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Abstract: In this paper, we construct a new SEIR epidemic model reflecting the spread of infectious diseases. After
calculating basic reproduction number R0 by the next generation matrix method, we examine the stability of the model.
The model exhibits threshold behavior according to whether the basic reproduction number R0 is greater than unity
or not. By using well-known Routh-Hurwitz criteria, we deal with local asymptotic stability of equilibrium points of
the model according to R0. Also, we present a mathematical analysis for the global dynamics in the equilibrium points
of this model using LaSalle’s Invariance Principle associated with Lyapunov functional technique and Li-Muldowney
geometric approach, respectively.
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1. Introduction
Differential, difference, integral or integro-differential equations are widely used to explain relevant phenomena
in practical applications of areas such as physics, chemistry, biology, ecology, epidemiology, engineering and so
on [5–7, 16]. Especially applications in mathematical biology have recently received considerable attention.

Population dynamics, one of the fundamental issues of mathematical biology, is interested in changes
in population density caused by factors such as reproduction, mortality, and migration. The models reflected
population dynamics are stated with time derivatives of components consisting the system to talk about the
dynamic processes related to changes. By using system of differential equations, many authors describe the
models on population dynamics and analyze the stability of its, [3, 27].

Population dynamics makes mathematically researches possible in interesting phenomena such as epi-
demic diseases, too. Models reflected the spread of infectious diseases and its analysis are attracted particular
attention and so this branch is closely connected the theory of infectious diseases.

As is known, all creatures especially humans have been enormously influenced by infectious diseases during
their lives. Millions of people have died of various infectious diseases so far in history. Mankind has striven
to control the spread of infectious diseases, but this has not always been easy when considered in its entirety.
In this context, mathematical modeling, which is one of the main tools in epidemiology, has an important role
in understanding of the dynamics of spread of infectious diseases. In 1927, Kermack and McKendrick [19],
by using a system of ODE constructed a mathematical model to describe the spread of infectious diseases in a
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population. In this model, known as the SIR epidemic model in the literature, they divided the population into
nonintersecting three compartments; susceptibles (S ), infectious (I ) and removed individuals (R). Then many
authors studied on SIR model (see [1, 25] and references therein). On the other hand, different compartmental
epidemic models such as SIRS, SEIR and SV EIR have been introduced in lots of forms by many authors
and various results about these epidemic models have been obtained [9, 10, 17, 18, 26, 28].

As an example of classical SEIR models, in [26], the authors have considered the following model

dS

dt
= π − βSI − µS,

dE

dt
= βSI − (µ+ σ + τ)E,

dI

dt
= σE − (γ + µ+ δ) I,

dR

dt
= τE + γI − µR.

In general, the authors focus on stability analysis of their proposing models according to reproduction
number R0 defined as the number of secondary cases generated by an infectious. If R0 < 1 then invasion of
individuals by the pathogen does not give rise to a widespread epidemic and so the disease gradually becomes
extinct. Otherwise, that is for R0 > 1 , the disease continues to spread in the population.

The Routh-Hurwitz criteria and LaSalle’s invariance principle associated with Lyapunov functionals are
among the common tools used in stability analysis of epidemic models.

In this paper we construct a new SEIR model including distributed latent period. We assume that the
population consists of nonintersecting four compartments; susceptible (S ), exposed (E ), infectious (I ) and
removed (R). In this model, the pathogen can be transmitted from the infectious to the susceptible when a
susceptible comes into an effective contact with an infectious individual. In this case the susceptible individual
becomes a candidate to be infectious with a certain probability changing according to some rates. But the
susceptible individual may not be infectious immediately. The period of after effective contact before becoming
infectious is defined as latent period. In other words, the latent period is the time between invasion of the
body by a pathogenic organism and the time at which an individual is capable of transmitting the disease
to susceptibles. Indeed, latent period varies from a few days to several months, depending on the causative
organism and type of disease. But we should immediately note that this period is finite.

The most important difference between our model and other SEIR models is that an individual leaving
from S belongs to E through the latent period and becomes infectious himself with a certain rate (σ ) after a
latent period (τ ). We use a distribute function to take into account the latent period changing according
to individuals in order to add a more realistic structure to classical SEIR epidemic models. The main
difference in our model is especially due to this transition. This model approach can be considered for all
infectious diseases such as measles, pox, dengue, seasonal or annual influenza, SARS, COVID-19, etc. which
can be transmitted from person to person and have a latent period. After describing of the model, we
present a mathematical analysis for local and global dynamics of it by considering appropriate methods and
designing suitable techniques. Analyzing of the corresponding characteristic equation to Jacobian matrix at the
equilibrium points, Routh-Hurwitz criteria, Lyapunov functional technique associated with LaSalle’s invariance
principle and Li-Muldowney geometric approach are the main techniques used in this study.
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2. The model
In this paper, we constitute an SEIR model including distributed delay given by the system of the following
nonlinear ordinary integro-differential equations with the initial condition E (t) = Ẽ (t) for t ∈ [−τ, 0] :

dS

dt
= b− βS (t) I (t)− µS (t) ,

dE

dt
= βS (t) I (t)− σ

h∫
0

f (τ)E (t− τ) dτ − (µ+ α)E (t) ,

dI

dt
= σ

h∫
0

f (τ)E (t− τ) dτ − (γ + µ+ δ) I (t) , (2.1)

dR

dt
= αE (t) + γI (t)− µR (t) .

Where S (t) , E (t) , I (t) and R (t) denote the numbers of the susceptibles, of exposed to the pathogen, of
infectious individuals and of removed members at time t, respectively. Also all parameters and functions S,

E, I, R are nonnegative. N (t) shows the total number of the population at time t such that S (t) + E (t) +

I (t) +R (t) = N (t) , t ≥ 0. As a matter of course, the functions S, E, I, R and N are nonnegative.
In the model, we assume that all new members of the population get involved in S at the constant rate

b . The parameter µ represents the natural death rate of all compartments. Also β is the effective contact rate
between susceptibles and infectious. α represents the rate of the members “exposed but is not be infectious”
and so the number of individuals transferred to R from E is αE (t) at every time t . On the other hand γ

shows the recovery rate of infectious and δ is the death rate due to the infection in compartment I .
Also the function f is a distribute function showing density of the exposed individuals whose latent

period is τ . It is assumed that f : [0, h] → [0, 1] is continuous and satisfies
h∫
0

f (τ) dτ = 1 such that h is the

superior limit of latent periods in the class E . Additionally, we assume that every members of exposed does
not become infectious. On behalf of reflecting this fact we write σ which denotes the progression rate to I

from E . The term f (τ)E (t− τ) represents the number of exposed individuals entered in latent process of
the latent period with exposure age τ (i.e. time elapsed since exposure to the pathogen). So these individuals
complete their latent periods at time t. Therefore, taking all these assumptions into account, the total number
of individuals transferred from E to I at each time t is

σ

h∫
0

f (τ)E (t− τ) dτ.

3. Some basic results related to the model
Now we consider the equilibrium points, basic reproduction number and suitable region for the model (2.1).

3.1. Equilibrias

Firstly we note that, since the function R is not involved by other equations of (2.1), it is sufficient to consider
the system (2.1) without dR/dt.
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The system has two equilibrium points. It can be easily seen that DFEP (the disease-free equilibrium
point) of the system is

ϵ0 = (S0, E0, I0) =

(
b

µ
, 0, 0

)
.

On the other hand, to determine EEP (the endemic equilibrium point) of the system (2.1), we have to
solve the following system of algebraic equations with I∗ ̸= 0 :

0 = b− βS∗I∗ − µS∗,

0 = βS∗I∗ − (σ + µ+ α)E∗,

0 = σE∗ − (γ + µ+ δ) I∗.

Then EEP is obtained as

ϵ∗ = (S∗, E∗, I∗) =

(
(σ + µ+ α) (γ + µ+ δ)

βσ
,
(b− µS∗) (γ + µ+ δ)

βσS∗ ,
b− µS∗

βS∗

)
.

We should immediately note that the meaningfulness of ϵ∗ will be discussed after determining R0.

3.2. Reproduction number for the model
In mathematical epidemiology, the dynamics of models of infectious diseases are generally established by a
threshold known as the basic reproduction number R0 . Characteristically, if R0 < 1 then an infectious
individual can not even create averagely one new case during his/her infectiousness period and so the disease
cannot continue to spread. If R0 > 1 then each infectious produces more than one new cases and as a result of
this the disease increasingly continues to spread in the population. Since R0 allows to determine the amount
of effort which is necessary either to prevent an epidemic or to eliminate the disease in a population, estimation
of R0 is vital for infectious diseases.

Now, let us calculate R0 by using the next generation matrix method [11, 12].
Let X = (E, I, S)T . So model (2.1) can be written as

dX

dt
= P (X)− V (X) ,

such that

dX

dt
=


·
E
·
I
·
S

 , P (X) =

 βS (t) I (t)
0
0

 ,

V (X) =


σ

h∫
0

f (τ)E (t− τ) dτ + (µ+ α)E (t)

(γ + µ+ δ) I (t)− σ
h∫
0

f (τ)E (t− τ) dτ

βS (t) I (t) + µS (t)− b

 .

In this splitting, P(X) is the matrix formed with writing of the partitionings in which new infections appear
in compartments E, I and S , respectively; and V(X) is the matrix formed with writing of the partitionings
in which other transitions between compartments E, I and S , and other compartments, respectively.
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By differentiating P(X) and V(X) at DFEP ϵ0 =
(

b
µ , 0, 0

)
with respect to E, I, S respectively, we

get

dP(ϵ0) =

 0 βS0 0
0 0 0
0 0 0


and

dV(ϵ0) =

 σ + µ+ α 0 0
−σ γ + µ+ δ 0
0 βS0 µ

 .

Considering the infection can be only existed in E and I , let us create the matrices P and V in the form of

P = dP2x2 =

[
0 βS0

0 0

]
and

V = dV2x2 =

[
σ + µ+ α 0

−σ γ + µ+ δ

]
.

The matrix PV −1 whose spectral radius will give the formula of the basic reproduction number is obtained as

PV −1 =

 βσS0

(σ+µ+α)(γ+µ+δ)
βS0

γ+µ+δ

0 0

 .

From the biological meanings of P and V, it follows that P is entrywise nonnegative and V is a nonsingular
M -matrix, so V −1 is entrywise nonnegative. Let ı̆̆ı̆ı (0) show the number of initially infected individuals. Then
PV −1 ı̆̆ı̆ı (0) is an entrywise nonnegative vector giving the expected number of new infections. Matrix PV −1

has (1; 1) entry equal to the expected number of secondary infections in compartments E and I produced by
an infected individual introduced in compartments E and I . Thus PV −1 is the next generation matrix and
R0 = ρ

(
PV −1

)
; where ρ denotes the spectral radius.

Thus, considering the characteristic polynomial of PV −1 , the spectral radius of the next generation
matrix is

ρ
(
PV −1

)
=

βσS0

(σ + µ+ α) (γ + µ+ δ)
.

Therefore R0 is found as

R0 =
bβσ

µ (σ + µ+ α) (γ + µ+ δ)
(3.1)

for the model (2.1).
Besides that EEP ϵ∗ can be rewritten as

ϵ∗ = (S∗, E∗, I∗) =

(
b

µR0
,
µ (γ + µ+ δ) (R0 − 1)

βσ
,
µ (R0 − 1)

β

)
.

Conclusion 3.1 Model (2.1) has always the DFEP ϵ0. Particularly, if R0 < 1 the ϵ0 is unique equilibria. If
R0 > 1, there exist two equilibrias; DFEP ϵ0 and EEP ϵ∗. Also ϵ∗ is meaningful only when R0 > 1.
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3.3. Positively invariant region
As is known, a set Ω is invariant with respect to

dN

dt
= g(N)

if N(0) ∈ Ω requires N (t) ∈ Ω for all t ∈ R. Especially if N(0) ∈ Ω requires N (t) ∈ Ω for all t ∈ R+ = [0,∞)

then it is said that Ω is positively invariant.

Theorem 3.2 The set

Ω =

{
(S,E, I,R) : S, I,R ∈ C (R+,R+) , E ∈ C ([−τ,∞) ,R+) and N (t) ≤ b

µ

}
is positively invariant for the model (2.1).

Proof Adding the all equations of system (2.1), we get

dN

dt
+ µN (t) = b− δI,

and so
dN

dt
+ µN (t) ≤ b. (3.2)

Taking into account that

N (t) =
b

µ
+ ce−µt

is solution of
d

dt

(
N (t) eµt

)
= beµt

then for the initial condition t = 0, we obtain

c = N (0)− b

µ
.

Thus we have

N (t) = N (0) e−µt +
b

µ

(
1− e−µt

)
. (3.3)

By the Standard Comparison Theorem [21], we deduce that N (t) given by (3.3) is the maximal solution of
inequality (3.2). Hence

N (t) ≤ N (0) e−µt +
b

µ

(
1− e−µt

)
for all t ≥ 0. Particularly, N (t) ≤ b/µ if N (0) ≤ b/µ. So Ω is positively invariant for system (2.1).

On the other hand, if N (0) > b/µ then either the solution enters Ω infinite time or N (t) approaches
b/µ asymptotically. Hence, Ω attracts all solutions of (2.1). Thus the model (2.1) can be just evaluated in Ω

mathematically and epidemiologically. 2
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4. Local and global stability of DFEP
In this section, we present stability results for DFEP ϵ0 by analyzing the corresponding characteristic equation
and using LaSalle’s invariance principle associated with Lyapunov functional technique.

Theorem 4.1 If R0 < 1, DFEP ϵ0 is locally asymptotically stable in Ω.

Proof The Jacobian matrix of system (2.1) at DFEP ϵ0 is

J (ϵ0) =

 −µ 0 −βS0

0 − (σ + µ+ α) βS0

0 σ − (γ + µ+ δ)

 .

Thus, the corresponding characteristic equation of J (ϵ0) is described by

(−µ− λ)
(
λ2 + [(σ + µ+ α) + (γ + µ+ δ)]λ+ (σ + µ+ α) (γ + µ+ δ)− βσS0

)
= 0. (4.1)

This equation always has negative root λ1 = −µ. For the other roots (λ2 and λ3 ) of Equation (4.1), we have

λ2 + λ3 = − (σ + µ+ α)− (γ + µ+ δ) < 0

and

λ2λ3 =
µ (σ + µ+ α) (γ + µ+ δ)− bβσ

µ

= (σ + µ+ α) (γ + µ+ δ) (1−R0) .

For R0 < 1, since λ2λ3 > 0, we can say that all roots of Equation (4.1) have negative real parts. Hence DFEP
ϵ0 is locally asymptotically stable for R0 < 1 . 2

By the way let us focus on derivation of the expression σ
h∫
0

f (τ)E (t− τ) dτ with respect to E , used in

constructing the Jacobian matrices in proof of Theorems 4.1 and 5.1. If we define operator T as

T (f,E) (t, τ) = f (τ)E (t− τ)

then we write

∂

∂E

σ

h∫
0

f (τ)E (t− τ) dτ

 = σ

h∫
0

∂

∂E
T (f,E) dτ.

Indeed, if we choose t̃ = t− τ then E (t− τ) = E
(
t̃
)

and so we can say that even though E (t) and E
(
t̃
)

have different independent variables, it represent the same function. Since

∂E
(
t̃
)

∂E
= 1,

we can say
∂T (f,E)

∂E
= f (τ) .
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So we obtain

∂

∂E

σ

h∫
0

f (τ)E (t− τ) dτ

 = σ

h∫
0

f (τ) dτ = σ.

Theorem 4.2 If R0 < 1, DFEP ϵ0 is globally asymptotically stable in Ω .

Proof Let us consider the following nonnegative function that we prepared in accordance with model (2.1):

W (t) = σE (t) + (σ + µ+ α) I (t) + σ (µ+ α)

h∫
0

f (τ)

 t∫
t−τ

E (z) dz

 dτ. (4.2)

Differentiating with respect to time yields we get

dW

dt
= σβS (t) I (t)− σ2

h∫
0

f (τ)E (t− τ) dτ − σ (µ+ α)E (t)

+σ2

h∫
0

f (τ)E (t− τ) dτ − σ (γ + µ+ δ) I (t)

+σ (µ+ α)

h∫
0

f (τ)E (t− τ) dτ − (µ+ α) (γ + µ+ δ) I (t)

+σ (µ+ α)

h∫
0

f (τ)
d

dt

 t∫
t−τ

E (z) dz

 dτ

= σβS (t) I (t)− σ (µ+ α)E (t)− σ (γ + µ+ δ) I (t)

+σ (µ+ α)

h∫
0

f (τ)E (t− τ) dτ − (µ+ α) (γ + µ+ δ) I (t)

+σ (µ+ α)

h∫
0

f (τ)E (t) dτ

︸ ︷︷ ︸
E(t)

− σ (µ+ α)

h∫
0

f (τ)E (t− τ) dτ

= σβS (t) I (t)− σ (γ + µ+ δ) I (t)− (µ+ α) (γ + µ+ δ) I (t)

= I (t) [σβS (t)− (σ + µ+ α) (γ + µ+ δ)]

≤ I (t)

(
bβσ

µ
− (σ + µ+ α) (γ + µ+ δ)

)

= I (t) (σ + µ+ α) (γ + µ+ δ)

(
bβσ

µ (σ + µ+ α) (γ + µ+ δ)
− 1

)
= I (t) (σ + µ+ α) (γ + µ+ δ) (R0 − 1)

≤ 0.
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This result shows that W is a Lyapunov function in Ω for system (2.1). According to LaSalle’s invariance
principle [22] the limit set of each solution is contained in the largest invariant subset of{

(S,E, I) : (S,E, I) is a solution of dW

dt
= 0

}
.

Also this largest invariant subset consists only singleton ϵ0 for R0 < 1. Thus DFEP ϵ0 is globally asymptotically
stable. 2

5. Local and global stability of EEP
In this part, we present stability results for EEP by using the Routh-Hurwitz criteria and Li-Muldowney
geometric approach, respectively.

Theorem 5.1 If R0 > 1, EEP ϵ∗ is locally asymptotically stable in Ω .

Proof The Jacobian matrix at EEP ϵ∗ of model (2.1) is

J (ϵ∗) =

 −βI∗ − µ 0 −βS∗

βI∗ − (σ + µ+ α) βS∗

0 σ − (γ + µ+ δ)

 .

Considering that

S∗ =
(σ + µ+ α) (γ + µ+ δ)

βσ

and

I∗ =
b− µS∗

βS∗

=
bβσ − µ (σ + µ+ α) (γ + µ+ δ)

β (σ + µ+ α) (γ + µ+ δ)

=
µ (R0 − 1)

β

the corresponding characteristic equation of J (ϵ∗) is found as

λ3 + C1λ
2 + C2λ+ C3 = 0, (5.1)

where

C1 =
(σ + µ+ α)

2
(γ + µ+ δ) + (σ + µ+ α) (γ + µ+ δ)

2
+ bβσ

(σ + µ+ α) (γ + µ+ δ)
,

C2 =
bβσ ((σ + µ+ α) + (γ + µ+ δ))

(σ + µ+ α) (γ + µ+ δ)

and

C3 = bβσ − µ (σ + µ+ α) (γ + µ+ δ)

= µ (σ + µ+ α) (γ + µ+ δ) (R0 − 1) .
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Since all parameters are positive we say that C1, C2, C3 > 0 for R0 > 1 .
According to Routh-Hurwitz criteria we calculate as

H1 = C1 > 0,

H2 =
C1C2 − C3

C1

=

(σ + µ+ α) (γ + µ+ δ)

×
[
µ (σ + µ+ α) (γ + µ+ δ)− bβσ +

bβσ((σ+µ+α)+(γ+µ+δ))[(σ+µ+α)2(γ+µ+δ)+(σ+µ+α)(γ+µ+δ)2+bβσ]
(σ+µ+α)2(γ+µ+δ)2

]
(σ + µ+ α)

2
(γ + µ+ δ) + (σ + µ+ α) (γ + µ+ δ)

2
+ bβσ

> 0 (after the simplifications)

and
H3 = C3 > 0.

Hence we conclude that all the roots of Equation (5.1) have negative real parts. Therefore, EEP ϵ∗ = (S∗, E∗, I∗)

is locally asymptotically stable. 2

To examine the global dynamics of ϵ∗ , we use the geometric approach that can be applied in the proofs
of global stability of dynamical systems, proposed by Li and Muldowney [24]. A general theoretical summary
for relevant details is provided for readers in Appendix.

Firstly we will focus that system (2.1) is uniformly persistent. System (2.1) is uniformly persistent [4, 29]
if there exists a constant c > 0 , independent of initial data in Ω̊, such that, any solution (S (t) , E (t) , I (t)) of
(2.1) satisfies

lim inf
t→∞

S (t) > c, lim inf
t→∞

E (t) > c and lim inf
t→∞

I (t) > c

provided (S (0) , E (0) , I (0)) ∈ Ω̊.

On the other hand, when R0 > 1 by utilizing Lyapunov function created in (4.2) one can easily seen that
ϵ0 is unstable. Indeed, if R0 > 1 , dW/dt > 0 for S sufficiently close to b/µ except when I = 0 . Solutions
starting sufficiently close to ϵ0 leave from the neighborhood of ϵ0 after a certain part. By using the result about
uniformly persistence in [15] and the similar argument to the proof of Proposition 3.3 in [23], it can be shown
that, when R0 > 1 , the instability of ϵ0 implies the uniform persistence of (2.1). For this reason, the proof of
the following result is omitted in order to avoid repetition.

Theorem 5.2 If R0 > 1, system (2.1) is uniformly persistent.

Theorem 5.3 If R0 > 1 , EEP ϵ∗ is globally asymptotically stable in Ω .

Proof In accordance with Theorem 5.2 which is said that system (2.1) is uniformly persistent together with the
boundedness of solutions, we can say that there exists a compact set Φ in the interior of Ω which is absorbing for
(2.1), [4]. Thus the assumption (LM2) given in Appendix is satisfied. Based on Li and Muldowney’s technique
outlined in Appendix, the proof of the theorem is created by choosing a suitable vector norm |·| in R3 and a
3× 3 matrix-valued function A (x) so that the quantity q2 defined by (7.3) in Appendix part is negative.
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Let x = (S,E, I) and f (x) denote the vector field of (2.1). Then the Jacobian matrix J = Df (x) along
each solution (2.1) is

J =

 −βI − µ 0 −βS
βI − (σ + µ+ α) βS
0 σ − (γ + µ+ δ)


and its corresponding second additive compound matrix J [2] is obtained as

J [2] =

 −βI − µ− (σ + µ+ α) βS βS
σ −βI − µ− (γ + µ+ δ) 0
0 βI − (σ + µ+ α)− (γ + µ+ δ)

 .

Let us establish matrix A as

A =

 1 0 0
0 E

I 0
0 0 E

I

 .

It can be easily seen that

Af =


0 0 0

0 E′

I − I′E
I2 0

0 0 E′

I − I′E
I2


and so

AfA
−1 =


0 0 0

0 E′

E − I′

I 0

0 0 E′

E − I′

I

 .

Therefore the matrix B = AfA
−1 +AJ [2]A−1 is obtained as

B =


−βI − µ− (σ + µ+ α) I

EβS I
EβS

E
I σ

E′

E − I′

I − βI − µ− (γ + µ+ δ) 0

0 βI E′

E − I′

I − (σ + µ+ α)− (γ + µ+ δ)

 .

Also B can be written as

B =

[
B11 B12

B21 B22

]
,

where
B11 = [−βI − µ− (σ + µ+ α)] ,

B12 =
[

I
EβS I

EβS
]
,

B21 =

[
E
I σ
0

]
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and

B22 =

 E′

E − I′

I − βI − µ− (γ + µ+ δ) 0

βI E′

E − I′

I − (σ + µ+ α)− (γ + µ+ δ)

 .

Let us consider the vector norm defined with

|(a1, a2, a3)| = max {|a1| , |a2|+ |a3|}

in R3 with (a1, a2, a3) ∈ R3 .
On the other hand, the Lozinskiĭ measure µL with respect to this norm can be estimated as follows:

µL (B) ≤ max {g1, g2} (5.2)

such that

g1 = µL (B11) + |B12| ,

g2 = |B21|+ µL (B22) .

Note that µL (B22) is the Lozinskiĭ measure of the matrix B22 with respect to l1 norm in R2 . Also |B12| and
|B21| are the operator norms of B12 and B21 with mappings from R2 to R and from R to R2, respectively.
Where we consider that R2 is endowed with l1 norm. Also note that since B11 is a scalar, its Lozinskiĭ measure
with respect to any vector norm in R is equal to B11 .

Therefore, the matrix norms |B12| and |B21| with respect to the vector norm are obtained as

|B12| =
I

E
βS and |B21| =

E

I
σ.

Also
µL (B11) = −βI − µ− (σ + µ+ α) ,

and to calculate µL (B22) , the absolute value of the off-diagonal elements in each column of matrix B22 are
added to the diagonal one and after is taken the maximum one among this two sums. Hence

µL (B22) = max

{
E′

E
− I ′

I
− βI − µ− (γ + µ+ δ) + βI,

E′

E
− I ′

I
− (σ + µ+ α)− (γ + µ+ δ)

}
= max

{
E′

E
− I ′

I
− µ− (γ + µ+ δ) ,

E′

E
− I ′

I
− (σ + µ+ α)− (γ + µ+ δ)

}
=

E′

E
− I ′

I
− µ− (γ + µ+ δ) .

Therefore

g1 = µL (B11) + |B12| = −βI − µ− (σ + µ+ α) + βS
I

E
(5.3)

and

g2 = |B21|+ µL (B22) =
E′

E
− I ′

I
− µ− (γ + µ+ δ) +

E

I
σ. (5.4)
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From second and third equation of (2.1), we write

βS
I

E
=

E′

E
+ σ + µ+ α (5.5)

and
E

I
σ =

I ′

I
+ γ + µ+ δ, (5.6)

respectively.
Substituting the equalities (5.5) and (5.6) into (5.3) and (5.4), respectively, we obtain

g1 =
E′

E
− βI − µ

≤ E′

E
− µ

and

g2 =
E′

E
− µ.

So by (5.2) we write

µL (B) ≤ max {g1, g2} =
E′

E
− µ.

Since system (2.1) is uniformly persistent by Proposition 5.2, there exist c > 0 and T > 0 such that t > T

implies

E (t) > c and 1

t
logE (t) <

µ

2

for all (S (0) , E (0) , I (0)) ∈ Φ. As a result, we have

q2 = lim sup
t→∞

sup
1

t

t∫
0

µL (B) ds

 < logE (t)− µ ≤ −µ

2
< 0.

Hereby, the conditions of Theorem 7.3 given in Appendix are satisfied and therefore EEP ϵ∗ is globally
asymptotically stable in Ω .

2

6. Conclusion
In this paper we construct a new SEIR model including distributed latent period. The most important
difference between our model and other SEIR models is that an individual leaving from S belongs to E

through the latent period and becomes infectious himself with a certain rate (σ ) after a latent period (τ ). We
use a distribute function to take into account the latent period changing according to individuals in order to
add a more realistic structure to classical SEIR epidemic models.

The presented model has always the disease-free equilibrium point. Particularly, if R0 < 1 it is unique
equilibria. Also the model has an endemic equilibrium point in addition to disease-free equilibrium when
R0 > 1.
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As one of the main results, we focus on stability analysis of the model according to R0 . The mathematical
results we obtained from the stability analysis of the model epidemiologically mean that if R0 < 1 then invasion
of individuals by the pathogen does not give rise to a widespread epidemic and so the disease gradually becomes
extinct. Otherwise, that is for R0 > 1 , the disease continues to spread in the population.

7. Appendix

In this section, brief summary information about the Routh-Hurwitz criteria, LaSalle invariance principle
associated with Lyapunov’s direct method and Li-Muldowney technique, which have a quite wide and toilsome
theory, are given enough to remind the reader in this article without going into details.

7.1. Routh-Hurwitz criteria
The Routh-Hurwitz criteria is generally used to determine local asymptotic stability of an equilibrium for
nonlinear systems of differential equations. This criterion is a method showing the stability of a nonlinear
system by taking into account the coefficients of characteristic equation of Jacobian matrix of the system at
equilibrium points. This important method that gives necessary and sufficient conditions for all of the roots of
the characteristic polynomial to lie in the left half of the complex plane takes its name from E. J. Routh and
A. Hurwitz, who contributed to the formulation of this criteria. In general the Routh stability criterion states
a polynomial has all roots in the open left half plane if and only if all first-column elements of the Routh array
have the same sign.

A tabular method (Routh-Hurwitz table) can be used to determine the stability when the roots of
a high order characteristic polynomial are difficult to obtain. For an nth-degree polynomial in the form
P (s) = ans

n + an−1s
n−1 + · · ·+ a1s+ a0 the table has n+ 1 rows and the following structure:

Hn =



an an−2 an−4 · · · 0
an−1 an−3 an−5 · · · 0
b1 b2 b3 · · · 0
c1 c2 c3 · · · 0
...

...
... · · ·

...
... 0 0 · · · 0


where the elements bi and ci can be computed as follows:

bi =
an−1an−2i − anan−(2i+1)

an−1
,

and

ci =
b1an−(2i+1) − an−1bi+1

b1
.

Then the number of sign changes in the first column gives the number of nonnegative roots. For stability, all
the elements in the first column of the Routh array must be positive.

For example, for the system whose its characteristic polynomial is given by P (s) = a4s
4 + a3s

3 + a2s
2 +

546



ÇAKAN/Turk J Math

a1s+ a0, we have

H4 =


a4 a2 a0 0
a3 a1 0 0

a3a2−a4a1

a3

a3a0−a4×0
a3

= a0 0 0
(a3a2−a4a1)a1−a2

3a0

a3a2−a4a1
0 0 0

a0 0 0 0

 .

So the conditions that must be satisfied for stability of the given system are as follows:

a3 > 0,

a3a2 − a4a1 > 0,

(a3a2 − a4a1) a1 − a23a0 > 0

and
a0 > 0.

If these inequalities are satisfied, the system, which the characteristic polynomial P corresponds, is locally
asymptotically stable.

Now let us talk more briefly about the Routh coefficients obtained for the characteristic equation being
in our study.

As in the proof of Theorem 5.1, for the characteristic polynomial P (λ) = λ3 + C1λ
2 + C2λ + C3, the

Hurwitz coefficients are obtained as
H1 = C1,

H2 =
C1C2 − C3

C1
,

and

H3 =
C1C2−C3

C1
− C1 × 0

C1C2−C3

C1

= C3,

where the coefficients Ci are real constants for i = 1, 2, 3.

The Hurwitz coefficients obtained the Routh table for the characteristic polynomial in the form P (λ) =

λ4 + C1λ
3 + C2λ

2 + C3λ+ C4 are as follows:

H1 = C1,

H2 =
C1C2 − C3

C1
,

H3 =

(C1C2−C3)C3

C1
− C1C4

C1C2−C3

C1

=
C3H2 − C2

1C4

H2

and

H4 =
C4H3 − 0×H3

H3
= C4.

For stability of the relevant systems firstly the coefficients Ci and after Hi must be positive.
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7.2. Lyapunov functional technique and LaSalle invariance principle

Lyapunov functions are among the methods that may be used to prove the global stability of a system of
ordinary differential equations. This method given by A. M. Lyapunov does not show how to find a Lyapunov
function V . Moreover the tricky part is that there is no systematic way to construct Lyapunov functions and it
generally requires deep efforts. The reader can review the references in [20, 22] for details concerning Lyapunov
functional technique, LaSalle invariance principle and the other methods related to the stability of nonlinear
systems.

Consider the autonomous system
ẋ = f (x) , (7.1)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. Suppose x ∈ D is an equilibrium
point of 7.1; that is f (x) = 0. Our goal is to characterize and study the stability of x.

Theorem 7.1 (Lyapunov’s direct method) Let x be an equilibrium point for 7.1 and D ⊂ Rn be a domain
containing x. Let V : D → R be a continuously differentiable function such that

V (x) = 0 and V (x) > 0 in D⧹ {x} .

Then
(a) if V̇ (x) ≤ 0 for all x ∈ D, x is stable;

(b) if V̇ (x) < 0 for all x ∈ D⧹ {x} , x is asymptotically stable;

(c) if V̇ (x) > 0 for all x ∈ D⧹ {x} , x is unstable.

A function V satisfying the conditions of this theorem is called Lyapunov function. Theorem 7.1 allows
to determine the stability of the equilibrium point without explicitly solving the mentioned system.

Theorem 7.2 (LaSalle invariance principle) Let Ω ⊂ D be a compact set that is positively invariant with
respect to 7.1. Let V : D → R be a continuously differentiable function such that V̇ (x) ≤ 0 in Ω. Let K be the
set of all points in Ω where V̇ (x) = 0 . Let M be the largest invariant set in K. Then every solution starting
in Ω approaches M as t → ∞.

7.3. Li-Muldowney technique

The definitions presented in the following part, which are well-known in the literature, are taken from [24, 30],
which we have benefit a lot in this study.

7.3.1. Lozinskiĭ measure
Let |·| denote a vector norm in Rn as well as the matrix norm which it induces for n×n matrices. The Lozinskiĭ
measure µL of a n× n matrix M with respect to the norm |·| is defined as

µL (M) = lim
h→0+

|I + hM | − 1

h
.

For more details about Lozinskiĭ measure, the reader can examine to the reference [8].
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7.3.2. The second additive compound matrix
Let M be a linear operator on Rn and denote its matrix representation with respect to the standard basis of
Rn . Let Λ2Rn denote the exterior product of Rn . M induces canonically a linear operator M [2] on Λ2Rn for
u1, u2 ∈ Rn, define M [2] (u1Λu2) := M (u1) Λu2+u1ΛM (u2) and extend the definition over Λ2Rn by linearity.

The matrix representation of M [2] with respect to the canonical basis in Λ2Rn is called the second
additive compound matrix of M . This is an

(
n
2

)
×
(
n
2

)
matrix and for n = 2 and n = 3 we define, respectively,

as
M

[2]
2×2 = trM

and

M
[2]
3×3 =

 m11 +m22 m23 −m13

m32 m11 +m33 m12

−m31 m21 m22 +m33

 .

7.3.3. A short brief of the approach suggested by Li and Muldowney by utilizing Lozinskiĭ measure
and the second additive compound matrix

Let the map x → f (x) from an open subset Ψ ⊂ Rn to Rn be such that each solution x (t) to the differential
equation

ẋ = f (x) (7.2)

is uniquely determined by its initial value x (0) = x0 and denote this solution x (t, x0) .

An equilibrium point x ∈ Ψ of (7.2) is said to be globally asymptotically stable or simply globally stable
in Ψ, if it is locally asymptotically stable and all trajectories in Ψ converge to x.

Let J = Df (x) be the Jacobian matrix of f at x and assume that following two conditions are satisfied:
(LM1) System (7.2) has a unique equilibrium x in Ψ,

(LM2) System (7.2) has a compact absorbing set
⌣

Ψ ⊂ Ψ.

Consider a nonsingular
(
n
2

)
×
(
n
2

)
matrix-valued function x → A (x) which is a continuously differentiable

function in Ψ and a vector norm |·| on R(
n
2) . Also assume that A−1 (x) exists and is continuous for x ∈

⌣

Ψ.

Let µL be the Lozinskiĭ measure with respect to |·| and the quantity q2 is defined as

q2 = lim sup
t→∞

 sup

x0∈
⌣
Ψ

1

t

t∫
0

µL (B (x (s, x0))) ds

 , (7.3)

where
B = AfA

−1 +AJ [2]A−1

and J [2] = Df (x)
[2]

= ∂f
∂x

[2] is the second additive compound matrix of J = Df (x) = ∂f
∂x .

Under the preparations given in general terms here, the following important result for global stabilities
has been proved in [24] with theoretical details.

Theorem 7.3 Let Ψ be a simply connected region. Under assumptions (LM1) and (LM2), the unique
equilibrium x of nonlinear dynamical system ẋ = f (x) is globally stable in Ψ if there exists a function
A (x) and a Lozinskiĭ measure µL such that q2 defined in (7.3) satisfies q2 < 0.
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