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Abstract: We study the existence of two nonzero solutions for a class of quasilinear Kirchhoff problems. The approach
is based on the variational methods. Our nonlinerity is contrast to some previous results is that superlinear growth at
infinity.
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1. Introduction and main results
In this paper, we consider the following quasilinear Kirchhoff problem{

−
(
1 +

∫
Ω
|∇u|p

)
∆pu = λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is an open bounded subset of RN with smooth boundary ∂Ω , p > N ≥ 3 , ∆p is the p -Laplace
operator defined as ∆pu := div(|∇u|p−2u) , f ∈ C0(Ω̄× R) and λ is a positive parameter.

The problem (1.1) is related to the stationary analogue of the equation

utt −
(
1 +

∫
Ω

|∇u(x)|pdx
)
∆pu(x) = g(x, t)

proposed by Kirchhoff as an extension of the classical d’Alembert’s wave equation for free vibrations of elastic
strings. Kirchhoff’s model takes into account the changes in length of the string produced by transverse
vibrations. Similar nonlocal problems also model several physical and biological systems where u describes
a process that depends on the average of itself, for example, the population density. It is worth mentioning
that this problem received much attention after the work of Lions [8], where a functional analysis framework
was proposed for the problem. Recently, the study of the Kirchhoff equation has been considered in the elliptic
case and involving the p -Laplacian operator [1, 4–7, 9].

In this paper we consider the existence of nontrivial weak solutions for the problem (1.1). Precisely, using
a variational approach, under conditions involving the antiderivative of f , that is F (x, s) =

∫ s

0
f(x, t)dt , we will
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obtain a precise interval of the parameter λ for which the problem (1.1) admits two nontrivial weak solutions
(see Theorem 1.1).

We consider the space
X := W 1,p

0 (Ω)

endowed with the norm

∥u∥ :=

(∫
Ω

|∇u|pdx
)1/p

∀u ∈ X.

The Rellich-Kondrachov theorem ensures that X is compactly embedded in C0(Ω̄) when p > N and so there
exists a positive constant k such that

∥u∥C0(Ω̄) ≤ k∥u∥ (1.2)

for each u ∈ X . The following estimate of k was obtained by Talenti in [12] when N ≥ 3 , ∂Ω is of class C1,1

k ≤ 1

N1/p
√
π
[Γ(1 +N/2)]

1/N

(
p− 1

p−N

)p′

(meas(Ω))1/N−1/p,

where Γ denotes the gamma function, p′ is the conjugate exponent of p and meas(Ω) is the Lebesgue measure
of Ω .

Here and in the sequel we denote by D the radius of the greatest ball B(x0, D) with center x0 contained
in Ω . With α > 0 , we put

Fα :=

∫
Ω

max
|ξ|≤α

F (x, ξ)dx,

where F (x, ξ) =
∫ ξ

0
f(x, t)dt and we observe that Fα ≥ 0 for each α > 0 .

Finally, we put

lD :=
πN/2(DN − (D/2)N )

2D2p(Γ(1 +N/2))2

[
2DpΓ(1 +N/2) + πN/2

(
DN − (D/2)N

)]
.

Theorem 1.1 Assume that

(f1) there exists x0 ∈ Ω , D > 0 , δ , γ ∈ R , with 0 < δ < γ , such that

F γ

γp
<

1

kplD

∫
B(x0,D/2)

F (x, δ)dx

max{1, (2δ)2p}
.

(f2) F (x, t) ≥ 0 for every x ∈ Ω and for all t ∈ [0, δ] .

(f3) there exist m > 2p , s > 0 such that
0 < mF (x, t) ≤ tf(x, t)

for each x ∈ Ω and |t| ≥ s .

Then, for each λ ∈ Λδ,γ :=

]
max{1,(2δ)2p}lD

p
∫
B(x0,D/2)

F (x,δ)dx
, γp

pkpFγ

[
, problem (1.1) admits at least two nonzero solutions.
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Moreover we highlight that it is possible to obtain an existence result for the more general problem{
−
(
1 +

∫
Ω
|∇u|p

)
∆pu = λf(x, u) + µg(x, u) in Ω

u = 0 on ∂Ω.
(1.3)

Precisely, we establish the existence of two precise intervals of the parameters λ and µ for which the problem
(1.3) admits at least two nontrivial weak solutions.

Theorem 1.2 Assume that f verifies conditions (f1)–(f3) of Theorem 1.1. Then, for each λ ∈ Λδ,γ :=]
max{1,(2δ)2p}lD

p
∫
B(x0,D/2)

F (x,δ)dx
, γp

pkpFγ

[
, and for each g ∈ C0(Ω̄× R) such that

(g1) G(x, t) ≥ 0 for each (x, t) ∈ Ω× [0, δ]

(g2) there exist a1 , a2 > 0 and 0 < α < p− 1 such that

|g(x, t)| ≤ a1|t|α + a2

for each x ∈ Ω and t ∈ R ,

there exists ηλ,g > 0 , where

ηλ,g =

(
γp
∫
B(x0,D2 )

F (x, δ)dx

max{1, (2δ)2p}lDkp
− F γ

)
λ

Gγ
(1.4)

such that for each µ ∈]0, ηλ,g[ the problem (1.3) admits at least two nonzero weak solutions.

Slightly modifying the assumptions of Theorem 1.1 it is possible to obtain the following more applicable
result:

Theorem 1.3 Assume that f verifies condition (f3),

(f1’) F (x, t) ≥ 0 for each x ∈ Ω , t ∈
[
0,
(

p
lD

) 1
p

]
;

(f2’) lim supt→0+
infx∈Ω F (x,t)

tp = +∞.

Then, put γ := k
1
p , where k is defined by (1.2) and

λ∗ :=

{
1
Fγ F γ > 0
+∞ F γ = 0

for each λ ∈]0, λ∗[ the problem (1.1) admits at least two nonzero weak solutions.

Last, we present a special case of Theorem 1.3 when f depends only on the second variable:

Theorem 1.4 Let f : R → [0,+∞[ such that

(H1) lim supt→0+
f(t)
tp−1 = +∞ ,
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(H2) there exists m > 2p, s > 0 such that 0 < mF (t) ≤ tf(t) for each |t| ≥ s .

Then, put γ := k(p)
1
p and λ∗ := 1

F (γ)|Ω| , for each λ ∈]0, λ∗[ the problem

{
−
(
1 +

∫
Ω
|∇u|p

)
∆pu = λf(u) in Ω

u = 0 on ∂Ω
(1.5)

admits at least two nonzero weak solutions.

Now, we give an example to one of our theorem.

Example 1.5 Example to Theorem 1.1. Let p = 6, N = 4 and D = 1. By meas(B(0, R)) = π2

2 R4 we have

l1 = 15π2

25 + 152π4

211 = 15.328. By the Talenti’s inequality k < 1
41/6 2

√
π
21/4

(
5
2

) 6
5

(
π2

2

) 1
12

= 1.8266 we choose k = 1.

Let F (x, ξ) = F (ξ) be an increasing function for ξ ≥ 0, F (0) = 0 and Fα(ξ) = F (ξ)π
2

2 . Then, the inequality

in (f1) reduces to 15.328F (γ)25

γ6 < F (δ) < F (γ), which implies 2.808 = (15.32825)1/6 < γ. So, we can choose

δ = 2, γ = 3, F (2) = 2.5, F (3) = 3.

Example to Theorem 1.4. Let f : R → [0,+∞[ be the function defined as follows:

f(t) = µ|t|κ + |t|q

with µ > 0 and 0 < κ < 2p− 1 < q . Put γ := k(p)
1
p and

µ∗ :=
κ+ 1

γκ+1
(

1
|Ω| −

γq+1

q+1

)
owing to Theorem 1.4, for each µ ∈]0, µ∗[ the problem{

−
(
1 +

∫
Ω
|∇u|p

)
∆pu = µ|t|κ + |t|q in Ω

u = 0 on ∂Ω

admits at least two nonzero weak solutions.

The paper is organized as follows. In Section 2 we formulate the main results and the theorem of Bonanno
and D’Agui [3]. In Section 3 we give the proofs of main results.

2. Variational framework
We introduce the functionals Φ , Ψ : X → R defined by

Φ(u) :=
1

p
∥u∥p + 1

2p
∥u∥2p

and

Ψ(u) :=

∫
Ω

F (x, u)dx
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for each u ∈ X where F (x, t) :=
∫ t

0
f(x, ξ)dξ for each (x, t) ∈ Ω×R . By standard arguments, Φ and Ψ are in

C1(X) and their Gâteaux derivatives are respectively

⟨Φ′(u), v⟩ =
∫
Ω

|∇u|p−2∇u∇vdx+

∫
Ω

|∇u|pdx
∫
Ω

|∇u|p−2∇u∇vdx

and

⟨Ψ′(u), v⟩ =
∫
Ω

f(x, u)vdx

for each u , v ∈ X . In particular, for each λ > 0 , the critical points of the functional

Iλ := Φ− λΨ,

are weak solutions for problem (1.1).
In [10], Ricceri obtained a three critical points theorem and in [11] gave a general version of the theorem

to extend the results for a class of more extensive equations. Later Bonanno and D’Aguì [3] developed Ricceri’s
result. In order to obtain solutions for the problem (1.1), we use a result obtained by Bonanno and D’Aguì in
[3] which combines a local minimum theorem established in [2] with the mountain pass theorem.

Theorem 2.1 Let X be a real Banach space and let Φ , Ψ : X → R be two continuously Gâteaux differentiable
functionals such that infx∈X Φ(x) = Φ(0) = Ψ(0) = 0 . Assume that there exist r > 0 and x̄ ∈ X , with
0 < Φ(x̄) < r , such that:

(a1)
supΦ(x)≤r Ψ(u)

r < Ψ(x̄)
Φ(x̄) ;

(a2) for each λ ∈ Λr :=]Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)≤r Ψ(u) [ the functional Iλ : Φ − λΨ satisfies the (PS)-condition and it is

unbounded from below.

Then, for each λ ∈ Λr , the functional Iλ admits at least two nonzero critical points uλ,1 , uλ,2 such that
Iλ(uλ,1) < 0 < Iλ(uλ,2) .

3. Proofs of main results
First we prove Theorem 1.1 and show that under Ambrosetti-Rabinowitz condition (f3) the functional Iλ satisfies
Palais-Smale (PS) condition.

Lemma 3.1 Assume (f3) satisfies, then functional Iλ satisfies the (PS)-condition and it is unbounded from
below.

Proof Let {un} is a (PS)-sequence, that is,

{Iλ(un)} is bounded in R and I ′λ(un) → 0 in X∗.

Fixed 1 > 0 , there exists n1 ∈ N , such that ∀n ≥ n1

∥I ′λ(un)∥∗ ≤ 1.
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This implies that, ∀n ≥ n1

|⟨I ′λ(un), un⟩| ≤ ∥I ′λ(un)∥∗∥un∥ ≤ ∥un∥.

that is
−∥un∥ ≤ ⟨I ′λ(un), un⟩ ≤ ∥un∥.

In particular, ∀n ≥ n1 , we have
m−1∥un∥ ≥ −m−1⟨I ′λ(un), un⟩.

Now, using the previous inequality, one has

Iλ(un)−m−1⟨I ′λ(un), un⟩ =
(
1

p
− 1

m

)
∥u∥p +

(
1

2p
− 1

m

)
∥u∥2p − λ

∫
Ω

[
1

m
f(x, un)un − F (x, un)

]
dx

=

(
1

p
− 1

m

)
∥u∥p +

(
1

2p
− 1

m

)
∥u∥2p

− λ

∫
|un|<s

[
1

m
f(x, un)un − F (x, un)

]
dx

− λ

∫
|un|≥s

[
1

m
f(x, un)un − F (x, un)

]
dx,

where s is defined in (f3). Due to f is continuous. One has∣∣∣∣ ∫
|un|<s

[
1

m
f(x, un)un − F (x, un)

]
dx

∣∣∣∣ ≤ ∫
|un|<s

∣∣∣∣ 1mf(x, un)un − F (x, un)

∣∣∣∣ dx
≤
∫
|un|<s

1

m
|f(x, un)||un|dx+

∫
|un|<s

|F (x, un)|dx

≤ 1

m
s

∫
|un|<s

max
|ξ|≤s

|f(x, ξ)|dx+

∫
|un|<s

max
|ξ|≤s

|F (x, ξ)|dx

:= A ∈ [0.+∞[.

This also implies that

−A <

∫
|un|<s

[
1

m
f(x, un)un − F (x, un)

]
dx < A.

Furthermore, {Iλ(un)} is bounded, there exists M > 0 , n2 ∈ N , ∀n ≥ n2

|Iλ(un)| ≤ M.

Let n̄ := max{n1, n2} . Then by (f3) for all n ≥ n̄ , it follows

M +
1

m
∥un∥ ≥ Iλ(un)−

1

m
⟨I ′λ(un), un⟩

=

(
1

p
− 1

m

)
∥u∥p +

(
1

2p
− 1

m

)
∥u∥2p − λ

∫
Ω

[
1

m
f(x, un)un − F (x, un)

]
dx

≥
(
1

p
− 1

m

)
∥u∥p +

(
1

2p
− 1

m

)
∥u∥2p − λA.
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So, we get {un} is bounded on X .
We have the last task to do, that is prove {un} is convergence in X . Since {un} is bounded, up to a

subsequence, one has

un ⇀ u in X

un → u in C(Ω̄)

that is Ψ′ is compact. We have ∫
Ω

f(x, un)(un − u)dx → 0 as n → ∞.

Finally, we prove ∥un − u∥ → 0 in X . In fact

(1 + ∥un∥p)
∫
Ω

〈
|∇un|p−2∇un − |∇u|p−2∇u,∇un −∇u

〉
dx

= ⟨I ′λ (un) , un − u⟩+ λ

∫
Ω

f(x, un)(un − u)dx

− (1 + ∥un∥p)
∫
Ω

|∇u|p−2 ⟨∇u,∇un −∇u⟩ dx.

In view of un ⇀ u , we have ∫
Ω

|∇u|p−2 ⟨∇u,∇un −∇u⟩ dx → 0 as n → ∞.

Thus

(1 + ∥un∥p)
∫
Ω

〈
|∇un|p−2 ∇un − |∇u|p−2∇u,∇un −∇u

〉
dx → 0 as n → ∞.

Using the standard inequality given by

〈
|x|p−2x− |y|p−2y, x− y

〉
≥ Cp|x− y|p if p ≥ 2

or 〈
|x|p−2x− |y|p−2y, x− y

〉
≥ Cp|x− y|2

(|x|+ |y|)2−p
if 2 > p > 1,

we obtain

Cp

∫
Ω

|∇un −∇u|p dx ≤ (1 + ∥un∥p)
∫
Ω

〈
|∇un|p−2 ∇un − |∇u|p−2∇u,∇un −∇u

〉
dx.

For p ≥ 2 the strong convergence is clear, that is, ∥un − u∥ → 0 in X .
For 1 < p < 2 one can use that

Bn := ⟨|∇un|p−2|∇un| − |∇u|p−2|∇u|,∇un −∇u⟩ → 0,

as n → ∞ and by Hölder inequality

Bn ≥ (∥un∥p−1 − ∥u∥p−1)(∥un∥ − ∥u∥) ≥ 0
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which implies that ∥un∥ → ∥u∥ , as n → ∞ . Then by uniform convexity of X and un ⇀ u weakly follows that
un → u strongly in X .

Last, we show the functional Φ− λΨ is unbounded from below. Let

k(t) = t−mF (x, tu)− F (x, u), t ≥ 1;

then, we get
k′(t) = t−m−1(f(x, tu)tu−mF (x, tu)) ≥ 0

for all t ≥ 1 by (f3). Hence, it follows that k(t) ≥ k(1) = 0 for all t ≥ 1 , that is

F (x, tu) ≥ tmF (x, u)

for all x ∈ RN , |u| ≥ s and t ≥ 1 . Thus, by m > 2p we have

Iλ(tu) =
1

p
∥tu∥p + 1

2p
∥tu∥2p − λ

∫
Ω

F (x, tu)dx

≤ tp

p
∥u∥p + t2p

2p
∥u∥2p − λtm

∫
Ω

F (x, u)dx

→ −∞

as t → +∞ for u ∈ X , u ̸= 0 . 2

Proof [Proof of Theorem 1.1] We consider the space X and apply Theorem 2.1 to the functionals Φ,Ψ defined
above by choosing r = γp

pkp . Lemma 3.1 implies that, for each λ > 0 , the functional Iλ : Φ − λΨ satisfies the

(PS)-condition and it is unbounded from below. Fix λ ∈ Λδ,γ , and the properties of the functionals Φ and Ψ

ensure that the functional Iλ = Φ− λΨ verifies the regularities requested in Theorem 2.1. We denote by v̄ the
function of X defined by,

v̄(x) =


0 if x ∈ Ω \B(x0, D),
2δ
D (D − |x− x0|) if x ∈ B(x0, D) \B(x0, D/2),

δ if x ∈ B(x0, D/2).

(3.1)

One has

Φ(v̄) =
1

p
∥v̄∥2 + 1

2p
∥v̄∥2p

=
1

p

∫
Ω

|∇v̄(x)|pdx+
1

2p

(∫
Ω

|∇v̄(x)|pdx
)2

=
1

p

∫
B(x0,D)\B(x0,D/2)

(2δ)p

Dp
dx+

1

2p

(∫
B(x0,D)\B(x0,D/2)

(2δ)p

Dp
dx

)2

=
1

p

(2δ)p

Dp
[meas(B(x0, D))− meas(B(x0, D/2))] +

1

2p

(2δ)2p

D2p
[meas(B(x0, D))− meas(B(x0, D/2))]2

=
(2δ)pπN/2(DN − (D/2)N )

2pD2p(Γ(1 +N/2))2

[
2DpΓ(1 +N/2) + (2δ)pπN/2

(
DN − (D/2)N

)]
.
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Therefore, one has

Φ(v̄) ≤ max{1, (2δ)2p}
p

lD. (3.2)

Taking into account that v̄(x) ∈ [0, δ] for each x ∈ Ω , condition (f2) ensures that

Ψ(v̄) =

∫
Ω

F (x, v̄(x))dx ≥
∫
B(x0,D/2)

F (x, δ)dx.

It follows that
Ψ(v̄)

Φ(v̄)
≥

p
∫
B(x0,D/2)

F (x, δ)dx

max{1, (2δ)2p}lD
. (3.3)

For each u ∈ Φ−1(]−∞, r]) one has
∥u∥ ≤ (pr)1/p

and so, thanks to (1.2),
∥u∥C0(Ω̄) ≤ k(pr)1/p = γ.

Moreover, we have

Ψ(u) =

∫
Ω

F (x, u(x))dx ≤ F γ

for each u ∈ Φ−1(]−∞, r[) . This leads to

1

r
sup

u∈Φ−1(]−∞,r[)

Ψ(u) ≤ kpp

γp
F γ . (3.4)

Now, taking into account condition (f1) one has

kpp

γp
F γ <

p
∫
B(x0,D/2)F (x,δ)dx

lD max{1, (2δ)2p}
≤ Ψ(v̄)

Φ(v̄)

and so condition (a1) of Theorem 2.1 is verified.
We observe that conditions δ < γ and (f1) ensure that

max{1, (2δ)2p}lD <
γp

kp
.

In fact, if max{1, (2δ)2p}lD ≥ γp

kp , taking into account that max|ξ|≤γ F (x, ξ) ≥ F (x, δ) for each x ∈ Ω , we
obtain

F γ

γp
≥ F γ

kplD max{1, (2δ)2p}
≥ 1

kplD

∫
B(x0,D/2)

F (x, δ)dx

max{1, (2δ)2p}

and this is absurd because of (f1). In this way condition Φ(v̄) < r requested in Theorem 2.1 is satisfied.

Since λ ∈ Λδ,γ :=

]
max{1,(2δ)2p}lD

p
∫
B(x0,D/2)

F (x,δ)dx
, γp

pkpFγ

[
, Theorem 2.1 guarantees the existence of at least two

nonzero critical points for the functional Iλ which are nontrivial weak solutions of problem (1.1). 2
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Proof [Proof of Theorem 1.2] In order to obtain this result, fix λ ∈ Λδ,γ , g ∈ C0(Ω × R) verifying (g1) and
(g2) and µ ∈]0, ηλ,g[ and we consider the space X and apply Theorem 2.1 to the functional Φ , defined as above
and Ψλ,µ defined by

Ψλ,µ(u) :=

∫
Ω

[
F (x, u(x)) +

µ

λ
G(x, u(x))

]
dx.

for each u ∈ X .
By arguing as in proof of Theorem 1.1 and by choosing r = γp

pkp we have

1

r
sup

u∈Φ−1(1−∞,r])

Ψλ,µ(u) ≤
kpp

γp
F γ +

kpp

γp

µ

λ
Gγ (3.5)

and
kpp

γp
F γ +

kpp

γp

µ

λ
Gγ <

kpp

γp
F γ +

kpp

γp

ηλ,g
λ

Gγ

=
p
∫
B(x0,D2 )

F (x, δ)dx

lD max{1, (2δ)2p}

≤
p
∫
B(x0,D2 )

F (x, δ)dx

lD max{1, (2δ)2p}
+

pµ

λ

∫
B(x0,D2 )

G(x, δ)dx

lD max{1, (2δ)2p}

≤ Ψλ,µ(v)

Φ(v)

where v̄ is the test function introduced in (3.1). Moreover arguing as in Lemma 3.1, conditions (f3) and (g2)
imply that, for each λ > 0 and µ > 0 , the functional

Iλ,µ := Φ− λΨλ,µ

satisfies the (PS)-condition and it is unbounded from below. At this point Theorem 2.1 provides the existence
of at least two nonzero critical points for the functional Iλ,µ which are weak solutions for problem (1.3). 2

Proof [Proof of Theorem 1.3] Fix λ ∈]0, λ∗[ , and because of assumption (f2’), there exists δ ∈]0,
(

p
lD

) 1
p

[ such

that
infx∈Ω F (x, δ)

max{1, (2δ)2p}
>

lD

pm
(
B
(
x0,

D
2

))
λ
. (3.6)

We define X , Φ , Ψ and v̄ as in Theorem 1.1 and apply Theorem 2.1 by choosing r = 1 . Taking into account
(3.6), we obtain

sup
u∈Φ−1(1−∞,1)

Ψ(u) ≤ F γ <
1

λ
<

p
∫
B(x0,D2 )

F (x, δ)dx

lD max{1, (2δ)2p}
≤ Ψλ,µ(v)

Φ(v)
.

Moreover we observe that condition δ ∈]0,
(

p
lD

) 1
p

[ leads to Φ(v) < 1 .

Since all the assumptions of Theorem 2.1 are verified the functional Iλ = Φ − λΨ admits at least two
nonzero critical points which are nontrivial weak solutions of problem (1.1). 2
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Proof [Proof of Theorem 1.4] Because of nonnegativity of f the function F is increasing and so condition
(f1’) of Theorem 1.3 is satisfied for each t ≥ 0 . Moreover since F ′(t) = f(t) , (H1) implies that

lim
t→0+

F (t)

tp
= lim

t→0+

f(t)

ptp−1
= +∞.

Taking into account the fact that F γ = F (γ)|Ω| , the conclusion follows from Theorem 1.3. 2
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