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Abstract: In this study, a new class of sequential fractional differential problems of pantograph type is introduced.
New existence and uniqueness criteria for the existence and uniqueness of solutions are discussed. Some existence results
using Darbo’s fixed point and measure of noncompactness are also studied. At the end, two illustrative examples are
discussed.
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1. Introduction
Mathematical models involving differential equations of classical or arbitrary order have been used signifi-
cantly for describing many phenomena in engineering and scientific disciplines, such as physics, biophysics,
chemistry, biology, electrodynamics, viscosity elasticity, see for example the research works in [1 − 4, 6 −
8, 11, 15, 17, 19, 22, 23, 30, 34]. The research works [26, 29, 33, 37− 39, 40] deal also with some applications.

The pantograph problem is one of the classical models. It is considered as a class of delay differential
equations in which the derivative of the function, at any time, depends on the solution at previous time. Recently,
an attention to the pantograph equations has considered [9, 12, 16, 21, 29] due to their applications in modeling
numerous processes of real world problems. For example, in [10] , it has been proposed a stage structured
model of population growth. Then, the proposed model has been employed to study how the electric current is
collected by the pantograph of an electric locomotive, see [36] . In the same sense, in [18] , a discretization of
the following general pantograph equation has been investigated:

{
y′ (t) = ay (t) + by (θ (t)) + cy (φ (t)) , t ≥ 0,

y (0) = y0,

where a, b, c, y0 are real numbers, θ and φ are strictly increasing functions on the nonnegative reals, with
θ (0) = φ (0) = 0 , θ (t) < t and φ (t) < t, t > 0 .

We cite also the paper [27] where K. Guan et al. have studied the oscillatory behavior of solutions of the
following pantograph problem:
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{
x′ (t) = P (t)x (t)−Q (t)x (αt) , t ≥ t0, t = tk,

x (tk) = bkx (tk) , k = 1, 2, ...,

where 0 < α < 1 and 0 < t0 < t1 < ... < tk < ... are fixed points, P (t) , Q (t) ∈ C ([t0,∞) , [0,∞)) .

In [26] , the authors have addressed and studied the following fractional pantograph equation:
cDα

0+ (u (s)− P (s)u (βs)) (t) = f (t, u (t) , u (γt)) , t ∈ [0, T ] ,
u (0) = u0,
u′ (0) = u1,

where 1 < α ≤ 2 , cDα
0+ is the Caputo derivative of order α , 0 < β, γ < 1 and f, P are two functions that

satisfy some imposed conditions.
Very recently, in [28] using the Ψ -Hilfer derivative, it has been investigated the existence and uniqueness

as well as the stability for the following nonlinear neutral pantograph equation:{
Dα,β,Ψu (t) = g

(
t, u (t) , u (κt) , Dα,βu (κt)

)
, t ∈ J = [a, b] ,

I1−γ,Ψu (a) = ua,

where Dα,β,Ψ is the Ψ -Hilfer derivative of order α, 0 < α < 1 and I1−γ,Ψ is the Ψ -integral of order
1− γ (γ = α+ β − αβ) .

In [25] , Fazli et al. have discussed the existence and uniqueness result for the fractional problem:


Dβ (Dαx (t) + λ) = f (t, x (t)) , 0 < t ≤ 1,

x(i) (0) = µi, 0 ≤ i < l,
x(i+α) (0) = νi, 0 ≤ i < n,

where m − 1 < α ≤ m , n − 1 < β ≤ n , l = max (n,m) , m,n ∈ N , Dα is the Caputo derivative, x (t) is the
particle displacement, λ ∈ R is the friction coefficient and f is a noise term.

In the present work, in general, we are concerned with the study of a sequential pantograph problem
involving the Φ−Caputo derivatives [13] . The importance of this Φ−theory is in its applications in real word
phenomena [14, 16] . Also, the advantage of the Φ−Caputo fractional derivative is its flexibility to combine all
fractional derivatives introduced before (like for instance, Caputo, Hadamard, Hadamard–Caputo, and Caputo–
Katugampola derivatives). The Φ−Caputo operator is also important since it possesses the semigroup property
which is crucial to obtain the structure of solutions.
So, in this work, we shall study the following Φ−Caputo sequential pantograph fractional differential problem
with integral conditions:


cDβ,Φ

(
cDα,Φx (t) + g (t, x (t))

)
= f

(
t, x (t) , x (λt) ,c Dα,Φx (t)

)
, t ∈ [0, 1] ,

x (0) = 0,

x (1) =
1∫
0

h (s, x (s)) ds.
(1.1)

We take into account the conditions that cDα,Φ,c Dβ,Φ are the Φ−Caputo derivatives, such that 0 < α, β ≤ 1,

f ∈ C ([0, 1]× R× R× R,R) , g, h ∈ C ([0, 1]× R,R) , λ ∈ R+ .
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It is to note that the problem (1.1) is important since, in one hand, it is more general than the above
cited pantograph differential problems, and on the other hand, it is considered as a special type of delay
differential problems with integral conditions. Such equations have various applications in chemical engineering,
electrodynamics, underground water flow, plasma physics and population dynamics, see [5, 38] . In this sense, it
has been confirmed that models of epidemics that lead to delay equations often have integral conditions that are
imposed by the interpretation of these models. The neglect of these integral conditions may lead to solutions
that behave in a radically different manner from solutions restricted to obey them, see [20] .

Our investigation for the problem (1.1) is based on the application of Darbo’s theorem. This investigation
has two motivational reasons: the first one is the fact that Darbo’s theorem extends both Schauder and Banach
fixed point theorems, so it is better to apply Darbo’s theorem instead of Schauder or Banach theorems. The
second reason that motivates our application of Darbo’s theorem is the abundance, by mathematicians, of this
important theorem in proving the existence of solutions for a wide class of differential and integral equations.
So, we fell motivated to present a contribution in this sense to fill the void and the lack in this filed of interest.

To the best of our knowledge, there are no papers devoted to the study of Φ−Caputo sequential panto-
graph differential equations with integral boundary conditions using the techniques of measure of noncompact-
ness.

The remainder of this paper is organized as follows: In Section 2, some preliminaries are presented. In
Section 3, the main existence results for problem (1.1) are established, and in the fourth section, we give two
examples to illustrate our results.

2. Preliminaries
2.1. Caputo derivatives
Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 , for a continuous function f on
[0,∞) is defined as:

Jαf (t) =
1

Γ (α)

∫ t

0

(t− τ)
α−1

f (τ) dτ ;α > 0, t > 0. (2.1)

J0f (t) = f (t) .

Definition 2.2 The Caputo derivative of order α of f ∈ Cn ([0,∞[) is defined as:

Dαf (t) =
1

Γ (n− α)

∫ t

0

(t− τ)
n−α−1

f (n) (τ) dτ, n− 1 < α ≤ n, n ∈ N∗.

For more details, one can see the references [8, 17, 32, 35].

2.2. Φ-Caputo derivatives

In this section, we recall some notations, definitions and results of Φ−Caputo derivatives [1, 9, 12, 13, 14, 30] .

Definition 2.3 Suppose (0, b] ⊂ R+ is a finite or infinite interval. Let f ∈ L1 (0, b] and Φ(t) > 0 be a
monotone function on (a, b] such that Φ ∈ Cn [(0, b] ,R] . Then, the operator

Jα,Φf (t) =
1

Γ (α)

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1

f (τ) dτ, n− 1 < α ≤ n, n ∈ N∗, (2.2)
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is called the left sided Φ-Riemann–Liouville integral of order α of f with respect to Φ .

Definition 2.4 Suppose (0, b] ⊂ R+ is a finite or infinite interval. Let also f ∈ L1 (0, b] and Φ(t) > 0 be a
monotone function on (a, b] such that Φ(t) ∈ Cn [(a, b] ,R] . Then the operator

Dα,Φf (t) =

[
1

Φ′ (t)

d

dt

]n
Jn−α,Φf (t) , n− 1 < α ≤ n, n ∈ N∗,

is called the left sided Φ-Riemann–Liouville derivative of order α of f with respect to Φ .

Definition 2.5 Let n − 1 < α ≤ n , f ∈ Cn [(0, b] ,R] . The left-sided Φ-Caputo fractional derivative of f of
order α is determined as:

cDα,Φf (t) = Jn−α,Φ
[
Θ

[n]
Φ f

]
(t) , n− 1 < α ≤ n, n ∈ N∗,

=
1

Γ (n− α)

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
n−α−1

[
Θ

[n]
Φ f

]
(τ) dτ, n− 1 < α ≤ n, n ∈ N∗, (2.3)

where, ΘΦ = 1
Φ′(t)

d
dt and Θ

[n]
Φ = ΘΦΘΦ . . .ΘΦ

n−times︸ ︷︷ ︸ .
We given also the following lemma:

Lemma 2.6 Let α > 0 and f : [0, b] → R . Then, we have:

cDα,ΦJα,Φf (t) = f (t) , f ∈ C [0, b] ,

and

Jα,ΦcDα,Φf (t) = f (t)−
n−1∑
k=0

ck (Φ (t)− Φ(0))
k
,

where f ∈ Cn−1 [0, b] , ck =
Θ

[k]
Φ (0)

k! .

2.3. Measures of noncompactness
In this section, we present some results about measures of noncompactness.So, let R be the set of real numbers.
Let also E be a real Banach space and B (x, r) denotes the closed ball centered at x with radius r . The symbol
Br stands for the ball B (0, r) . For X a nonempty subset of E , we denote by X and ConvX the closure and
the closed convex hull of X , respectively. Furthermore, let us denote by ℘E the family of nonempty bounded
subsets of E and by ℜE its subfamily consisting of all relatively compact subsets of E . For a given set W of
functions ϖ : [0, 1] , let us denote W (t) = {ϖ (t) : ϖ ∈ W} , t ∈ [0, 1] and W ([0, 1]) = {ϖ (t) : t ∈ [0, 1]} .
Next, we recall the definition of the measure of noncompactness and some auxiliary results. For more details,
see [24, 31, 41] and the references therein.

Definition 2.7 The Kuratowski measure of noncompactness µE over the subset X of a Banach space E is
given by

µE (X) = inf {ε > 0 : X ⊆ ∪n
i=1Xi and diam (Xi) ≤ ε} , (2.4)

566



BELARBI et al./Turk J Math

where
diam(Xi) = sup {∥x− y∥ : x, y ∈ Xi} .

We also present to the reader the following Darbo’s theorem [24] :

Theorem 2.8 Let X be a Banach space and C be a bounded, closed, convex and nonempty subset of X .
Suppose that the continuous mapping Υ : C → C is a µE -contraction. Then Υ has a fixed point in C .

3. Main results
Let E :=

{
x : x ∈ C ([0, 1]) ,c Dα,Φx ∈ C ([0, 1])

}
be the Banach space endowed with the norm

∥x∥E = ∥x∥+
∥∥cDα,Φx

∥∥ ,
where ∥x∥ = maxt∈[0,1] |x(t)| and

∥∥∥∥cDα,Φx
∥∥∥∥ = maxt∈[0,1]

∣∣∥∥cDα,Φx
∥∥∣∣ .

Using E , we introduce the following hypotheses:
(H1) The function f is continuous and there are two positive constants Lf ,Mf satisfying∥∥f (t, x, x̃,c Dα,Φx

)
− f

(
t, y, ỹ,c Dα,Φy

)∥∥ ≤ Lf (∥x− y∥+ ∥x̃− ỹ∥) +Mf

∥∥cDα,Φx−c Dα,Φy
∥∥ .

(H2) The function g is continuous and there exists a constant Lg > 0, such that

∥g (t, x)− g (t, y)∥ ≤ Lg ∥x− y∥ .

(H3) The function h is continuous, and there exists a constant Lh > 0, such that

∥h (t, x)− h (t, y)∥ ≤ Lh ∥x− y∥ .

3.1. The pantograph integral representation
In this section, we present to the reader the following first result.

Lemma 3.1 Let y ∈ C([0, 1]). Then the problem

cDβ,Φ
(
cDα,Φx (t) + z (t)

)
= y (t) , t ∈ [0, 1] ,

x (0) = 0, (3.1)

x (1) =

1∫
0

h (s, x (s)) ds

has a unique integral representation which is given by the expression:

x (t) =

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1

y (τ)

Γ (α+ β)
dτ −

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1

z (τ)

Γ (α)
dτ

+

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α

(

1∫
0

h (s, x (s)) ds−
∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

y (τ)

Γ (α+ β)
dτ (3.2)

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

z (τ)

Γ (α)
dτ).
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Proof By Lemma 2.6 , we can reduce (1.1) to the equivalent equation:

cDα,Φx (t) = Jβ,Φy (t)− z (t) + c0, c0 ∈ R. (3.3)

Again, taking the integral operator Jα,Φ on both sides of (3.3) , we get

x (t) = Jα+β,Φy (t)− Jα,Φz (t) + c0
(Φ (t)− Φ(0))

α

Γ (α+ 1)
+ c1, c0, c1 ∈ R.

Moreover, for t ∈ [0, 1] , using the fact that x (0) = 0 , we find:

c1 = 0.

Also, since x (1) =
1∫
0

h (s, x (s)) ds, then one can obtain

c0 =

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

) 1∫
0

h (s, x (s)) ds− Jα+β,Φy (1) + Jα,Φz (1)

 .

Consequently,

x (t) = Jα+β,Φy (t)− Jα,Φz (t) +

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α
 1∫

0

h (s, x (s)) ds− Jα+β,Φy (1) + Jα,Φz (1)

 ,

which allows us to obtain the desired result. 2

3.2. One pantograph solution via BCP principle
We begin this section, by defining the integral operator ℑ : E → E by the following expression:

ℑx (t) =

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1

f
(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
Γ (α+ β)

dτ

−
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1

g (τ, x (τ))

Γ (α)
dτ

+

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α

(

1∫
0

h (s, x (s)) ds (3.4)

−
∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

f
(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
Γ (α+ β)

dτ

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

g (τ, x (τ))

Γ (α)
dτ).

Then, based on Banach contraction principle (BCP for short) [22, 23] , we prove the following first main
result.
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Theorem 3.2 Let (H1)− (H3) hold. Suppose also that

Ω := (4Lf + 2Mf )∆1 + 2Lg∆2 + Lh∆3 < 1. (3.5)

Then, (1.1) has a unique solution on [0, 1] .

Proof Let t ∈ [0, 1] . So, we can write

|ℑx (t)−ℑy (t)|

=

∣∣∣∣∣
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1

Γ (α+ β)

×
[
f
(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
− f

(
τ, y (τ) , y (λτ) ,c Dα,Φy (τ)

)]
dτ

−
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1

[g (τ, x (τ))− g (τ, y (τ))]

Γ (α)
dτ

+

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α

× (

1∫
0

[h (s, x (s))− h (s, y (s))] ds

−
∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)

×
[
f
(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
− f

(
τ, y (τ) , y (λτ) ,c Dα,Φy (τ)

)]
dτ

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

[g (τ, x (τ))− g (τ, y (τ))]

Γ (α)
dτ)

∣∣∣∣∣ .
Using the Lipschitz assumption of f and the two hypotheses (H2)− (H3) , it yields that

∥ℑx−ℑy∥ ≤
(
2Lf (∥x− y∥) +Mf

∥∥cDα,Φx−c Dα,Φy
∥∥) ∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)
dτ

+Lg ∥x− y∥
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1

Γ (α)
dτ + Lh ∥x− y∥

+
(
2Lf (∥x− y∥) +Mf

∥∥cDα,Φx−c Dα,Φy
∥∥) ∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)
dτ,

we obtain

∥ℑx−ℑy∥ ≤

(
4Lf (Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+

2Lg (Φ (1)− Φ(0))
α

Γ (α+ 1)
+ Lh

)
∥x− y∥

(3.6)

+

(
2Mf (Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)

)∥∥cDα,Φx−c Dα,Φy
∥∥ .
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On other hand, we have

cDα,Φℑx (t) =

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
β−1

f
(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
Γ (β)

dτ − g (t, x (t))

+

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
× (

1∫
0

h (s, x (s)) ds

−
∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

f
(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
Γ (α+ β)

dτ

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

g (τ, x (τ))

Γ (α)
dτ),

and

∣∣cDα,Φℑx (t)−c Dα,Φℑy (t)
∣∣ ≤

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
β−1

Γ (β)∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)
)
− f

(
τ, y (τ) , y (λτ) ,c Dα,Φy (τ)

)∣∣ dτ
+ |g (t, x (t))− g (t, y (t))|+

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
(

1∫
0

|h (s, x (s))− h (s, y (s))| ds

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)
)
− f

(
τ, y (τ) , y (λτ) ,c Dα,Φy (τ)

)∣∣ dτ
+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1 |g (τ, x (τ))− g (τ, y (τ))|
Γ (α)

dτ).

Thanks to (H1)− (H3), we get

∥∥cDα,Φℑx−c Dα,Φℑy
∥∥ ≤

(
2Lf (∥x− y∥) +Mf

∥∥cDα,Φx−c Dα,Φy
∥∥) ∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
β−1

Γ (β)
dτ

+Lg ∥x− y∥+
(

Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
×

(3.7)

(Lh ∥x− y∥+
(
2Lf (∥x− y∥) +Mf

∥∥cDα,Φx−c Dα,Φy
∥∥) ∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)
dτ

+Lg ∥x− y∥
∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

Γ (α)
dτ).
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Consequently,

∥∥cDα,Φℑx−c Dα,Φℑy
∥∥ ≤

(
4Lf (Φ (1)− Φ(0))

β

Γ (β + 1)
+ 2Lg +

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
Lh

)
∥x− y∥

(3.8)

+
2Mf (Φ (1)− Φ(0))

β

Γ (β + 1)

∥∥cDα,Φx−c Dα,Φy
∥∥ .

Finally, from (3.6)and (3.8) , it is easy to see that

∥ℑx−ℑy∥E = max
{
∥ℑx−ℑy∥+

∥∥cDα,Φℑx−c Dα,Φℑy
∥∥}

≤

(
4Lf (Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+

2Lg (Φ (1)− Φ(0))
α

Γ (α+ 1)
+ Lh

+
4Lf (Φ (1)− Φ(0))

β

Γ (β + 1)
+ 2Lg +

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
Lh

)
+ ∥x− y∥

+

(
2Mf (Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+

2Mf (Φ (1)− Φ(0))
β

Γ (β + 1)

)∥∥cDα,Φx−c Dα,Φy
∥∥ ,

≤

(
(4Lf + 2Mf )

(
(Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+

(Φ (1)− Φ(0))
β

Γ (β + 1)

)

+ (2Lg)

(
(Φ (1)− Φ(0))

α
+ Γ (α+ 1)

Γ (α+ 1)

)
+ Lh

(
Γ (α+ 1) + (Φ (1)− Φ(0))

α

(Φ (1)− Φ(0))
α

))
∥x− y∥E ,

≤ ((4Lf + 2Mf )∆1 + 2Lg∆2 + Lh∆3) ∥x− y∥E ,

where

∆1 =
(Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+

(Φ (1)− Φ(0))
β

Γ (β + 1)
,

∆2 =
(Φ (1)− Φ(0))

α
+ Γ (α+ 1)

Γ (α+ 1)

and

∆3 =
Γ (α+ 1) + (Φ (1)− Φ(0))

α

(Φ (1)− Φ(0))
α .

Since Ω < 1 , then ℑ is contraction mapping. Hence, by the BCP principle, we state that ℑ has a unique fixed
point which is the unique solution of (1.1). 2
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3.3. One pantograph solution via BCP principle and Holder inequality

The following main result deals with the existence of a unique solution of the studied problem by using both
the BCP principle and Holder inequality [6, 34] . To prove that result, we need the following hypothesis:

(H4) The function f is continuous, and there exists a function φ, such that

∥∥f (t, x, x̃,c Dα,Φx
)
− f

(
t, y, ỹ,c Dα,Φy

)∥∥
≤ φ (t)

(
∥x− y∥+ ∥x̃− ỹ∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) ,

where t ∈ [0, 1] , x, y ∈ E,φ ∈ L
1
p ([0, 1] ,R+) , p ∈ (0, 1) and ∥φ∥ =

(∫ 1

0
(φ (τ))

1
p dτ

)p
.

Theorem 3.3 If the hypotheses (H2), (H3) and (H4) are satisfied and

𝟋 :=
6 ∥φ∥ (Φ (1)− Φ(0))

α+β−p

Γ (α+ β)

(
1− p

α+ β − p

)1−p

+
6 ∥φ∥ (Φ (1)− Φ(0))

β−p

Γ (β)

(
1− p

β − p

)1−p

+2Lg∆2+Lh∆3 < 1,

(3.9)
then, the problem (1.1) has a unique solution on [0, 1] .

Proof Let t ∈ [0, 1] . Then, we have

|ℑx (t)−ℑy (t)| ≤
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1

Γ (α+ β)

×
∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
− f

(
τ, y (τ) , y (λτ) ,c Dα,Φy (τ)

)∣∣ dτ
+

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1 |g (τ, x (τ))− g (τ, y (τ))|
Γ (α)

dτ

+

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α

(

1∫
0

|h (s, x (s))− h (s, y (s))| ds

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)

×
∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
− f

(
τ, y (τ) , y (λτ) ,c Dα,Φy (τ)

)∣∣ dτ
+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1 |g (τ, x (τ))− g (τ, y (τ))|
Γ (α)

dτ).
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Using (H2)− (H3)− (H4), we can write

|ℑx (t)−ℑy (t)|

≤
(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) ∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1

φ (τ)

Γ (α+ β)
dτ

+Lg ∥x− y∥
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1

Γ (α)
dτ + Lg ∥x− y∥

+
(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) ∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

φ (τ)

Γ (α+ β)
dτ

+Lg ∥x− y∥
∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

Γ (α)
dτ.

Thanks to Holder inequality, it yields that

∥ℑx−ℑy∥ ≤
(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥)

Γ (α+ β)

(∫ t

0

(
Φ′ (τ) (Φ (t)− Φ(τ))

α+β−1
) 1

1−p

dτ

)1−p

×
(∫ t

0

(φ (τ))
1
p dτ

)p

+
2Lg (Φ (1)− Φ(0))

α

Γ (α+ 1)
∥x− y∥+ Lh ∥x− y∥ (3.10)

+

(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥)

Γ (α+ β)

(∫ 1

0

(
Φ′ (τ) (Φ (1)− Φ(τ))

α+β−1
) 1

1−p

dτ

)1−p

×
(∫ t

0

(φ (τ))
1
p dτ

)p

.

Therefore,

∥ℑx−ℑy∥ ≤
(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) (Φ (1)− Φ(0))

α+β−p

Γ (α+ β)

(
1− p

α+ β − p

)1−p

∥φ∥

+
2Lg (Φ (1)− Φ(0))

α

Γ (α+ 1)
∥x− y∥+ Lh ∥x− y∥ (3.11)

(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) (Φ (1)− Φ(0))

α+β−p

Γ (α+ β)

(
1− p

α+ β − p

)1−p

∥φ∥ .

On other hand, thanks to (H2)− (H3)− (H4) and using the same arguments as in the proof of Theorem
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2 , we can write∥∥cDα,Φℑx−c Dα,Φℑy
∥∥

≤
(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) ∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
β−1

Γ (β)
φ (τ) dτ

+Lg ∥x− y∥+
(

Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
(Lh ∥x− y∥+

(
2 ∥x− y∥+c

∥∥Dα,Φx−c Dα,Φy
∥∥)×

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)
φ (τ) dτ + Lg ∥x− y∥

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

Γ (α)
dτ).

The Holder inequality allows us to obtain∥∥cDα,Φℑx−c Dα,Φℑy
∥∥ ≤

(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥)

× 1

Γ (β)

(∫ t

0

(
Φ′ (τ) (Φ (t)− Φ(τ))

β−1
) 1

1−p

dτ

)1−p(∫ t

0

(φ (τ))
1
p dτ

)p

+Lg ∥x− y∥+
(

Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
(Lh ∥x− y∥+

(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥)

× 1

Γ (α+ β)

(∫ 1

0

(
Φ′ (τ) (Φ (1)− Φ(τ))

α+β−1
) 1

1−p

dτ

)1−p(∫ 1

0

(φ (τ))
1
p dτ

)p

+Lg ∥x− y∥
∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

Γ (α)
dτ).

Therefore, we can state that

∥∥cDα,Φℑx−c Dα,Φℑy
∥∥ ≤

(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) (Φ (1)− Φ(0))

β−p

Γ (β)

(
1− p

β − p

)1−p

∥φ∥

+Lg ∥x− y∥+
(

Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
(Lh ∥x− y∥

−
(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) (Φ (1)− Φ(0))

α+β−p

Γ (α+ β)

(
1− p

α+ β − p

)1−p

∥φ∥

+
Lg (Φ (1)− Φ(0))

α

Γ (α+ 1)
∥x− y∥ ).

Consequently,

∥∥cDα,Φℑx−c Dα,Φℑy
∥∥ ≤

(
2 ∥x− y∥+

∥∥cDα,Φx−c Dα,Φy
∥∥) 2 ∥φ∥ (Φ (1)− Φ(0))

β−p

Γ (β)

(
1− p

β − p

)1−p

(3.12)

+2Lg ∥x− y∥+
(

Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
Lh ∥x− y∥ .
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In view (3.11) and (3.12) , we have

∥ℑx−ℑy∥E ≤

(
4 (Φ (1)− Φ(0))

α+β−p

Γ (α+ β)

(
1− p

α+ β − p

)1−p

∥φ∥+ 2Lg (Φ (1)− Φ(0))
α

Γ (α+ 1)
+ Lh

)
∥x− y∥

+
2 (Φ (1)− Φ(0))

α+β−p

Γ (α+ β)

(
1− p

α+ β − p

)1−p

∥φ∥
∥∥cDα,Φx−c Dα,Φy

∥∥
+

(
4 ∥φ∥ (Φ (1)− Φ(0))

β−p

Γ (β)

(
1− p

β − p

)1−p

+ 2Lg +

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
Lh

)
∥x− y∥

+
2 ∥φ∥ (Φ (1)− Φ(0))

β−p

Γ (β)

(
1− p

β − p

)1−p ∥∥cDα,Φx−c Dα,Φy
∥∥ ,

≤

(
6 ∥φ∥ (Φ (1)− Φ(0))

α+β−p

Γ (α+ β)

(
1− p

α+ β − p

)1−p

+
6 ∥φ∥ (Φ (1)− Φ(0))

β−p

Γ (β)

(
1− p

β − p

)1−p

+ ((Φ (1)− Φ(0))
α
+ Γ (α+ 1))

(
2Lg

Γ (α+ 1)
+

Lh

(Φ (1)− Φ(0))
α

))
∥x− y∥E .

Hence, ℑ is a contraction since we have already seen that 𝟋 < 1 .
By the BCP principle, we confirm that ℑ has a unique fixed point, which is the unique solution of (1.1) .

2

3.4. A solution via Darbo’s theorem
Now, we prove an existence result for the problem (1.1) by Kuratowski MNC and Darbo’s fixed point theorem.
We have:

Theorem 3.4 Suppose that (H1)− (H3) are valid. Then, the problem (1.1) has at least one solution on [0, 1] .

Proof Let ϱ be a positive constant. We consider the set defined by: Bϱ = {x ∈ E : ∥x∥E ≤ ϱ} and let

sup
t∈[0,1]

|f (t, 0, 0, 0)| := Nf < ∞,

sup
t∈[0,1]

|g (t, 0)| := Ng < ∞,

and
sup

t∈[0,1]

|h (t, 0)| := Nh < ∞.

The set Bϱ is a closed, bounded and convex of the Banach space E. The proof will be developed as follows:
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Claim 1: We prove that ℑ (Bϱ) is bounded for any bounded set Bϱ .
For x ∈ Bϱ , and t ∈ [0, 1] , we have

|ℑx (t)| ≤
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1 ∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)∣∣
Γ (α+ β)

dτ

+

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1 |g (τ, x (τ))|

Γ (α)
dτ

+

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α

(

1∫
0

|h (s, x (s))| ds

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1 ∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)∣∣
Γ (α+ β)

dτ

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1 |g (τ, x (τ))|

Γ (α)
dτ).

Thus,

|ℑx (t)| ≤
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1

Γ (α+ β)

×
∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
− f (τ, 0, 0, 0)

∣∣+ |f (τ, 0, 0, 0)| dτ

+

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1 |g (τ, x (τ))− g (τ, 0)|+ |g (τ, 0)|

Γ (α)
dτ

+

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α

(

1∫
0

|h (s, x (s))− h (s, 0)|+ |h (s, 0)| ds

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)

×
∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
− f (τ, 0, 0, 0)

∣∣+ |f (τ, 0, 0, 0)| dτ

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1 |g (τ, x (τ))− g (τ, 0)|+ |g (τ, 0)|

Γ (α)
dτ).

Therefore,

∥ℑx∥ ≤
2 (Φ (1)− Φ(0))

α+β (
2Lf ∥x∥+Mf

∥∥cDα,Φx
∥∥+Nf

)
Γ (α+ β + 1)

(3.13)

+
2 (Φ (1)− Φ(0))

α
(Lg ∥x∥+Ng)

Γ (α+ 1)
+ Lh ∥x∥+Nh.
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On other hand, in view of (H1)− (H3), we can state that

∣∣cDα,Φℑx (t)
∣∣ ≤

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
β−1

Γ (β)

×
∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
− f (τ, 0, 0, 0)

∣∣+ |f (τ, 0, 0, 0)| dτ

+ |g (τ, x (τ))− g (τ, 0)|+ |g (τ, 0)|

+

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
(

1∫
0

|h (s, x (s))− h (s, 0)|+ |h (s, 0)| ds (3.14)

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)

×
∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)
− f (τ, 0, 0, 0)

∣∣+ |f (τ, 0, 0, 0)| dτ

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1 |g (τ, x (τ))− g (τ, 0)|+ |g (τ, 0)|

Γ (α)
dτ).

Then, we obtain

∥∥cDα,Φℑx
∥∥ ≤

(Φ (1)− Φ(0))
β (

2Lf ∥x∥+Mf

∥∥cDα,Φx
∥∥+Nf

)
Γ (β + 1)

+ Lg ∥x∥+Ng +

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)

(Lh ∥x∥+Nh +
(Φ (1)− Φ(0))

α+β (
2Lf ∥x∥+Mf

∥∥cDα,Φx
∥∥+Nf

)
Γ (α+ β + 1)

(3.15)

+
(Φ (1)− Φ(0))

α
(Lg ∥x∥+Ng)

Γ (α+ 1)
).

Thus, (3.13) and (3.15) imply that,

∥ℑx∥E ≤
2 (Φ (1)− Φ(0))

α+β (
2Lf ∥x∥+Mf

∥∥cDα,Φx
∥∥+Nf

)
Γ (α+ β + 1)

+
2 (Φ (1)− Φ(0))

α
(Lg ∥x∥+Ng)

Γ (α+ 1)
+ Lh ∥x∥+Nh.

(Φ (1)− Φ(0))
β (

2Lf ∥x∥+Mf

∥∥cDα,Φx
∥∥+Nf

)
Γ (β + 1)

+ Lg ∥x∥

+Ng +

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
(Lh ∥x∥+Nh

+
(Φ (1)− Φ(0))

α+β (
2Lf ∥x∥+Mf

∥∥cDα,Φx
∥∥+Nf

)
Γ (α+ β + 1)

+
(Φ (1)− Φ(0))

α
(Lg ∥x∥+Ng)

Γ (α+ 1)
).
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This shows that

∥ℑx∥E ≤ Ω ∥x∥E +
Nf (Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+ 2Ng

(
(Φ (1)− Φ(0))

α

Γ (α+ 1)
+ 1

)
+Nh

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α + 1

)
,

≤ Ωϱ+
Nf (Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+ 2Ng

(
(Φ (1)− Φ(0))

α

Γ (α+ 1)
+ 1

)
+Nh

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α + 1

)
,

≤ ϱ,

where

ϱ ≥
Nf (Φ(1)−Φ(0))α+β

Γ(α+β+1) + 2Ng

(
(Φ(1)−Φ(0))α

Γ(α+1) + 1
)
+Nh

(
Γ(α+1)

(Φ(1)−Φ(0))α + 1
)

1− Ω
.

Consequently, ℑ (Bϱ) is bounded.
Claim 2: The application ℑ is continuous.

To do this, let (xn)n∈N be a convergent sequence in Bϱ, such that xn → x when n → ∞ . Then, for all
t ∈ [0, 1] , we have

|ℑxn (t)−ℑx (t)| ≤
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1

Γ (α+ β)

×
∣∣f (τ, xn (τ) , xn (λτ) ,

c Dα,Φxn (τ)
)
− f

(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)∣∣ dτ
+

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1 |g (τ, xn (τ))− g (τ, x (τ))|
Γ (α)

dτ

+

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α

×(

1∫
0

|h (s, xn (s))− h (s, x (s))| ds

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)

×
∣∣f (τ, xn (τ) , xn (λτ) ,

c Dα,Φxn (τ)
)
− f

(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)∣∣ dτ
+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

Γ (α)
|g (τ, xn (τ))− g (τ, x (τ))| dτ),
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Then

∥ℑxn −ℑx∥ ≤

(
4Lf (Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+

2Lg (Φ (1)− Φ(0))
α

Γ (α+ 1)
+ Lh

)
∥xn − x∥

(3.16)

+

(
2Mf (Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)

)∥∥cDα,Φxn −c Dα,Φx
∥∥ .

Similarly, we have

∥∥cDα,Φℑxn −c Dα,Φℑx
∥∥ ≤

(
4Lf (Φ (1)− Φ(0))

β

Γ (β + 1)
+ 2Lg +

(
Γ (α+ 1)

(Φ (1)− Φ(0))
α

)
Lh

)
∥xx − x∥

(3.17)

+
2Mf (Φ (1)− Φ(0))

β

Γ (β + 1)

∥∥cDα,Φxn −c Dα,Φx
∥∥ ,

(3.16) and (3.17) allows us to state that

∥ℑxn −ℑx∥E ≤ Ω ∥xx − x∥E .

Therefore,

∥ℑxn −ℑx∥E → 0, n → ∞.

Hence, ℑ is a continuous operator over Bϱ.

Claim 3: We shall prove that ℑ (Bϱ) is equicontinuous.
Let t1, t2 ∈ [0, 1] ; t1 < t2, x, y, z ∈ Bϱ , where

sup
t∈[0,1]

|f (t, x, y, z)| = ϑf ,

sup
t∈[0,1]

|g (t, x)| = ϑg,

and

sup
t∈[0,1]

|h (t, x)| = ϑh.
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Then, we have

|ℑx (t1)−ℑx (t2)|

≤
∫ t1

0

Φ′ (τ)

Γ (α+ β)

×
[
(Φ (t1)− Φ(τ))

α+β−1 − (Φ (t2)− Φ(τ))
α+β−1

] ∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)
)∣∣ dτ

+

∫ t2

t1

Φ′ (τ) (Φ (t2)− Φ(τ))
α+β−1 ∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)∣∣
Γ (α+ β)

dτ

+

∫ t1

0

Φ′ (τ)
[
(Φ (t1)− Φ(τ))

α−1 − (Φ (t2)− Φ(τ))
α−1

]
|g (τ, x (τ))|

Γ (α)
dτ

+

∫ t2

t1

Φ′ (τ) (Φ (t2)− Φ(τ))
α−1 |g (τ, x (τ))|

Γ (α)
dτ

+
(Φ (t1)− Φ(0))

α − (Φ (t2)− Φ(0))
α

(Φ (1)− Φ(0))
α

×(

1∫
0

|h (s, x (s))| ds+
∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1 ∣∣f (τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

)∣∣
Γ (α+ β)

dτ

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1 |g (τ, x (τ))|

Γ (α)
dτ).

Therefore, we can write

|ℑx (t1)−ℑx (t2)| ≤
ϑf

Γ (α+ β)

∫ t1

0

Φ′ (τ)
[
(Φ (t1)− Φ(τ))

α+β−1 − (Φ (t2)− Φ(τ))
α+β−1

]
dτ

+
ϑf

Γ (α+ β)

∫ t2

t1

Φ′ (τ) (Φ (t2)− Φ(τ))
α+β−1

dτ

+
ϑg

Γ (α)

∫ t1

0

Φ′ (τ)
[
(Φ (t1)− Φ(τ))

α−1 − (Φ (t2)− Φ(τ))
α−1

]
dτ

+
ϑg

Γ (α)

∫ t2

t1

Φ′ (τ) (Φ (t2)− Φ(τ))
α−1

dτ

+

(
(Φ (t1)− Φ(0))

α − (Φ (t2)− Φ(0))
α

(Φ (1)− Φ(0))
α

)(
ϑh +

ϑf (Φ (1)− Φ(0))
α+β

Γ (α+ β + 1)
+

ϑg (Φ (1)− Φ(0))
α

Γ (α+ 1)

)
,

≤ 2ϑf

Γ (α+ β + 1)
(Φ (t2)− Φ(t1))

α+β
+

2ϑg

Γ (α+ 1)
(Φ (t2)− Φ(0))

α

+

(
(Φ (t1)− Φ(0))

α − (Φ (t2)− Φ(0))
α

(Φ (1)− Φ(0))
α

)(
ϑh +

ϑf (Φ (1)− Φ(0))
α+β

Γ (α+ β + 1)
+

ϑg (Φ (1)− Φ(0))
α

Γ (α+ 1)

)
.
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Hence,

|ℑx (t1)−ℑx (t2)| → 0 as t1 → t2.

Also, we can state that

∣∣cDα,Φℑx (t1)−c Dα,Φℑx (t2)
∣∣ ≤ ϑf

Γ (β)

∫ t1

0

Φ′ (τ)
[
(Φ (t1)− Φ(τ))

β−1 − (Φ (t2)− Φ(τ))
β−1
]
dτ

+
ϑf

Γ (β)

∫ t2

t1

Φ′ (τ) (Φ (t2)− Φ(τ))
β−1

dτ + [g (t1, x (t1))− g (t2, x (t2))] .

By taking t1 tends to t2 , then, the right-hand side of the last inequality tends to 0.

Consequently, ℑ (Bϱ) is equicontinuous.
Claim 4: We show that ℑ is a condensing operator.

Let W ⊂ Bϱ and t ∈ [0, 1] . So, we have:

µE (ℑW (t)) = µE (ℑx (t) , x ∈ W ) ,

where µE be the measure of noncompactness introduced on Definition 6 .

Obviously,

µE (ℑW (t)) ≤
∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α+β−1

Γ (α+ β)

{
µE

(
f
(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

))
, x ∈ W

}
dτ

+

∫ t

0

Φ′ (τ) (Φ (t)− Φ(τ))
α−1

Γ (α)
{µE (g (τ, x (τ))) , x ∈ W} dτ +

(
(Φ (t)− Φ(0))

(Φ (1)− Φ(0))

)α

(

1∫
0

{µE (h (τ, x (τ))) , x ∈ W} ds

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α+β−1

Γ (α+ β)

{
µE

(
f
(
τ, x (τ) , x (λτ) ,c Dα,Φx (τ)

))
, x ∈ W

}
dτ

+

∫ 1

0

Φ′ (τ) (Φ (1)− Φ(τ))
α−1

Γ (α)
{µE (g (τ, x (τ))) , x ∈ W} dτ)),

≤ Ω {µE (x (τ)) , x ∈ W, τ ∈ [0, 1]} ,

≤ Ω {µE (W (τ)) , τ ∈ [0, 1]} .

Finally, we can state that

µE (ℑW ) ≤ ΩµE (W ) .

Therefore, the operator ℑ is a contraction.
By Darbo’s fixed point theorem, the operator has a fixed point, which is a solution of (1.1) . 2
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4. Illustrative examples
Example 4.1 Let consider the following pantograph fractional problem:

cD
3
5 ,Φ
(
cD

4
5 ,Φx (t) + g (t, x (t))

)
= f

(
t, x (t) , x (λt) ,c D

4
5 ,Φx (t)

)
, t ∈ J,

x (0) = 0,

x (1) =
1∫
0

h (t, x (s)) ds.

(4.1)

Let us define Φ(t) := 2t2 + 2t+ 2 .
In particular, Φ is an increasing function on [0, 1] and Φ′ (t) is continuous over [0, 1] .
By taking

f
(
t, x (t) , x (λt) ,c D

4
5 ,Φx (t)

)
=

1

55 exp (t2 + 1)
[
1 + cos t

(t2+1)2
+ x (t) + x

(
2t
5

)
+c D

4
5 ,Φx (t)

] ,

g (t, x (t)) =
t3 − 3

100
x (t) ,

and

h (t, x (t)) =
1

200
x (t) ,

we constat that

Lf =
1

101 exp (1)
,Mf =

1

101 exp (1)
, Lg =

4

100
, Lh =

1

200
,

Ω = (4Lf + 2Mf )

(
(Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+

(Φ (1)− Φ(0))
β

Γ (β + 1)

)

+(2Lg)

(
(Φ (1)− Φ(0))

α
+ Γ (α+ 1)

Γ (α+ 1)

)
+ Lh

(
Γ (α+ 1) + (Φ (1)− Φ(0))

α

(Φ (1)− Φ(0))
α

)

=

(
4× 1

101 exp (1)
+ 2× 1

101 exp (1)

)(
(4)

7
5

Γ
(
12
5

) + (4)
4
5

Γ
(
4
5 + 1

)) (4.2)

+

(
8

100

)(
(4)

3
5 + Γ

(
3
5 + 1

)
Γ
(
3
5 + 1

) )
+

1

200

(
(4)

3
5 + Γ

(
3
5 + 1

)
(4)

3
5

)
= 0.486 30 < 1.

Hence, by Theorem 2 , we can state that this example has a unique solution on [0, 1] .

Example 4.2 Let consider the following problem:
cD

2
3 ,Φ
(
cD

3
4 ,Φx (t) + g (t, x (t))

)
= f

(
t, x (t) , x (λt) ,c D

3
4 ,Φx (t)

)
, t ∈ J,

x (0) = 0,

x (1) =
1∫
0

h (t, x (s)) ds.

(4.3)
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Let us also define Φ(t) := t3 + t .
Therefe, Φ is an increasing function over [0, 1] and Φ′ (t) := 3t2 + 1 ̸= 0 is continuous for all t ∈ [0, 1] .
Moreover, the function f : [0, 1]× R3 → R defined by

f

(
t, x (t) , x

(
3

5
t

)
,c D

3
4 ,Φx (t)

)
=

4 + x (t) + x
(
3t
5

)
+c D

3
4 ,Φx (t)

(98 exp (t) + 2 cos (t2) + sin 2t)
(
1 + x (t) + x

(
3t
5

)
+c D

3
4 ,Φx (t)

) ,
is continuous. In addition, let

g (t, x (t)) =
1

202
+

t2

4

(
1

102
sinx (t)

)
,

and

h (t, x (t)) =
cosπt

6 (2t+ 9)
+

sinx (t)

36 (4t+ 7)
.

Consequently, (H1)− (H3) are satisfied with

Lf =
1

100
,Mf =

1

100
, Lg =

1

200
, Lh = 2.248 7× 10−2

and

Ω = (4Lf + 2Mf )

(
(Φ (1)− Φ(0))

α+β

Γ (α+ β + 1)
+

(Φ (1)− Φ(0))
β

Γ (β + 1)

)

+2Lg

(
(Φ (1)− Φ(0))

α
+ Γ (α+ 1)

Γ (α+ 1)

)
+ Lh

(
Γ (α+ 1) + (Φ (1)− Φ(0))

α

(Φ (1)− Φ(0))
α

)

=

(
4

100
+

2

100

)(
(2)

2
3+

3
4

Γ
(
2
3 + 3

4 + 1
) + (2)

2
3

Γ
(
2
3 + 1

))+
1

100

(
(2)

3
4 + Γ

(
3
4 + 1

)
Γ
(
3
4 + 1

) )
(4.4)

+2.248 7× 10−2

(
Γ
(
3
4 + 1

)
+ (2)

3
4

(2)
3
4

)
= 0.29613 < 1.

Also, we have

Nf =
1

25
, Ng =

1

400
, Nh =

1

54
,

and

ϑf =
1

100
, ϑg =

1

200
, ϑh =

1

54
+

1

252
.

It follows by Theorem 4 that the example 6 has at least one solution on [0, 1] .

Conclusion
In this paper, we have studied a new problem of pantograph type via Φ−Caputo approach. The theorems
proved in this paper are new and concern results that are widespread in the literature and this study can be
regarded as a contribution to the improvement of the analytic aspect of fractional calculus. An interesting
extension of our problem would be to investigate the possibility of existence for positive solutions and their
stability analysis in Ulam-Hyers sense for the same problem.
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