substituting (2.23) into (2.24), we get

u(t) =− 1

p

t∫
0

(t− qs)h

(
s

p

)
dp,qs+

1

p

p+ q

p+ q − 1

1∫
0

(1− qs)h

(
s

p

)
dp,qs

−
(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((1− t)(p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

])
h

(
s

p2

)
dp,qs.

The proof is now completed. 2

We will denote by C = C([0, 1],R) the Banach space of all continuous functions from [0, 1] to R , endowed
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with the norm defined by ||u|| = sup{|u(t)|, t ∈ [0, 1]} . We regard F : C → C as being defined an operator as

(Fu)(t) =− 1

p

t∫
0

(t− qs)f (s, u(ps)) dp,qs+
1

p

p+ q

p+ q − 1

1∫
0

(1− qs)f (s, u(ps)) dp,qs

−
(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((1− t)(p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

])
f
(
s, u(p2s)

)
dp,qs.

(2.25)

It should be noted that problem (1.3) has solutions if and only if the operator F has fixed points. For
simplicity, we set a constant A as

A =
1

(p+ q)
+

1

p+ q − 1
+

(p− q)

p (p2 + pq + q2)

+
1

(p+ q − 1) (p2 + pq + q2) (p2 + q2)
+

(p− q)
(
p2 + (p+ q)(q − 1)

)
p (p+ q − 1) (p2 + pq + q2)

2 . (2.26)

3. Existence results

In this section, we will deal with our main results. Our first result is based on the concept of Banach’s fixed
point theorem.

Theorem 3.1 Suppose that f : [0, 1]× R → R is a continuous function satisfying the conditions
(H1) |f(t, u)− f(t, v)| ≤ L|u− v| , ∀t ∈ [0, 1] and u, v ∈ R ,
(H2) LA < 1 ,
where L is a Lipschitz constant, and A is given by (2.26). Then problem (1.3) has a unique solution.

Proof We convert problem (1.3) to a fixed point problem u = Fu , where F : C → C is given by (2.25).
Suppose that sup

t∈[0,1]

|f(t, 0)| = M and set a constant R satisfying

R ⩾ MA
1− LA

.

We will first show that FBR ⊂ BR, where BR = {u ∈ C : ||u|| ≤ R} .
For any u ∈ BR , we have
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||Fu|| ≤ sup
t∈[0,1]

∣∣∣∣∣∣−1

p

t∫
0

(t− qs)
(
L||u||+M

)
dp,qs+

1

p

p+ q

p+ q − 1

1∫
0

(1− qs)
(
L||u||+M

)
dp,qs

−
(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([(
p2 + pq + q2

)(
(1− t)(p+ q − 1) + s

)]

+
[
p2 + (p+ q)(q − 1)

])(
L||u||+M

)
dp,qs

∣∣∣∣
≤ (LR +M) sup

t∈[0,1]

∣∣∣∣∣∣−1

p

t∫
0

(t− qs)dp,qs+
1

p

p+ q

p+ q − 1

1∫
0

(1− qs)dp,qs

−
(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([(
p2 + pq + q2

)(
(1− t)(p+ q − 1) + s

)]

+
[
p2 + (p+ q)(q − 1)

])
dp,qs

∣∣∣∣
≤ (LR +M)

1

p
sup

t∈[0,1]

∣∣∣∣∣∣
t∫

0

(t− qs)dp,qs

∣∣∣∣∣∣+ 1

p

p+ q

p+ q − 1
sup

t∈[0,1]

∣∣∣∣∣∣
1∫

0

(1− qs)dp,qs

∣∣∣∣∣∣
+

(
p2 − q2

)
p3 (p+ q − 1) (pq + p2 + q2)

sup
t∈[0,1]

∣∣∣∣∣∣
1∫

0

(s− qs2)

([(
p2 + pq + q2

)(
(1− t)(p+ q − 1) + s

)]

+
[
p2 + (p+ q)(q − 1)

])
dp,qs

∣∣∣∣
≤ (LR +M)

(
1

(p+ q)
+

1

p+ q − 1
+

(p− q)

p (p2 + pq + q2)

+
1

(p+ q − 1) (p2 + pq + q2) (p2 + q2)
+

(p− q)
(
p2 + (p+ q)(q − 1)

)
p (p+ q − 1) (p2 + pq + q2)

2

)
≤ (LR +M)A ≤ R.

Therefore, FBR ⊂ BR .

Next, we will show that F is a contraction. For any u, v ∈ C and ∀t ∈ [0, 1] , we have
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||Fu−Fv|| ≤ sup
t∈[0,1]

L||u− v||

−1

p

t∫
0

(t− qs)dp,qs+
1

p

p+ q

p+ q − 1

1∫
0

(1− qs)dp,qs

+

(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([(
p2 + pq + q2

)(
(1− t)(p+ q − 1) + s

)]

+
[
p2 + (p+ q)(q − 1)

])
dp,qs

}
≤LA||u− v||.

As LA < 1 , F is a contraction. By the Banach’s contraction mapping principle, we obtain that the
conclusion of the theorem which completes the proof. 2

Next, we are in a position to prove the existence of solutions of problem (1.3) by using the following
Leray–Schauder nonlinear alternative:

Theorem 3.2 (Nonlinear Alternative for Single Valued Maps [16]) Assume that C is a closed convex
subset of a Banach space E . Let U be an open subset of C , with 0 ∈ U . Then any continuous, compact (that
is, F(U) is a relatively compact subset of C ) map F : U → C has at least one of the following properties:

(1) F has a fixed point in U ,
(2) There exist a u ∈ ∂U (the boundary of U in C ) and λ ∈ (0, 1) such that u = λF(u) .

Theorem 3.3 Assume that:
(H3) There exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function φ ∈

L1([0, 1],R+) with |f(t, u)| ≤ φ(t)ψ(∥u∥) , ∀(t, u) ∈ [0, 1]× R ;
(H4) There exists a constant M > 0 such that

M

ψ(∥u∥)∥φ∥L1A
> 1,

where f(x) = ∥φ∥L1 =

1∫
0

φ(s)dpqs ̸= 0.

Then problem (1.3) has at least one solution.

Proof We define F : C → C as in (2.25). The proof will be divided into three steps.
(1) F maps bounded sets into bounded sets in C([0, 1],R) .
Let BK = {u ∈ C([0, 1],R) : ||u|| ≤ K} be a bounded set in C([0, 1],R) and u ∈ BK. Then we obtain
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conditions

|Fu(t)| ≤1

p

t∫
0

(t− qs) |f(s, u(ps))| dp,qs+
1

p

p+ q

p+ q − 1

1∫
0

(1− qs) |f(s, u(ps))| dp,qs

+

(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((1− t)(p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

]) ∣∣f (s, u(p2s))∣∣ dp,qs
≤ψ (||u||) ||φ||L1

1

p

t∫
0

(t− qs)dp,qs+ ψ (||u||) ||φ||L1

1

p

p+ q

p+ q − 1

1∫
0

(1− qs)dp,qs

+
ψ (||u||) ||φ||L1

(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((1− t)(p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

])
dp,qs

= ψ (||u||) ||φ||L1A.

Thus, we obtain

||Fu|| ≤ ψ(K)||φ||L1A.

(2) F maps bounded sets into equicontinuous sets of C([0, 1],R).

Let r1, r2 ∈ [0, 1], r1 < r2 and BK be a bounded set of C([0, 1],R) as before, then for u ∈ BK , we get

|Fu(r2)−Fu(r1)|

≤ 1

p

r1∫
0

|r2 − r1|φ(s)ψ(K)dp,qs+

r2∫
r1

(r2 − qs)φ(s)ψ(K)dp,qs

+

(
p2 − q2

)
p3 (p+ q − 1) (pq + p2 + q2)

1∫
0

(s− qs2)
(
p2 + pq + q2

)
(p+ q − 1) |r2 − r1|φ(s)ψ(K)dp,qs.

As (r2 − r1) → 0 , the right hand side of the above inequality tends to zero independence from u ∈ BK .
Therefore, F is equicontinuous. As F satisfies the above assumptions, by aid of the Arzela-Ascoli Theorem, it
follows that F : C([0, 1],R) → C([0, 1],R) is completely continuous.
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(3) Setting u = λFu , where λ ∈ (0, 1) , we have for t ∈ [0, 1]

|u(t)| = |λFu(t)|

≤ 1

p

t∫
0

(t− qs) |f(s, u(ps))| dp,qs+
1

p

p+ q

p+ q − 1

1∫
0

(1− qs) |f(s, u(ps))| dp,qs

+

(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((1− t)(p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

]) ∣∣f (s, u(p2s))∣∣ dp,qs
≤ ψ (||u||) ||φ||L1A,

and as a consequence of this last equality, we have

||u||
ψ(||u||)||φ||L1A

≤ 1.

Under the assumption (H4 ), there exists M such that ||u|| ̸= M . Define

U = {u ∈ C([0, 1],R) : ||u|| < M}.

Observe that the operator F : U → C([0, 1],R) is continuous and completely continuous (which is well
known to be compact restricted to bounded sets).

From the choice of U , there is no u ∈ ∂U such that u = λFu for some λ ∈ (0, 1) . We conclude from
nonlinear alternative of Leray–Schauder type that F has a fixed point u ∈ U , which is a solution of problem
(1.3). This finishes the proof.

2

The third result is derived from the following Boyed and Wong fixed point theorem.

Definition 3.4 [29] Let set E be a Banach space and set A : E → E be a mapping. A is called a nonlinear
contraction if there exists a continuous nondecreasing function Ψ : R+ → R+ with Ψ(0) = 0 and Ψ(ρ) < ρ for
all ρ > 0 has the following property:

||Ax− Ay|| ≤ Ψ(||x− y||), ∀x, y ∈ E.

Lemma 3.5 (Boyed and Wong) [5] Assume that E is a Banach space and set A : E → E is a nonlinear
contraction. Then, A has a unique fixed point in E .

Theorem 3.6 One supposes that
(H5) there exists a continuous function h : [0, 1] → R+ with the property that

|f(t, x)− f(t, y)| ≤ h(t)
|x− y|

G+ |x− y|
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∀t ∈ [0, 1] and x, y ≥ 0 , where

G =
1 + 2 (p+ q)

p (p+ q − 1)

1∫
0

(1− qs)h(s)dp,qs

+

(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

])
h(s)dp,qs.

Then, problem (1.3) has a unique solution.

Proof Consider the operator F : C → C defined by (2.25). We set a continuous nondecreasing function
Ψ : R+ → R+ by

Ψ(ρ) =
Gρ

G+ ρ
, ∀ρ ≥ 0,

with Ψ(0) = 0 and Ψ(ρ) < ρ , ∀ρ > 0 . Let u, v ∈ C . Then, we get

|f(s, u(s))− f(s, v(s))| ≤ h(s)
|u− v|

G+ |u− v|
.

Therefore, we have
|Fu(t)−Fv(t)|

≤

{
1

p

1∫
0

(1− qs)h(s)dp,qs+
1

p

p+ q

p+ q − 1

1∫
0

(1− qs)h(s)dp,qs

+

(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

])
h(s)dp,qs

}
× ||u− v||
G+ ||u− v||

.

This gives that ||Fu− Fv|| ≤ Ψ(||u− v||) . Hence, we see that F is a nonlinear contraction. Therefore,
by Lemma 3.5, the operator F has a unique fixed point in C , which is a unique solution of problem (1.3). 2

As a next result, we prove the existence of solutions of (1.3) by using Krasnoselskii’s fixed point theorem
below.

Theorem 3.7 [23] Let K be a bounded closed convex and nonempty subset of a Banach space X . Let A, B

be operators such that:
(1) Ax+By ∈ K whenever x, y ∈ K .
(2) A is compact and continuous.
(3) B is a contraction mapping.
Then, there exists z ∈ K such that z = Az +Bz.
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Theorem 3.8 Let f : [0, 1] × R → R be a continuous function satisfying (H1) , also the following assumption
holds:

(H6) |f(t, u)| ≤ µ(t), ∀(t, u) ∈ [0, 1]× R , and µ ∈ L1([0, 1],R+) .

If

L
{

1

p+ q
+

(p2 − q2)

p(p+ q − 1)(p2 + pq + q2)2

+
p− q

(p+ q − 1)(p2 + q2)(p2 + pq + q2)
+

(p− q)(1 + p+ q)

p(p+ q − 1)(p2 + pq + q2)

}
< 1,

(3.1)

then problem (1.3) has at least one solution on [0, 1] .

Proof Defining max
t∈[0,1]

|µ(t)| = ||µ|| and fixing a constant R ≥ ||µ||A , where A is defined by (2.25), and

consider BR = {u ∈ C : ||µ|| ≤ R} .

We regard the operators F1 and F2 on the ball BR as

(F1u)(t) =− 1

p

t∫
0

(t− qs)f(s, u(s))dpqs,

(F2u)(t) =
1

p

p+ q

p+ q − 1

1∫
0

(1− qs)f(s, u(ps))dp,qs

−
(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((1− t)(p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

])
f
(
s, u(p2s)

)
dp,qs.

For u, v ∈ BR, we have

||F1u+ F2v|| ≤ ||µ||A ≤ R.

This implies that F1u+F2v ∈ BR . In view of condition (3.1), it follows that F2 is a contraction mapping.

At present, we will show below that F1 is compact and continuous. The continuity of f together
with the assumption (H6 ) yields that the operator F1 is continuous and uniformly bounded on BR . Setting
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sup
(t,u)∈[0,1]×BR

|f(t, u)| = fmax <∞ , also for t1, t2 ∈ [0, 1] with t1 ≤ t2 and u ∈ BR , we obtain that

|F1u(t2)− F1u(t1)| =

∣∣∣∣∣∣−1

p

t2∫
0

(t2 − qs)f(s, u(s))dpqs+
1

p

t1∫
0

(t1 − qs)f(s, u(s))dpqs

∣∣∣∣∣∣
=

∣∣∣∣∣∣1p
t2∫
0

(t2 − qs)f(s, u(s))dpqs−
1

p

t1∫
0

(t1 − qs)f(s, u(s))dpqs

∣∣∣∣∣∣
=

∣∣∣∣∣∣1p
 t1∫

0

(t2 − t1)f(s, u(s))dpqs+

t2∫
t1

(t2 − qs)f(s, u(s))dpqs

∣∣∣∣∣∣
≤1

p
fmax

 t1∫
0

(t2 − t1)dpqs+

t2∫
t1

(t2 − qs)dpqs

 .

It is clear that as (t2 − t1) → 0 , the right-hand side of the above inequality tends to be zero. Thus,
F1 is relatively compact on BR . Hence, by the Arzela-Ascoli Theorem, F1 is compact on BR . Since all the
assumptions of Theorem 3.7 are satisfied and by conclusion of Theorem 3.7, we deduce that problem (1.3) has
at least one solution on [0, 1] . This completes the proof. 2

4. Illustrative examples

Example 4.1 Consider the following boundary value problem for second-order quantum (p, q)-difference equa-
tion of the form: 

D2
7
9 ,

5
7

u(t) +
te− sin(t2)

5(t+ et cos(t))
u(t) = 0, t ∈ [0, 1] ,

u(0) =

1∫
0

u(t)dp,qt, u(1) =

1∫
0

tu(t)dp,qt.

(4.1)

Setting constants p = 7

9
, q =

5

7
, and function f(t, u(t)) =

te− sin(t2)

5(t+ et cos(t))
u(t) , we have A ≈ 3.853 . Hence,

|f(t, u)−f(t, v)| ≤ 4

25
|u−v| , then the condition (H1) is satisfied with L =

4

25
. Indeed, we get LA ≈ 0.6165 < 1 .

Consequently, by Theorem 3.1, we conclude that problem 4.1 has a unique solution on [0, 1] .

Example 4.2 Consider the following boundary value problem for second-order quantum (p, q)-difference equa-
tion of the form: 

D2
7
8 ,

5
6

u(t) +

(
2t

3
+ 1

)
|u|

1 + |u|
= 0, t ∈ [0, 1] ,

u(0) =

1∫
0

u(t)dp,qt, u(1) =

1∫
0

tu(t)dp,qt.
(4.2)

Setting constants p = 7

8
, q =

5

6
, and function f(t, u(t)) = h(t)

|u|
1 + |u|

where h(t) =

(
2t

3
+ 1

)
, we get
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G =
1 + 2 (p+ q)

p (p+ q − 1)

1∫
0

(1− qs)

(
2s

3
+ 1

)
dp,qs

+

(
p2 − q2

)
p3 (p+ q − 1) (p2 + pq + q2)

1∫
0

(s− qs2)

([ (
p2 + pq + q2

)
((p+ q − 1) + s)

]

+
[
p2 + (p+ q)(q − 1)

])(2s

3
+ 1

)
dp,qs

≈4, 6896.

Hence, |f(t, u)−f(t, v)| ≤
(
2t

3
+ 1

)
|u− v|

4.6896 + |u− v|
, by Theorem 3.6, we conclude that problem 4.2 has

a unique solution on [0, 1] .

Example 4.3 Consider the following boundary value problem for second-order quantum (p, q)-difference equa-
tion of the form: 

D2
8
9 ,

15
18

u(t) +

(
e− sin t

3(1 + t)

|u(t)|
2 + |u(t)|

)
= 0, t ∈ [0, 1] ,

u(0) =

1∫
0

u(t)dp,qt, u(1) =

1∫
0

tu(t)dp,qt.
(4.3)

Setting constants p =
8

9
, q =

15

18
, and function f(t, u(t)) =

(
e− sin t

3(1 + t)

|u(t)|
2 + |u(t)|

)
, we have |f(t, u)| ≤

e− sin t

3(1 + t)
:= µ0(t) . Then the function f satisfies condition (H6) . Moreover, the condition (H1) is satisfied with

L = 1
3 and the condition (3.1) equals 0.7398 for values of p and q are given above.

Hence, by Theorem 3.8, we conclude that problem 4.3 has a unique solution on [0, 1] .
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