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Abstract: In this paper, we present that the following system of difference equations

Tn—kin—1 Yn—kTn—1 Zn—kYn—1

= y Yn = y An = ’
bnwn—k + AnZn—k—1 dnyn—k + CnTn—k—1 fnzn—k + EnYn—k—1

Tn

where n € Ng, k,l € N, the initial values x_;,y_;,2_; are real numbers, for i € 1,k + [, and sequences (an)neND,
(bn)peng+ (€n)neng s (dn)peny s (En)nen, and (fn), ey, are non-zero real numbers, for all n € No, which can be solved
in closed form. We describe the forbidden set of the initial values using the obtained formulas and also determine the
asymptotic behavior of solutions for the case k=3, [ =1, and the sequences (an),cr,+ (On)neny s (€n)neng s (@n) e, »

(e”)nENo and ( fn)neN0 are constant. Our results considerably extend and improve some recent results in the literature.

Key words: System of difference equations, closed form, forbidden set

1. Introduction and preliminaries

The main problem of theory of difference equations is to determine the behaviour of the solutions of difference
equations. See, for example, the references [1, 2, 4, 10, 11, 14-23, 25, 29, 31-33, 35-37].

One of the ways to examine the asymptotic behavior of solutions of difference equations or systems of
difference equations is to obtain solutions of difference equations or systems of difference equations. Obtaining
solutions to difference equations started at the beginning of the 18th century by De Moivre. Firstly, he solved

the following homogeneous linear difference equation

Tpyo = aTpe1 + bz, n € Ny, (1.1)

when b # 0 and a? # —4b. He found the general solution for Eq. (1.1) is given by the following formula:

., = (1’1 7)\2560) )\?4’()\1%071’1))\3’”61\107 (12)
A1 — Ao

where A\; and Mg are roots of the polynomial P(\) = A2 —aX —b = 0. Eq. (1.2) is called the De Moivre
formula, whereas the polynomial P is called the characteristic polynomial associated to the linear equation
(1.1) in [3].
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Ideas and methods of De Moivre were later improved by Euler in [12]. The study was followed by
Lagrange, Laplace and many other mathematicians.
After learning the solution methods of linear difference equations, a new problem emerged. This problem
is how to turn nonlinear difference equations into linear difference equations.
Firstly, the following equations
TpTp—1

Tptl = — and Tl = —
Tn + Tp—2 Tpn—1+ Tn-2

Tndn-l e Ny, (1.3)

were presented, among other things, by Elmetwally et al. in [6]. The solutions of difference equations in (1.3)
were found by using induction. This method didn’t give much detail on how solutions were obtained. We believe
that the results can be obtained by computer programs. In addition, the solutions of some of the difference
equations investigated in [6] are associated with number sequences. For this reason, the last aforementioned
study has been considered important by mathematicians.

Difference equations of the type of difference equations in (1.3) have been generalized in different ways by
many mathematicians in [5, 7, 8, 13, 20, 24, 26, 28, 30, 34]. That is, generalizations are adding the parameters,
increasing order, adding periodic coefficients and increasing dimensional, such as two-dimensional or three-
dimensional systems. For example, in [30], the most general form of the difference equations in (1.3), which is

a theoretical explanation of the studies using the induction, is the following difference equation

0T kT (k1)
anf(kJrl) + YTn—1

Ty = QTp_k + , n € Ny, (1.4)

where k and [ are fixed natural numbers, o, (3, 7, § € R, and the initial values 2_;, i = 1,k+1 are
real numbers. Authors showed that equation (1.4) is solvable in closed form and presented formulas for the
solutions by using transformation. They also studied the long-term behavior of the solutions of equation (1.4).
It is possible to find special cases of this equation in the literature. See, for example, the references [5, 7—
9, 13, 24, 26, 28, 30].

Another example for aforementioned generalization is that the second of the difference equations in (1.3)

was generalized to the following two dimensional systems

Tn—1Yn Yn—1Tn

— T g = — 2= e N, 15
ixnfl :l:yn72 Yt iynfl ixn72 " 0 ( )

Tn+1 =

and was solved by using induction in [7]. In addition, Elmetwally didn’t give theoretical explanation of how
solutions were obtained.
Moreover, in [27], systems (1.5) were extended to the following two-dimensional system of difference
equations
LTn—kYn—1 Yn—kTn—1

Ty = , = , n € Ny, 1.6
" bpTp_k + AnYn—k—I Yn dnyn—k + CnTn—k—1 ( )

and solved in closed form.
Our aim in this paper is to extend both the there-dimensional form of equations in (1.3) and more general
systems of (1.5) and (1.6) to solve them in closed form. Another goal in this study is to prevent the solutions

of difference equations and systems of difference equations from being obtained by induction and to extend the
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solutions of difference equations and their systems obtained by induction, such as equations in (1.3), systems

(1.5), to the following three-dimensional system

Tp—kZn—1 Yn—kTn—1 Zn—kYn—1
y Yn = y An = ; (17)
bnmn—k + GnzZn—k—1 fnzn—k + EnYn—k—I

€T =
" dnyn—k + CnTp—k—1
where n € Ny, k,I € N, the initial values x_;,y_;,z_; are real numbers, for ¢ € 1,k + [, and sequences
(@n)neny s (On)nengs (€n)nengs (@n)nengs (€n)nen, and (fn),en, are non-zero real numbers, for all n € Np.
System (1.7) can be solved in closed form by using transformation. In addition, we determine the asymptotic
behavior of solutions and the forbidden set of the initial values by using the obtained formulas. Note that system
(1.7) is a natural generalization of both equations in (1.3), system (1.5), system (1.6), the general systems of

system (1.5), and the general equations in (1.3).

The following definition gives us the set of all initial values, which yields undefined solutions.

Definition 1.1 [27] (Forbidden set): Consider the following system of difference equations

1 1 2 2 m m
B0 = (1o a Dy a0,
1 2 2 m m
b = (o e n @ a )
o = (5D a @y 2@y e 19)
n € Ny, where m,k € N and xg €R, j =1k, i=1,m. The string of vectors (x§-1),x§-2),...,x§-m)>,

—k < j < ng, where ng > —1, is called an undefined solution of system (1.8) if

7 1 1 2 2 m m
O i (60 200y )

for i = 1m, 0 < j <mny+1, and = 3_ is not defined for an ip € {1,...,m}, that is, the quantity

fio (177(110), . SO) k+1,x,(120), . 7(120) kil xg:f), e 5::) k+1) is not defined. The set of all initial values

() , 7 = 1,k,i = 1,m, which generate undefined solutions of system of difference equation (1.8), is called

domam of undefinable solutions of the system of difference equations (or called forbidden set).

2. Closed solutions of the system (1.7)
First assume that [ < k. If z,, = 0 for some ng > —{, and =, # 0, y, #0, 2z, #0, =l <n <ng—1, then
from the second equation in (1.7) we have that if y,,4; = 0, which implies that y,,4i4% is not defined.

If y,, =0 for some n; > —I, and z, # 0, y, # 0, 2, #0, =l < n < n; —1, then from the third
equation in (1.7) we have that if z,,4; = 0, which implies that z,,1;+% is not defined.

If z,, =0 for some ny > —I,and =, #0, y, #0, 2, #0, =l <n < ny—1, then from the first equation

in (1.7) we have that if x,,4; = 0, which implies that z,, ;4 is not defined.
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If z,, =0 for some —! >ng > —k, and =, #0, y, #0, z, #0, —k <n <ng—1, then, from the first
equation in (1.7), we obtain Zpkin, = 0, m € Ny, as far as these numbers are defined. Hence, @, is not
defined, or 2,,1x =0 (note that n3 + k > 0), which, according to the first case, would imply that y,,4ox4; is

not defined.
If yp, = 0 for some —I > ny > —k, and 2, # 0, yn #0, 2, #0, —k < n < ny — 1, then, from the

second equation in (1.7), we obtain Ymk+n, = 0, m € Ny, as far as these numbers are defined. Hence, y,,
is not defined, or y,,+x = 0 (note that ny + k > 0), which, according to the second case, would imply that
Zna+2k+1 18 not defined.

If z,, =0 for some —I >ns > —k,and x, #0, y, #0, 2, #0, —k <n <ns — 1, then, from the third
equation in (1.7), we obtain zmk4n, = 0, m € Ny, as far as these numbers are defined. Hence, 2,41 is not
defined, or z,.+r = 0 (note that ns + k > 0), which, according to the third case, would imply that =, 4okt

is not defined.
The case | > k is treated similarly, so we omit it.

On the other hand, if z,, = 0 for some ng € Ny, then, according to the first equation in (1.7) we have

that Tpg—r =0 or 24, =0. If =k <ng—k < —1or =1 <ng—1< —1, then we have a jy € {1,...,s}, where
s = max {k,l}, such that z_;, =0 or z_;, = 0. If ng > s, then, by using the equations in (1.7), we have that
Tng—2k =0 O Zpg_p—1 =0 if Tpy_p =0 0r 2pg——1 =0 0r Ypo_o =01if 2,1 =0. If —s<ng—2k < -1 or
—s<ng—k—1< —1 in the first case, or —s < ng — 2l < —1 or —s < ng— k —1 < —1 in the second case,
then we have a j; € {1,...,s} such that x_;, =0 or y_;, =0 or z_;, = 0. Repeating this procedure we find
ape{l,...,s} such that x_, =0 or y_, =0 or z_, = 0. As we have proved above, such solutions are not
defined.
Hence, we will consider z,y,z, # 0 for all n € Ny. Note that the system (1.7) can be written in the
form
Zn— Zn—k— Ty Ty _ ke
nl:annkl+bn’ anCnnkl+dn,ynl:enynkl+fn’ (21>
T Tn—k Yn Yn—k Zn Zn—k
for n € Ny. Let
Zn— Ty _
Uy, = nl,vn: nl,wn:ynl,nsz. (2.2)
Then, system (2.1) can be written as
Up = pln—k + bp, Vn = CpUn_k + dn, Wy = euWpn_g + fn, n € Np. (23)
Hence, the sequences
Ukmmti = ugfL), Vkmti = ’uﬁﬁ), Wrmai = w,(fb), i=0k—1, m>—1. (2.4)
are solutions of the equations
u® = apmaiulh Dy
0D = sy + drmei,
(i) _ () ) 2.5
Wy, = Ckm+iW,,_1 + fkm—Ha ( . )
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for m > —1. So, for each fixed i € {0,1,...,k

for m > —1.

Ifa,=a,b,=b,c,=c,d,=d, e, =€ and f, =

@ (u(_l)l (1-

u

if a # 1, and

if a =1, while

if c#1, and

if ¢=1, while

if e#1, and

ife=1.
Using (2.2), it follows that

x n

Yn

o)

m
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'U(l

()
w_ Hek_]-'rl + E ka-H
j=0 —

— 1} equations in (2.5)

m
H ’f]+l+zbk]+l H Qs+,

= s=j+1

3

Hckj+l+zdkj+l H Cls+is

s=j+1

j=0

m

a) —b) am™tl 4+ b

1—a

)

1—e

i %

w :w()l +(m+1)f, m>-1,
Zn—I1 —21 LTn—31

nt_ Ynom L n>2 -k
Un, UnWn,—| UpWn—1VUn—21
Tpn—1 Zn—21 -3l

n _ n _ Yn > 9 — k,
Un, UnUnp—1 UnUp—1Wn—21

H Chs+is

s=j+1

m > —1,

f, for every n € Ng, i € {0,1,...,k

(2.6)

2.7)

(2.8)

— 1}, then we get

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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PR N e B s SV I (2.17)

Wn, WnUn—1 WnUp—Un—21

From (2.15)-(2.17), we have

T3lm+i—31 Tq—31
T3lm+i = === , (2.18)
U3Im4-i W3Im~+i—1V3lm+i—21 Hj:O U3BLj+iW3lj+i—1V31j+i—21
Y3im+i—3l Yi—31
Ysimi = mt == : : (2.19)
V3lm~+iU3Im~+i—1W3Im+i—21 szo V315 +iU315+i—1W3lj4i—21
Z3lm~+i—31 2i—31
Z3lm+i = e === . , (2.20)
W3im+iV3lm+i—1U3Im~+i—21 Hj:() W3154+iV3154+i—1U3lj4+i—21

for every m € Ny, ¢ =21 — k, 5] — k — 1. Since every non-negative integer can be written in the form kmq + 7,
where m; € Ny and j € {0,1,...,k — 1}, we get that

L315+i—31
T3lkm+3lj+i = Thmy ; (2.21)
Hs:o US1s+315+iW3ls+315+i—1V31s+315+i—21

Y3ij+i—3l
Ysitkmi+3li+i = "o, , (2.22)
Hs:O U31s+315+iU3ls+31j4+i—1W3ls+315+i—21

23lj+i—31
231kma+3li+i = s , (2.23)
H —0 W3ls+315+iV31s+31j+i—1U3ls+31j+i—21

for every m; € Ng, j=0,k—1,i=2l—k,5l — k —
A simple analysis shows that formulas (2.6)-(2.8) can be efficiently applied in (2.21)-(2.23) if 3l = k.

Theorem 2.1 Assume that a, # 0, b, #0, ¢, #0, d, #0, e, #0, fn #0, every n € Ny. Then the
forbidden set of the initial values for system (1.7) is given by the set

k—1
3(k+1) .
F o= U U{(xfkrflv"'axflvyfkflw"7y71727k7l7'~~7271)GR(+)'
meENg i=0
m j—l m Jj—1
Zi— k-1 brjt xz‘—k—z drjis 1
= — == ][ —#0
Ti—k =0 aijrz =0 alirz Yi—k =0 Ckj+i —0 Ckl4i

yifkfz B Z fkj+z H 1 #O}U

Zi—k ekj-’rl ekl—H
K+l
U { (Tkely e s T Ykl Y1y Zkly ey 2-1) € R3*H)
=1
oy =0, -y =0, 2 =0}. (2.24)
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Proof At the beginning of Section 2, we have acquired that the set

k+1

3(k+1
U {(l'fkflv"',xflayfkfla"'7y71asz7l7" '7271) eR (k+D) :
21

T_j; = 0, Yy—; = 07 Z_j = 0}

belongs to the forbidden set of the initial values for system (1.7). Now, we assume that x,, # 0, y, # 0 and

zn # 0 for every n € Ny. Note that the system (1.7) is undefined, when the conditions b,z _+anzn_r—; = 0 or
dnyn—k +cpTp—gp—; =0 or fnzn—k +enYn—k—1 =0, that is, 7Z;;f;l = —% or L;;f: = —(Z: or 7‘1/;’:16: = —é%,

for some n € Ny or are satisfied (Here we consider that a, # 0, ¢, # 0 and e, # 0 for every n € Ny). From

this and the substitution u, = Z;‘—;ﬂ Uy = m;;’ , Wy = y; , we get
bt dmi Sem+i
Uk(m—1)4i = ———» Vk(m—1)+i = — y We(m—1)+i = — 2.25
(m=1)+s Alm+i (m—=1)+ Ckm+i (m=1)+4 €km+i ( )
for some m € Ny and ¢ € {0,1,...,k — 1}. Hence, we can determine the forbidden set of the initial values for
system (1.7) by using the substitution u, = 2=, v, = z;‘;l , wy, = ¥2=t. Now, we consider the functions
fkm+i (t) = akm+it + bkm+i7 Jkm+i (t) = Ckm+it + dk‘m+i7 hkm+i (t) = ek:m+it + fkaria (226>

for some m € Ng and i € {0,1,...,k— 1}, which correspond to the equations in (2.3). From (2.25) and (2.26),

we can write

Ukm+i = ﬁm+i © ﬁc(mfl)Jri ©---0 ﬁ (Uifk) > (2-27)
Vkm+i = Gkm+i © 9k(m—1)+i © "~ © Gi (Viek), (2-28)
Whmti = Mkemas © Rigm—1)4i © - 0 by (wi—g), (2.29)

where m € Ny, and ¢ € {0,1,...,k — 1}. By using (2.25) and implicit forms (2.27)-(2.29) and considering

7 bkmti dimti — m4i
Frmys (0) = =2t gt (0) = —Semts it (0) = =Lt for m e No and i € {0, 1.,k — 1}, we have
ui—k:fi_lo"'ofk_niJri (O), Ui_k:gi_lo-wog};nlwri(()), wi_k:hi_l Oh];m+l( ), (2.30)
o Dkmti —drm4i — —frm+i .
where f]m}bJri (t) = tak%7 gk;m+z (t) = tcki+j ) hkm+z( ) = t@/fﬁ? m € Ny, i € {0,1,...,k —1}. From
(2.30), we obtain
m j—1 m j—1
b 1 dpj 1 Jr 1
U1—k:_zaj.+l_ p 7U7,—k:—zc].+z c 'auh k= — Z ]+1H€
=0 kj+1 1—0 kl+i =0 kj+i 1—0 kl+1 =0 k‘j+’L 1—0 kl+z

for some m € Ny and i € {0,1,...,k—1}. This means that if one of the conditions in (2.30) holds, then m-th

iteration or (m + 1)-th iteration in system (1.7) can not be calculated. O
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3. Case of the constant coefficients
In this section, we suppose that a, =a, b, =0, ¢, =c¢, d, =d, e, =€, f, = f for every n € Ny. Then

system (1.7) becomes

o Tn—kin—I1 Y = Yn—kTn—1 s = Zn—kYn—I1
- bl n — bl n —
bTp—k + a2n—k—1 AYn—; + CTp_f—1 fon—k + eYn—k—i

Tp , n € Np. (3.1)
Then, we may assume that ged (k,1) = 1. Indeed, if |ged (k,1)| = r > 1, where ged (k,1) denotes the greatest
common divisor of natural numbers k and [, then k& = rky and [ = rl; for some ki,l; € N such that
ged (k1,11) = 1. Since every n € Ny has the form n = mr + ¢ for some m € Ny and ¢ = 0,7 — 1, from system
(3.1) we get

Lr(m—ky)+ifr(m—I1)+i

Tmr+i - )
bx'r‘(m—kl)—i-i + AZr(m—ky—11)+i

Yr(m—k1)+iLr(m—11)+i
dyr(mfkl)Jri + CTp(m—ky—11)+i

Ymr+i s

Zr(m— iJdr(m— %
M (mok)tilfrm—t)+i o, (3.2)
fzr(mfkl)%»i + CYr(m—k1—11)+i

The change of variables

33'5711) = Tmr+is ySfL) = Ymr+i, Z’r(‘yzl) = Zmr+i; M E Ng, i =0,7 -1,

in (3.2) yields that (x%), yf,?, zﬁ,?) k)] 1 =0,r — 1, are r independent solutions of the system
m2>—(k1+1l1
() (4) (@) (@) (@) (@)
200 — 4‘Tm—k:12ml—ll ) = 'ym—klxmfll L) — .Zm—k:lym'—h . (3.3)
bf”i,i)—kl + G’ZT(:L)—kl—ll dyr(rzz)—kl + ngrlL)—kl—ll fzirt)—kl + eyr(:z)—kl—ll

Note that system (3.3) can get by taking k1 and [y, respectively, instead of k£ and ! in system (3.1). From now
on, we assume that the greatest common divisor of k¥ and [ is equal to 1; that is, ged (k,1) = 1. By putting the
formulas (2.6)-(2.8) into (2.21)-(2.23), we obtain the well-defined solutions of system (3.1) when ged (k,1) = 1.

3.1. Case k=3, 1=1

In this subsection, we will give solutions of system (3.1) for the case k = 3, I = 1. In this case, system (3.1)

becomes
Tp—32n—1 Yn—3Tn—1 Zn—3Yn—1
T = — —

- y Yn = y Rn = 7,”61\10. 3.4
bl'n—3 + azp—4q " dyn—S + cTp—yg " fzn—?) + eYn—4a ( )

First note that formulas (2.9)-(2.14), in this case, can be written in the following form

(ui,—3 (1 —a) —b)a™t +b
1—-a

U3m+i, = , M 2 _17i1 S {Oa 172}7 (35)
if a# 1, and

UZm+ti; = Uiy —3 + (m + ].) b, m > 71, i1 € {0, 1, 2}, (36)
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if a =1, while
i3l —c)—d)cmtl +d
VUsm+4iy — (v ! 3( i)_ c )C * , m 2 _17i1 S {07172}7 (37)
if c#1, and
U3m4i; = Vi, —3 + (m + 1) d, m>-—1,i; € {0, 1,2}, (38)
if ¢=1, while
o (1 — _ m+1
W3m+i, = (w“ 3( i)_ ef) = ha fa m Z _157:1 S {07 172}7 (39)
if e#1, and
W3m+i, — Wi;—3 + (m + 1) f7 m > —17i1 € {0, 1,2}, (310)
ife=1.

We obtain following equations from (2.18)—(2.20) for the case k=3, 1 =1,

Tamii = = i : (3.11)
Hj:o U3j+iW3j+i—1V3j+i—2
Ysm+i = Tm Yis ; (3.12)
Hj:o U3j+iU3j+i—1W35+i—2
Zi—
Z3m+i = Tym =3 ) (313)
szo W354+iV354+i—1U354i—2
for m € Ny, i € {-1,0,1}.
Let
0, <=0 (mod3) 0, i—1=0 (mod3) 0, ¢—2=0 (mod3)
pr:i=<1, i=1(mod3), p2: =<1, i—1=1 (mod3), p3:=<1, i—2=1 (mod3).
2, =2 (mod3) 2, i—1=2 (mod3) 2, i—2=2 (mod3)

3.1.1.Case a# 1, c#1, e#1

In this case, if (3.5)—(3.10) are used in (3.11)—(3.13), it can be easily seen that the solutions of system (3.4) are

as follows.
Ti-3
S _ _ — 3.14
e m (upl,g(l—a)—b)aJ+L§J+l+b (u;p2,3(1—e)—f)ej+LTIJ+1+f (vp3,3(1—c)—d)cJ+LT2J+1+d’ ( )
Hj:O l1—a 1—e 1—c
i—3
Yamri = vi (3.15)

1 4 i1 -2 )
m (vp—3(1—0)=d) 5T 4 d (upy _s(1—a)=b)a? "L 3 1T 4p (wpy _s(1—e)—f)e?TL5 1T 4

Hj:O 1—c

l1—a l1—e
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2i—3

m o (wpy—s(1=e)= )T 4 f (v, 5 (1—0)=d) LT I 4 (upy—s(1—a)—b)a? T 5 I H4p
Hj:O l1—e 1—c 1—a

Z3m—+i — (316)

for every m € Ny, i € {—1,0,1}. Now we will apply these formulas.

Theorem 3.1 Assume that k = 3l = 3, abcdef #0, a# 1, c# 1, e # 1, and that (ﬂcn,yn,zn)nzi4 is a
well-defined solution of system (3.4) and x_p,y_p,z2—p ¢ F, for p=1,4, k =3, | = 1. Then the following

statements hold.

(@) If la| > 1 and up,—3 # 12 or le| > 1 and wy,—3 # 1{@ or || > 1 and vp,—3 # 1%, then x3mi; — 0,

for i€ {—1,0,1}, as m — oco.

(b) If |e| > 1 and vp,_5 # 1% or |a| > 1 and up,—3 # 7= or |e| > 1 and wy,_3 # %, then ysm4is — 0,
forie{-1,0,1}, as m — co.

(c) If le] > 1 and wy,—3 # & or le| > 1 and vp,—3 # 1% or |a| > 1 and up,—3 # 12, then 23,4 — 0,
forie{-1,0,1}, as m — oco.

(d) If la| <1, le|] <1, |e] <1 and |bfd| < |(1—a)(1—e)(1—c)|, then |T3myi| = 0, |Ysm+i] — 0,

|z3m+i| = o0, for i € {—1,0,1}, as m — co.

() If la| <1, le] <1, || <1 and [bfd]| >|(1—a)(1—¢€)(1—c)|, then Z3m+i = 0, Ysm+i = 0, 23m+i — 0,
forie{-1,0,1}, as m — co.

() If la| <1, e <1, |¢) <1 and bfd=(1—a)(1 —e)(1—c), then the sequences Tsm+i, Ysm+i, Z3m-+is JOT

i € {-1,0,1}, are convergent.

(g8) If la] <1, le| <1, |¢f <1 and bfd = —(1—a)(1—e)(1—c), then the sequences Tem+ti, Tem-+3-+is

Y6mis Y6m-+3+is 26m—+is Z6m+3+i, Jor i € {—1,0,1}, are convergent.

Proof (a)-(c) Suppose that

(ttp, s (1 — @) = B) a™ L5141 b (wyy g (1= €) = ) ™ UFIH 4 f (0, g (1= ¢) —d) 5241 4 d

(1) .
Gm’ 1—a 1—e 1-c¢c ’
5(1) _ (p—3(1=¢)—d) cmHlEl 4 g (up,—3 (1 —a) —b) am T 4 p (wpy—3 (L —¢) = f) et AL f

1—c¢ l1—a 1—e

i—

A = (wp,—3(1—e) = /™ B+ 4 F (v, 5(1—¢) —=d) ™ UT I+ 4 d (upy—3 (1 — ) = D) a™ LT+ 4
mo 1—c¢ 1-c 1—a ’

We have that

lim Jof)| = lim |85)] = lim 35| = +oo,
m—00 m— 00 m—r 00

596



KARA and YAZLIK/Turk J Math

the results easily follow by using formulas (3.14)—(3.16).
(d)-(e) In this case, we have that

bfd|
lim |olV| = hm 18| = hm D) = | ,
m— 00 |(1*a)(176)(176)‘

from which along with (3.14)—(3.16) these results easily follow.

(f) After some calculation, we have that

a(l),(um—B(l—a)—b)amH%Hl+b(wp273(1—6)—f) MHUTIH 4 (upy—s (1= ) = d) LT 4 g
"o 1—a 1—e 1-c

1—=2

T O ((aco)™),

Upy—3(1 =) =b miiijh 4 Weas (L—e) = f miliztn 4 Ups3 (1—-¢)—d m+|

=1t b 7 d

1) _ (pms (1= ) =)™ 5 1 d (s (1= @) —5) @™ LTI b (g s (1 —0) = ™t LT 4

1-c 1-a 1—e
:1+1}p1—3(1d— c)—dcm+L§J+1+Upz—3(1b— a)—bamH%Jﬂ_i_ wps—s(lf— e) = f mt1i52 20 L0 ((cae)™) |
and
- (wpy—3 (1 =€) = e LEH 4 f (0, 5 (1—c) = d) ™ T 4 4 d (upy 5 (1—a) —0)a™ T4 4p
" 1—e 1—c 1—a

wp,-3(1—e) — fem+L§J+1 + Upp—3(1—c) — dcm+[iglj+1 + Up;—3(1—a) — bam+Lig2

f d b

=14 4 0((eca)™),

from which the convergence of the sequences (Hg N agl)) , (HT:O §”) and (HT:O 7§1)> , and,
meNy meNg meNg

consequently, the convergence of the sequences 3m+ti, Ysm+i and zsm4i, for i € {—1,0,1} from formulas

(3.14)—(3.16) easily follows.

(g) Similar to (f), we have that

a(l):(Um—:s(l*a)*b)amH%JHer(wpz—:S(l*e)*f) e ETIH 4 f (v s (L—¢) —d) LTI 4
m 1—a 1—e 1—c

_ (1 + Upy —3 (lb_ a) — bam-H%J-H + Wpy—3 (1f_ e) - fem+ igl + Upz—3 (1d_ C) —d m-H_ J+1 + (’)((aec) )> 7

(Vpra (1= ¢) = d) ™ 3 4 d (tpya (1= @) = b) @™ L5 1 b (wpy s (L—€) — f)em L5 40 1

w _
" 1—-c¢ l—a 1—e
Vp—3(1—¢)—d m+[E]+1 | Upa—3 (1—a)—b Wps—3(1—e)— f mﬂ_ 2 4+1 m
- 1+f0 3 +7a +f +O((cae)™) ),
and
L Wa—a (=€) = f) e L 4 F (v, 5 (1—c) —d)c +d (upy—3(1—a)—b)a +b
" 1—e 1—c¢ l1—a

- (1 + 2 (1f7 ©) = f gmtih1 e A (1d7 ) = d m 5t e o (1(: ) = 1521 +0 ((eca)m)) ;

597



KARA and YAZLIK/Turk J Math

from which the convergence of the sequences (H3m+i aﬁ”) N (Hgmﬂ §”)
meNy m

3m+i (1)
s=0 s=0 and (Hs;no 275 >m,€N0’

i € {—1,0,1} and consequently the convergence of the sequences Zem4i, Tem+3+is Yemti, Ym-+3+is Z6m-is

0
Z6m+3+i and formulas (3.14)-(3.16) easily follows.
Let

_ DPwp,—3vp,—3 (f — wp,—3) (d — vp,—3)

_ b2vp1*3w173*3 (f - wp3*3) (d - UP1*3)
(1= )

(1-a)’

Ml: ) M2:

)

Ms = b*wy, —3Vp,—3 (f — wp,—3) (d — vp,—3) M, = dPup, —3Wp,—3 (b — up,—3) (f — wp,—3)
. (1-a)’ 7 ' (1-0)

9

L d2u172—3wp3—3 (b - up2—3) (f — wp3—3) o d2u1)3—3w;01—3 (b — up3—3) (f - wpl—?))
Ms = . Mg = .
(I-2¢) (I-o¢)

)

_ f2up1*3v103*3 (b — UP1*3) (d - vp3*3)
(1—c)

_ f2vp1*3up2*3 (b - upz*?)) (d - UP1*3)

M7 : (1 _ 6)2

s Mg:

)

My = Sy —3Vpy—3 (b = tpy—3) (d = vp,—3)
(1—e)

)

Mo := Up, ~3Wp, —3Up;—3 (b0 — Up, —3) (f — wp,—3) (d — vp,—3) ,
My = vp, —3Up, —3Wpy—3 (d - ’U;D173) (b - up2*3) (f - wp3*3) )

Mis := wp, —3Up,—3tip,—3 (f — wp,~3) (d = vp,—3) (b — up,—3).

Theorem 3.2 Suppose that k =31 =3, abdf #0, |a| <1, c= -1, e=—1, and that (:c”,yn,zn)nz_4 is a

well-defined solution of system (3.4) and x_p,y_p,z2—p ¢ F, for p=1,4, k=3, Il = 1. Then the following
statements hold.

(a) If |[My| > 1, then x3my; — 0, for i € {=1,0,1}, as m — oo.
(b) If |IM1]| <1, then |x3mti| = 00, for i € {—1,0,1}, as m — oo.

(c) If My =1, then for i € {—1,0,1}, the sequences Tem+i, Tom+3+i are convergent.

(d) If My = —1, then the sequences Tiam+3j+i, for i € {—1,0,1}, j =0,3, are convergent.
(e) If |Ma| > 1, then ysmti — 0, for i € {—1,0,1}, as m — co.

(f) If |M2| < 1, then |ysm—+i| — o0, for i € {—=1,0,1}, as m — oo.
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(g) If My =1, then for i € {—1,0,1}, the sequences Ysm+i, Yom+3+i are convergent.

(h) If My = —1, then the sequences Yiam+3j+i, for i € {—1,0,1}, j =10,3, are convergent.
(i) If |Ms| > 1, then z3pmys — 0, for i € {—1,0,1}, as m — oco.

(G) If IM3| <1, then |z3mei| — o0, for i € {—1,0,1}, as m — oo.

(k) If M5 =1, then for i € {—1,0,1}, the sequences zgm-+i, Z6m+3+i are convergent.

(1) If M3 = —1, then the sequences ziam+3j+i, for i € {—1,0,1}, j =0,3, are convergent.

Proof (a), (b) In this case, we have

) (s (=) = b) a4 b 2wy, — f) ()™ 4 f (20 —d) ()T 4 d
m 1—-a 2 2 ’

from which we easily get

asmab) =M+ 0 (a®™), (3.17)

from which along with (3.14) the results easily follow.
(c) In this case, we get

2m—1

1= Tl 0+ 00

and
2m bw v m—1
[[o) =220 (14 0 ) ] (140 (). (3.19)
s=0 s=0
or
Ha(l _ b(f — wp,—3) Vps—3 (1+(9 H 1+0 (3.19)

(1—-a)

from which it follows that the sequences (Hig& ! agl)) and (Hiio agl)) converge, so by (3.14),
meNy meENy

Tem+i and Zgm4s4i are convergent, as claimed.

(d) In this case, we get

2m—1 m—1
[1 o= T v o
s=0

From this and (3.18),(3.19), we have that the sequences (Hfzoﬂ oM j = 0,3, are convergent and by

) meENy ’

(3.14), Z12m+3j+4i, ¢ € {—1,0,1}, 7 = 0,3, are convergent too.

(e), (f) In this case, we have
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(205, 5 — d) (=)L L (w5 (1= a) = 0) a LT 4 b (2w, 5 — ) (—1)"TLT I g

(1) —
P 2 1—-a 2 ’

from which we easily get

SBi1 = My + 0 (a®™), (3.20)

from which along with (3.15), the results easily follow.

(g) In this case, we get

2m—1

[1#0 =T a+o0w)

and
1) _ b”m 3Wps—3 2m — 2s
I 5t = st 10 o) T 1+ 007, 21
s=0
or
2m m—
[ s = s (1o o)) T (1 0 6. @22
s=0 =

from which it follows that the sequences (HQm 1551)) and (Hs:O §”) converge, so by (3.15),
m me

0 No

Yom+i and Yem434; are convergent, as claimed.
(h) In this case, we get

2m—1

50— (0" T[ (140
s=0 s=0

From this and (3.21),(3.22), we have that the sequences (H4m+] B ) o j = 0,3, are convergent and by
melNg

(3.15), yiom+sj+i, @ € {—1,0,1}, j = 0,3, are convergent too.

(i), (j) In this case, we have

L — Qg = DT 4 f (20— d) (- )™ S 4 (g (1—a) = b)a™ LT 4 p
m 2 2 1—a ’

from which we easily get

VomVoms1 = Ms + O (a*™), (3.23)

from which along with (3.16), the results easily follow.
(k) In this case, we get
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2m—1

1= 0+ow)

and
H%l) _ b, _3“;) = (140 (a®™)) nﬁ (1+0 (a*)), (3.24)
s=0
H 1 — f Wp, — 3)’0:02 3 O (a2™ e O (a2°

o 0 a) (140 (a®™)) 1;[0 (14+0(a*)), (3.25)

m—1
H ’7(1) f w(pf 3()1)(65’01)23) (1 +0O (a2m>> H (1 +0 (a2s)) , (3.26)

s=0

from which it follows that the sequences (Hi:&l 7§1)> and (H§:0 'ygl)) converge, so by (3.16),
meENp meN

0

Zem+i and Zgms+ are convergent, as claimed.

(1) In this case, we get

2m—1 m—1
I[ =0 I] a+ro@@®).
s=0 s=0
From this and (3.24),(3.25) we have that the sequences (Hi:;j vgl)) o j ,3, are convergent and by
me&Ng
(3.16), z12m+35+4i, ¢ € {—1,0,1}, j = 0,3, are convergent too. O

Theorem 3.3 Assume that k = 3l =3, bedf #0, |¢|] <1, a= -1, e = —1 and that (xn,yn,zn)n2_4 s a
well-defined solution of system (3.4) and x_p,y—p,z2—p & F, for p=1,4, k=3, | = 1. Then the following

statements hold.
(a) If |[My| > 1, then xgmyi — 0, for i€ {—1,0,1}, as m — 0.
(b) If |M4| <1, then |x3mti| = 00, for i € {—1,0,1}, as m — oo.

(¢) If My =1, then for i € {—1,0,1}, the sequences Tgm+ti, Tem+3+i are convergent.

(d) If My = —1, then the sequences Tiam+3j+i, for i € {—1,0,1}, j =0,3, are convergent.
(e) If |Ms| > 1, then ysmy; — 0, for i € {=1,0,1}, as m — oo.
(f) If |Ms| <1, then |ysmyi| = o0, for i € {-=1,0,1}, as m — .

(g) If M5 =1, then for i € {—1,0,1}, the sequences Ysm+i, Yom+3+i are convergent.
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(h) If Ms = —1, then the sequences Yiam+3j+i, for i € {—1,0,1}, j =0,3, are convergent.
(1) If |Mg| > 1, then z3m4i — 0, for i € {—1,0,1}, as m — co.
(G) If |Mg| < 1, then |zgm+i| = oo, for i € {—1,0,1}, as m — co.

(k) If Mg =1, then for i € {—1,0,1}, the sequences Zgm+ti, Z6m+3+i are convergent.

(1) If Mg = —1, then the sequences ziam+3j+i, for i € {—1,0,1}, j = 0,3 are convergent.

The proof of Theorem 3.3 is similar to the proof of Theorem 3.2 and utilizes the following three relations:

(2up, 5 — b) (—1)™ L b (w5 — ) (—1)™ T L f (0, s (1= 0) — d) et UF I 4 g

(1) —
“m 2 2 1—c ’
i m4| =1 m-| =2
s = Ops (=) = d) e I 4 d (Ruy, g = b) (U™ b Rupy s = ) (DT T S
m 1—-c¢ 2 2 ’
Wy, 5 — ) (=)™ (1) — d) et LR £ d (Quy, s — b) (—1)TEF T g
0 — 2= ) (D) I F (s (1 - ¢) = d) LS I 4 d (2up, g — b) (—1)™

2 1—c 2 ’
S0, it is omitted.

Theorem 3.4 Assume that k =3l =3, bdef # 0, [e] <1, a=—1, ¢ = -1 and that (T, Yn,2n),>_4 5 @

well-defined solution of system (3.4) and x_p,y_p,z2—p & F, for p=1,4, k=3, I = 1. Then the following
statements hold.

(a) If |[M7| > 1, then x3my; — 0, for i € {—1,0,1}, as m — oo.
(b) If |M7| < 1, then |z3m+i| = 00, for i € {—1,0,1}, as m — oco.

(c) If My =1, then for i € {—1,0,1}, the sequences Tgm+ti, Tem+3+i are convergent.

(d) If M7 = —1, then the sequences Tiam+3j+i, for i € {—1,0,1}, j =0,3, are convergent.
(e) If |Ms| > 1, then ysmy; — 0, for i € {=1,0,1}, as m — oo.
(f) If |Mg| < 1, then |ysm+i| = oo, for i € {—1,0,1}, as m — oo.

(g) If Mg =1, then for i € {—1,0,1}, the sequences Ysm+i, Yom+3+i are convergent.

(h) If Mg = —1, then the sequences Yiam+3j+i, for i € {—1,0,1}, j =0,3, are convergent.
(1) If | Mo| > 1, then z3m4i — 0, for i € {—1,0,1}, as m — oo.
(G) If |Mg| < 1, then |z3m+i| = o0, for i € {—1,0,1}, as m — oo.

(k) If Mg =1, then for i € {—1,0,1}, the sequences Zgm+ti, Z6m+3+i are convergent.
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(1) If My = —1, then the sequences ziam+3j+i, for i € {—1,0,1}, j = 0,3 are convergent.

The proof of Theorem 3.4 is similar to the proof of Theorem 3.2 and employs the following three relations:

i i— m4| =2
(2up, 3 — ) (1) 5T b (w5 (1 — ) — f)emt U5 I 4 f (20, 5 —d) (1)L I g
2 1—e 2 ’

o) =

i i1 i
0 = Cns =) ()™ L d (2up, s = b) (D)™TEE I b h (s (1 —e) — fem T Iy
mo= 2 2 1—e ’

i—

(wpy—3 (1 =€) = f) ™I 4 £ (20,5 —d) (=)™ ET 44 (2up, 5 —b) ()™ LTI g
1—e 2 9 )

4 =
so, it is omitted.

Theorem 3.5 Assume that k=31=3, bdf #0, a=c=e = —1, and that (xn,ymzn)nz_4 is a well-defined
solution of system (3.4) and x_,,y_p,z2—p ¢ F, for p=1,4, k=3, I =1. Then the following statements hold.

(a) If |Mio| <1, then |x3mei| — o0, for i € {—1,0,1}, as m — 0.
(b) If |Mio| > 1, then z3m4i — 0, for i € {—1,0,1}, as m — co.
(c) If Myp =1, then z,, is siz-periodic.

(d) If Mo = —1, then x,, is twelve-periodic.

(e) If | M| <1, then |ysm+i| = oo, for i € {—1,0,1}, as m — oo.
(f) If |My1| > 1, then yzmsi — 0, for i € {—1,0,1}, as m — co.
(g) If My =1, then yp, is siz-periodic.

(h) If My = -1, then y,, is twelve-periodic.

(1) If |[Mi2| < 1, then |z3myi| — 00, for i € {—=1,0,1}, as m — .
(G) If |Mi2| > 1, then z3pmi; — 0, for i € {—1,0,1}, as m — oo.
(k) If Myy =1, then z,, is siz-periodic.

(D) If Mo = —1, then z,, is twelve-periodic.

Proof (a)-(1) Note that, in this case, we get

i—1 i—2

(2up, 5 — ) (=1)"™ 5 b (w5 — ) ()™ 4 (2u,, s —d) (1) T g

o) = 2 2 2 ’
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(2’1)1,1,3 — d) (_1)m+|_§']+1 +d (2/U/p2—3 - b) (_1)m+|_%]+1 +b (2wp373 _ f) (_1)m+|_%J+1 + f

(1) —
Pin 2 2 2
L0 = Qs = HED™ T f @ugy g = d) (COMTT T 4 d Rupy g = b) ()T 4
m 2 2 2 '
Hence
agr)zagr)wrl = Mo, éiiﬁéiiﬂ = My, 752752“ = Mo, (3.27)

from which all the statements easily follow.

3.1.2. Case a# 1, c=1, e#1

In this case, if (3.5)—(3.10) are utilized in (3.11)—(3.13), it can be easily seen that the solutions of system (3.4)
are as follows.

Zi—3

€T m-i — = - 5 328
3m+ . (um_s(lfa)fb)ajﬂé”hrb (wm_?)(lfe),f)ejﬂTlHlJrf _ -y ( )
| -a i-e (vps—3 + (1 + |52 + 1) d)
Yi—3
Y3m+i = i1 ) ’ (329)
m . ; Upoy—s(1—a)=b)a? T3 1T b (wp, _s(1—e)—f)ed T3 1Ty
Hj:O (%1*3 + (] + L%J + 1) d) (s 17)0. (irss 1)e
Zi—3
Z3m-+i = 3 i3 ) (330)
m wp, —3(1—€)—f 5]+L§J+1+f . i— Ups—3(l—a)—b T3 J'H-i-b
[, (at0) (s (G 152 + 1) ) Lea=2Cmtl

for every m € Ny, i € {—1,0,1}.

3.1.3.Case a#1, c#1,e=1
In this case, if (3.5)-(3.10) are employed in (3.11)—(3.13), it can be easily seen that the solutions of system (3.4)

are as follows.

Ti-3
T3m+i = 3 i 2 ) (331)
m Up, —3(1—a)—b dItlsitigy . i VUpg—3(1—c)—d St g
I, (emet= ) (pa-s + (5 [52] +1) f) om0
Yi—3
Ysm+i = i i1 > (3'32)
m vp, —3(1—c)—d cJ+L§J+1+d Upy—3(1—a)—b aJJrLTJJrl—&-b . i—
Hj:o (s 172 ( - 1Ja (wpr?» + (J +1 szj + 1) f)
Zi—3
23m+i = i1 -2 ) (333)
m ) , Vpy—3(1—c)—d)d T3 11 4 d (up, _s(1—a)=b)a? L3 11 4p
[T (wpy s+ (5 1] +1) ) Lm0 sl o

for every m € Ny, i € {—1,0,1}.
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3.14. Case a=1, c#1, e#1
In this case, if (3.5)-(3.10) are used in (3.11)-(3.13), it can be easily seen that the solutions of system (3.4) are

as follows.

Zi—3

Tami = ( (1—e)—f)ed LB 1+ 1 g ( (1—c)—d)d 1521414 g (3.34)
m . i Wpy—3(1—e)—f)e VUpg—3(1l—c)—d)c
Hj:o (“p1—3 + (J + 3]+ 1) b) : I-c . I-c
Yi—3
Y3m+i = B | i—2 ) (335)
m vp, —3(1—c)—d Jrlgltlyg . i Wpa—3(l—e)—f gl I+
Iy, Lot (s + (+ | 552] + 1) ) (el
Zi—3
Z3m—+i — . i—1 ) (336)
m wp, —3(l—e)—f StLsitiy g (v, (1—c)—d St Ity g . i—
Iz, (et ) w0 ) (tpss+ (G + [52] +1) )

for every m € Ny, i € {—1,0,1}.

3.1.5.Case a=1,c#1,e=1
In this case, if (3.5)-(3.10) are utilized in (3.11)-(3.13), it can be easily seen that the solutions of system (3.4)

are as follows.

Li-3
T3m+i = . . ( (1 )7d) J'+L%J+1+d ; (337>
17 (tpy—s + (5 + 5]+ 1) b) (wpys + (j + [52] +1) f) e
Yi-3
Y3m+i = B o CjJrLiJJrl ‘ ‘ 5 (338)
[y Lrnms O T () (4 [552) 1) 8) (wpes + (G + 152] + 1) )
Zi—3
Z3m+i — i1 ) (339)
. Vpy _e)— CJ+L7J+1 . i
Ty (wpy s+ (i + 3] 4+ 1) f) Loams Um0 T T )y (4 152 + 1))

for every m € Ny, i € {—1,0,1}.

3.1.6. Case a=1,c=1, e#1
In this case, if (3.5)—(3.10) are employed in (3.11)—(3.13), it can be easily seen that the solutions of system (3.4)

are as follows.

Fomi = ( (1 m)%*;) S R » (340)
m . i Wpy—3(1—e)—f)e . Pi—
[T (up—s + (G + [3] + 1) b) ~——=E (vps—3 + (1 + |52 + 1) d)
Yami = , o , ( (1 YeItlEt Iy (3.41)
T (0 + (G L3+ 1) d) (upaos + (5 + [152] + 1) p) Lratlize=l)e :
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Zi—3
Z3m+i = ( o) , (3.42)
m wp, —3(1l—e)—f)e . i— . i—
I1 : (pa—s + (1 + 51 + 1) d) (wpa—s + (7 + 521 + 1) )

j=0 —e

for every m € Ny, i € {—1,0,1}.

3.1.7.Case a# 1, c=1, e=1
In this case, if (3.5)-(3.10) are used in (3.11)-(3.13), it can be easily seen that the solutions of system (3.4) are

as follows.

Ti—3
T3m+i = — 7 ,  (3.43)
m (“P1*3(1*a)7b)aJ+L3J+l+b : i—1 : i—2

[Tz —a (Wpo—s + (7 + ['FH + 1) f) (vpa—s + (I + [F2] +1) d)

Y3m+i = ‘ ( (1_y:_—:) T . ) (3.44)
[0 (s + (G + L5] + 1) d) =2——=3 (wps—s + (G + 52 +1) f)

Bamti = , - , ( (1—a)—b) iRy, (3.45)
H;'nzo (wpr—3+ (T + [5] +1) ) (vpos + (G + 5] +1) d) = T—a

for every m € Ny, i € {—1,0,1}.

3.1.8. Case a=1,c=1,e=1
In this case, if (3.5)-(3.10) are employed in (3.11)-(3.13), it can be easily seen that the solutions of system (3.4)

are as follows.

T3m+i = ry - - .’13%‘,3 -] - ) s (346)
T2 (upy—s+ (G+ 5] +1)0) (wpo s+ (G + [FH +1) f) (vps—3+ (G + [F2] +1)d)

Yam+i = i Yi-s _ ’ (3.47)
[T (vpr—3+ (G + 15) +1)d) (upo3+ (G + 5 +1)b) (wps—3+ (G + |52 +1) /)

Z3m4i = S5 (3.48)

[T (wp—s + G+ 5]+ 1) f) (0pos + G+ L5 +1) d) (upss + (T + 52 + 1) b)
for every m € Ny, i € {—1,0,1}. Now we will apply these formulas.

Theorem 3.6 Assume that k = 3l =3, abedef # 0, at least one of a, ¢, e is equal 1 and that (T, Yn, Zn)p,>_4
is a well-defined solution of system (3.4) and x_p,y_p,2—p ¢ F, for p=1,4, k=3, 1 =1. Then z, — 0,

Yn — 0 and z, — 0 as n — 0.
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Proof Let

(1 —a)—b)a™tEHF 4 b (wy, 5 (1—e) — f)emtlz I+t 4 )
045721) = (upl 3( a)l _ ia - (wp2 3( e) 1 i): - f <UP33 + (m+ LZ J + 1) d> )

57(3) = (’Up13 + <m + L%J + 1) d) (up,—3 (1 —a) ;f)smﬂ%Hl +b (wp;—3 (1 —¢) I{):mﬂ%Hl + f’

3

)

(w —3(1*6)*f)€mﬂ%”1+f i—1 (u _3(1fa),b)amﬂ%j+1+b
’Yr(r%)iz P — Upp—3 + [ m+ | |+1)d P3 —

5 (1—a)—b)amtlsl+l 4y i—1 s(1—c)—d)emtlF 4 g
a® = (up, 3 ( a>1_21,a ° (wp23+ (m—&—[l 3 J+1> f) (vps—3 (1 —¢) 1_)CC 3 ’

m 1—c 1-—a

BB .= (Upy—3 (L =€) =d) ™ L3I 4 d (uy, 3 (1 —a) —b)am L5 141 4 (wp3—3 + <m+ Li ; 2J + 1) f) ;

; AN m+ [+ d 1—a)—0b m+| 52 ]+1 b
3) ._ i ] (Upy—3(1—c)—d)c 3 +d (upy—3 ( a) )a +
’Ym . (wp1—3+(m+L3J+ )f) 1—C 1—(1 9

; _ _ m4| 5L +1 _ _ m4| 52 |41
04(4) = w3+ M+ I—EJ +11)b (wlﬂz—?’ (1 e) f)e 3 +f (UPS—S (1 C) d)c 3 +d,
m P 3 1—c¢ 1-c

m+|£]+1 ; m+| 52 +1
B = (vm—s(lfdf_d)cc He? +d (up2_3+ (m+ L%lJ +1) b) (wpy—3 (1 —e) Ii): HEMAS

_s(1—¢)— f)emtlaltl 4 s(1—c)—d)emtls I+ 4 g | — 2
) = o 6)1_26 el 0)1_)5 : (up33+<m+LZ3 J+1>b>,

1-c ’

) ) — _ _ m L’EQJ 1
aly) = (up1_3+ <m+ L%J +1> b) (wp2_3 + (m+ L%J - 1) f) (p;—3(1 —¢c) =d)cm 514 44

o) — d) et - '_
5 = Unsll C)l _d)cc T <U;v2—3+ (m+ L%J +1) b) (wp3—3+ <m+ L%J +1> f>,
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1—c

’77(73) = <wp13 + (m + L%J + 1> f) (UP2*3 (1 - C) — d) Cm+L%J+1 el <up33 + <m + L%J + 1> b) ’

i —e) — m+| 5 -
a® = (Up1—3+ (m+ L%J +1> b> (wp,—3 (1 —¢) 1{): +UF L f (%_3+ (m+ L%J +1> d>7

' ) — —e)— f)emtlF
B = (Um—?» + <m+ L%J + 1) d) <up2_3 + <m—|— LZ 3 1J + 1) b) (wps—3 (1 —¢) 1{): + +1 _|_f7

~0) = (wp,—3 (1 — e)l—_f()3 em LI+t 4 g (%3 + (m + L%J + 1) d) (umg + (m + L%J + 1> b) )

—a) — b)gmtlEl+1 P — P —
all) = (up,—3 (1 a)1 _bla st 4+ b (wp2_3 + (m+ L%J + 1) f) (vp3_3 + (m+ L%J + 1) d) ,

8D = (vpls + (m + L%J + 1) d) gy 31 = 0) Iﬁ)jmﬂ%m i (pr:a + (m + L%J + 1> f) :

i—

; | (1 —a) — m+ 52 ]+1
7D = (me + <m+ 5] +1) f) (vp23+ <m+ L%J +1) d) (g (12 0) : E)Z L

al®) = <up1_3 + (m + L%j + 1) b) (wpz_g + (m+ L%J + 1) f) <vp3_3 + (m + L%J - 1) d) :
BB .= (Upl_g + (m - L%J + 1> d> <u,,2_3 + <m + L%J + 1> b) (wp3_3 + (m - L%J + 1) f> :
) = (wplg + (m + L%J + 1) f) <vp23 + (m + L%J + 1) d) (umg + (m + L%J + 1) b) .

Since

o) =ty 41~ o o=, =T

from (3.28)-(3.48) the statement easily follows.
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4. Conclusion

In this paper, we have considered the following three-dimensional system of difference equations

o Tp—kZn—1 o Yn—kTn—1 = Zn—kYn—1
= y Yn — n — 5
bnmn—k + GnzZn—k—1 fnzn—k + EnYn—k—I

o AnYn—k + Cnnp—1’
where n € Ny, k,I € N, the sequences (an)neNO, (bn)neNO, (cn)neNO, (dn)neNo, (en)neNo and (f")neNo are
non-zero real numbers, for all n € Ny, and the initial values z_;,_;, 2_; are real numbers for i € 1,k + 1.

Firstly, we have obtained the closed form of well defined solutions of the aforementioned system using
suitable transformation reducing the equations of our system to linear type. Also, we describe the forbidden
set of the initial values using the obtained formulas. In addition, in the case where the coefficients are constant
and k=3, [ =1 in the system, we have obtained the solutions for some possible cases of a, ¢ and e. Finally,
we have examined the asymptotic behavior of the solutions of this system for 8-case.

We will give the following important open problem for system of difference equations theory to researchers.

Open problem: The system (1.7) can extend to the following p— dimensional system of difference equa-

tions.
1 .3 2 .4 (» .(2)
2 — Tn—kTn—i 2® = Tn—kTn-i a) = Ty j T  neNy, (4.1)
b%l)zsllzk + a%l)xf’i)kil bg)z;{)k + af’xﬁf}m b;”)xfﬁk + a%p)xfz _
where k,l € N, the sequences (a%j )) and (bgﬂ )) are non-zero real numbers, for j € 1,p, and the
n€Ng n€Ng

(@)

initial values z”], are real numbers for i € 1,k +1, j € 1,p. Can system (4.1) be solved?
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