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Abstract: In this paper, we present that the following system of difference equations

xn =
xn−kzn−l

bnxn−k + anzn−k−l
, yn =

yn−kxn−l

dnyn−k + cnxn−k−l
, zn =

zn−kyn−l

fnzn−k + enyn−k−l
,

where n ∈ N0 , k, l ∈ N , the initial values x−i, y−i, z−i are real numbers, for i ∈ 1, k + l , and sequences (an)n∈N0
,

(bn)n∈N0
, (cn)n∈N0

, (dn)n∈N0
, (en)n∈N0

and (fn)n∈N0
are non-zero real numbers, for all n ∈ N0 , which can be solved

in closed form. We describe the forbidden set of the initial values using the obtained formulas and also determine the
asymptotic behavior of solutions for the case k = 3 , l = 1 , and the sequences (an)n∈N0

, (bn)n∈N0
, (cn)n∈N0

, (dn)n∈N0
,

(en)n∈N0
and (fn)n∈N0

are constant. Our results considerably extend and improve some recent results in the literature.
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1. Introduction and preliminaries
The main problem of theory of difference equations is to determine the behaviour of the solutions of difference
equations. See, for example, the references [1, 2, 4, 10, 11, 14–23, 25, 29, 31–33, 35–37].

One of the ways to examine the asymptotic behavior of solutions of difference equations or systems of
difference equations is to obtain solutions of difference equations or systems of difference equations. Obtaining
solutions to difference equations started at the beginning of the 18th century by De Moivre. Firstly, he solved
the following homogeneous linear difference equation

xn+2 = axn+1 + bxn n ∈ N0, (1.1)

when b ̸= 0 and a2 ̸= −4b . He found the general solution for Eq. (1.1) is given by the following formula:

xn =
(x1 − λ2x0)λ

n
1 + (λ1x0 − x1)λ

n
2

λ1 − λ2
, n ∈ N0, (1.2)

where λ1 and λ2 are roots of the polynomial P (λ) = λ2 − aλ − b = 0 . Eq. (1.2) is called the De Moivre
formula, whereas the polynomial P is called the characteristic polynomial associated to the linear equation
(1.1) in [3].
∗Correspondence: yyazlik@nevsehir.edu.tr
2010 AMS Mathematics Subject Classification: 39A10, 39A20, 39A23.

This work is licensed under a Creative Commons Attribution 4.0 International License.
587

https://orcid.org/0000-0001-8081-0254
https://orcid.org/0000-0001-6369-540X


KARA and YAZLIK/Turk J Math

Ideas and methods of De Moivre were later improved by Euler in [12]. The study was followed by
Lagrange, Laplace and many other mathematicians.

After learning the solution methods of linear difference equations, a new problem emerged. This problem
is how to turn nonlinear difference equations into linear difference equations.

Firstly, the following equations

xn+1 =
xnxn−1

xn + xn−2
and xn+1 =

xnxn−1

xn−1 + xn−2
, n ∈ N0, (1.3)

were presented, among other things, by Elmetwally et al. in [6]. The solutions of difference equations in (1.3)
were found by using induction. This method didn’t give much detail on how solutions were obtained. We believe
that the results can be obtained by computer programs. In addition, the solutions of some of the difference
equations investigated in [6] are associated with number sequences. For this reason, the last aforementioned
study has been considered important by mathematicians.

Difference equations of the type of difference equations in (1.3) have been generalized in different ways by
many mathematicians in [5, 7, 8, 13, 20, 24, 26, 28, 30, 34]. That is, generalizations are adding the parameters,
increasing order, adding periodic coefficients and increasing dimensional, such as two-dimensional or three-
dimensional systems. For example, in [30], the most general form of the difference equations in (1.3), which is
a theoretical explanation of the studies using the induction, is the following difference equation

xn = αxn−k +
δxn−kxn−(k+l)

βxn−(k+l) + γxn−l
, n ∈ N0, (1.4)

where k and l are fixed natural numbers, α , β , γ , δ ∈ R , and the initial values x−i , i = 1, k + l are
real numbers. Authors showed that equation (1.4) is solvable in closed form and presented formulas for the
solutions by using transformation. They also studied the long-term behavior of the solutions of equation (1.4).
It is possible to find special cases of this equation in the literature. See, for example, the references [5, 7–
9, 13, 24, 26, 28, 30].

Another example for aforementioned generalization is that the second of the difference equations in (1.3)
was generalized to the following two dimensional systems

xn+1 =
xn−1yn

±xn−1 ± yn−2
, yn+1 =

yn−1xn

±yn−1 ± xn−2
, n ∈ N0, (1.5)

and was solved by using induction in [7]. In addition, Elmetwally didn’t give theoretical explanation of how
solutions were obtained.

Moreover, in [27], systems (1.5) were extended to the following two-dimensional system of difference
equations

xn =
xn−kyn−l

bnxn−k + anyn−k−l
, yn =

yn−kxn−l

dnyn−k + cnxn−k−l
, n ∈ N0, (1.6)

and solved in closed form.
Our aim in this paper is to extend both the there-dimensional form of equations in (1.3) and more general

systems of (1.5) and (1.6) to solve them in closed form. Another goal in this study is to prevent the solutions
of difference equations and systems of difference equations from being obtained by induction and to extend the
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solutions of difference equations and their systems obtained by induction, such as equations in (1.3), systems
(1.5), to the following three-dimensional system

xn =
xn−kzn−l

bnxn−k + anzn−k−l
, yn =

yn−kxn−l

dnyn−k + cnxn−k−l
, zn =

zn−kyn−l

fnzn−k + enyn−k−l
, (1.7)

where n ∈ N0 , k, l ∈ N , the initial values x−i, y−i, z−i are real numbers, for i ∈ 1, k + l , and sequences
(an)n∈N0

, (bn)n∈N0
, (cn)n∈N0

, (dn)n∈N0
, (en)n∈N0

and (fn)n∈N0
are non-zero real numbers, for all n ∈ N0 .

System (1.7) can be solved in closed form by using transformation. In addition, we determine the asymptotic
behavior of solutions and the forbidden set of the initial values by using the obtained formulas. Note that system
(1.7) is a natural generalization of both equations in (1.3), system (1.5), system (1.6), the general systems of
system (1.5), and the general equations in (1.3).

The following definition gives us the set of all initial values, which yields undefined solutions.

Definition 1.1 [27] (Forbidden set): Consider the following system of difference equations

x(1)
n = f1

(
x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(m)
n−1, . . . , x

(m)
n−k

)
,

x(2)
n = f2

(
x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(m)
n−1, . . . , x

(m)
n−k

)
,

...

x(m)
n = fm

(
x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(m)
n−1, . . . , x

(m)
n−k

)
, (1.8)

n ∈ N0 , where m, k ∈ N and x
(i)
−j ∈ R , j = 1, k , i = 1,m . The string of vectors

(
x
(1)
j , x

(2)
j , . . . , x

(m)
j

)
,

−k ≤ j ≤ n0 , where n0 ≥ −1 , is called an undefined solution of system (1.8) if

x
(i)
j = fi

(
x
(1)
j−1, . . . , x

(1)
j−k, x

(2)
j−1, . . . , x

(2)
j−k, . . . , x

(m)
j−1, . . . , x

(m)
j−k

)
for i = 1,m , 0 ≤ j < n0 + 1 , and x

(i0)
n0+1 is not defined for an i0 ∈ {1, . . . ,m} , that is, the quantity

fi0

(
x
(1)
n0 , . . . , x

(1)
n0−k+1, x

(2)
n0 , . . . , x

(2)
n0−k+1, . . . , x

(m)
n0 , . . . , x

(m)
n0−k+1

)
is not defined. The set of all initial values

x
(i)
−j , j = 1, k, i = 1,m , which generate undefined solutions of system of difference equation (1.8), is called

domain of undefinable solutions of the system of difference equations (or called forbidden set).

2. Closed solutions of the system (1.7)

First assume that l ≤ k . If xn0 = 0 for some n0 ≥ −l , and xn ̸= 0 , yn ̸= 0 , zn ̸= 0 , −l ≤ n ≤ n0 − 1 , then
from the second equation in (1.7) we have that if yn0+l = 0 , which implies that yn0+l+k is not defined.

If yn1
= 0 for some n1 ≥ −l , and xn ̸= 0 , yn ̸= 0 , zn ̸= 0 , −l ≤ n ≤ n1 − 1 , then from the third

equation in (1.7) we have that if zn1+l = 0 , which implies that zn1+l+k is not defined.
If zn2

= 0 for some n2 ≥ −l , and xn ̸= 0 , yn ̸= 0 , zn ̸= 0 , −l ≤ n ≤ n2−1 , then from the first equation
in (1.7) we have that if xn2+l = 0 , which implies that xn2+l+k is not defined.
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If xn3 = 0 for some −l > n3 ≥ −k , and xn ̸= 0 , yn ̸= 0 , zn ̸= 0 , −k ≤ n ≤ n3 − 1 , then, from the first
equation in (1.7), we obtain xmk+n3 = 0 , m ∈ N0 , as far as these numbers are defined. Hence, xn3+k is not
defined, or xn3+k = 0 (note that n3 + k ≥ 0), which, according to the first case, would imply that yn3+2k+l is
not defined.

If yn4
= 0 for some −l > n4 ≥ −k , and xn ̸= 0 , yn ̸= 0 , zn ̸= 0 , −k ≤ n ≤ n4 − 1 , then, from the

second equation in (1.7), we obtain ymk+n4
= 0 , m ∈ N0 , as far as these numbers are defined. Hence, yn4+k

is not defined, or yn4+k = 0 (note that n4 + k ≥ 0), which, according to the second case, would imply that
zn4+2k+l is not defined.

If zn5
= 0 for some −l > n5 ≥ −k , and xn ̸= 0 , yn ̸= 0 , zn ̸= 0 , −k ≤ n ≤ n5 − 1 , then, from the third

equation in (1.7), we obtain zmk+n5 = 0 , m ∈ N0 , as far as these numbers are defined. Hence, zn5+k is not
defined, or zn5+k = 0 (note that n5 + k ≥ 0), which, according to the third case, would imply that xn5+2k+l

is not defined.
The case l > k is treated similarly, so we omit it.
On the other hand, if xn6

= 0 for some n6 ∈ N0 , then, according to the first equation in (1.7) we have
that xn6−k = 0 or zn6−l = 0 . If −k ≤ n6−k ≤ −1 or −l ≤ n6− l ≤ −1 , then we have a j0 ∈ {1, . . . , s} , where
s = max {k, l} , such that x−j0 = 0 or z−j0 = 0 . If n6 ≥ s , then, by using the equations in (1.7), we have that
xn6−2k = 0 or zn6−k−l = 0 if xn6−k = 0 or zn6−k−l = 0 or yn6−2l = 0 if zn6−l = 0 . If −s ≤ n6 − 2k ≤ −1 or
−s ≤ n6 − k − l ≤ −1 in the first case, or −s ≤ n6 − 2l ≤ −1 or −s ≤ n6 − k − l ≤ −1 in the second case,
then we have a j1 ∈ {1, . . . , s} such that x−j1 = 0 or y−j1 = 0 or z−j1 = 0 . Repeating this procedure we find
a p ∈ {1, . . . , s} such that x−p = 0 or y−p = 0 or z−p = 0 . As we have proved above, such solutions are not
defined.

Hence, we will consider xnynzn ̸= 0 for all n ∈ N0 . Note that the system (1.7) can be written in the
form

zn−l

xn
= an

zn−k−l

xn−k
+ bn,

xn−l

yn
= cn

xn−k−l

yn−k
+ dn,

yn−l

zn
= en

yn−k−l

zn−k
+ fn, (2.1)

for n ∈ N0 . Let

un =
zn−l

xn
, vn =

xn−l

yn
, wn =

yn−l

zn
, n ≥ −k. (2.2)

Then, system (2.1) can be written as

un = anun−k + bn, vn = cnvn−k + dn, wn = enwn−k + fn, n ∈ N0. (2.3)

Hence, the sequences

ukm+i = u(i)
m , vkm+i = v(i)m , wkm+i = w(i)

m , i = 0, k − 1, m ≥ −1. (2.4)

are solutions of the equations

u(i)
m = akm+iu

(i)
m−1 + bkm+i,

v(i)m = ckm+iv
(i)
m−1 + dkm+i,

w(i)
m = ekm+iw

(i)
m−1 + fkm+i, (2.5)
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for m ≥ −1 . So, for each fixed i ∈ {0, 1, . . . , k − 1} equations in (2.5)

u(i)
m = u

(i)
−1

m∏
j=0

akj+i +

m∑
j=0

bkj+i

m∏
s=j+1

aks+i, (2.6)

v(i)m = v
(i)
−1

m∏
j=0

ckj+i +

m∑
j=0

dkj+i

m∏
s=j+1

cks+i, (2.7)

w(i)
m = w

(i)
−1

m∏
j=0

ekj+i +

m∑
j=0

fkj+i

m∏
s=j+1

eks+i, (2.8)

for m ≥ −1 .
If an = a , bn = b , cn = c , dn = d , en = e and fn = f , for every n ∈ N0 , i ∈ {0, 1, . . . , k − 1} , then we get

u(i)
m =

(
u
(i)
−1 (1− a)− b

)
am+1 + b

1− a
, m ≥ −1, (2.9)

if a ̸= 1 , and

u(i)
m = u

(i)
−1 + (m+ 1) b, m ≥ −1, (2.10)

if a = 1 , while

v(i)m =

(
v
(i)
−1 (1− c)− d

)
cm+1 + d

1− c
, m ≥ −1, (2.11)

if c ̸= 1 , and

v(i)m = v
(i)
−1 + (m+ 1) d, m ≥ −1, (2.12)

if c = 1 , while

w(i)
m =

(
w

(i)
−1 (1− e)− f

)
em+1 + f

1− e
, m ≥ −1, (2.13)

if e ̸= 1 , and

w(i)
m = w

(i)
−1 + (m+ 1) f, m ≥ −1, (2.14)

if e = 1 .
Using (2.2), it follows that

xn =
zn−l

un
=

yn−2l

unwn−l
=

xn−3l

unwn−lvn−2l
, n ≥ 2l − k, (2.15)

yn =
xn−l

vn
=

zn−2l

vnun−l
=

yn−3l

vnun−lwn−2l
, n ≥ 2l − k, (2.16)
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zn =
yn−l

wn
=

xn−2l

wnvn−l
=

zn−3l

wnvn−lun−2l
, n ≥ 2l − k. (2.17)

From (2.15)-(2.17), we have

x3lm+i =
x3lm+i−3l

u3lm+iw3lm+i−lv3lm+i−2l
= · · · = xi−3l∏m

j=0 u3lj+iw3lj+i−lv3lj+i−2l
, (2.18)

y3lm+i =
y3lm+i−3l

v3lm+iu3lm+i−lw3lm+i−2l
= · · · = yi−3l∏m

j=0 v3lj+iu3lj+i−lw3lj+i−2l
, (2.19)

z3lm+i =
z3lm+i−3l

w3lm+iv3lm+i−lu3lm+i−2l
= · · · = zi−3l∏m

j=0 w3lj+iv3lj+i−lu3lj+i−2l
, (2.20)

for every m ∈ N0 , i = 2l − k, 5l − k − 1 . Since every non-negative integer can be written in the form km1 + j ,
where m1 ∈ N0 and j ∈ {0, 1, . . . , k − 1} , we get that

x3lkm1+3lj+i =
x3lj+i−3l∏km1

s=0 u3ls+3lj+iw3ls+3lj+i−lv3ls+3lj+i−2l

, (2.21)

y3lkm1+3lj+i =
y3lj+i−3l∏km1

s=0 v3ls+3lj+iu3ls+3lj+i−lw3ls+3lj+i−2l

, (2.22)

z3lkm1+3lj+i =
z3lj+i−3l∏km1

s=0 w3ls+3lj+iv3ls+3lj+i−lu3ls+3lj+i−2l

, (2.23)

for every m1 ∈ N0 , j = 0, k − 1 , i = 2l − k, 5l − k − 1 .
A simple analysis shows that formulas (2.6)-(2.8) can be efficiently applied in (2.21)-(2.23) if 3l = k .

Theorem 2.1 Assume that an ̸= 0 , bn ̸= 0 , cn ̸= 0 , dn ̸= 0 , en ̸= 0 , fn ̸= 0 , every n ∈ N0 . Then the
forbidden set of the initial values for system (1.7) is given by the set

F =
⋃

m∈N0

k−1⋃
i=0

{
(x−k−l, . . . , x−1, y−k−l, . . . , y−1, z−k−l, . . . , z−1) ∈ R3(k+l) :

zi−k−l

xi−k
= −

m∑
j=0

bkj+i

akj+i

j−1∏
l=0

1

akl+i
̸= 0,

xi−k−l

yi−k
= −

m∑
j=0

dkj+i

ckj+i

j−1∏
l=0

1

ckl+i
̸= 0,

yi−k−l

zi−k
= −

m∑
j=0

fkj+i

ekj+i

j−1∏
l=0

1

ekl+i
̸= 0

}⋃
k+l⋃
j=1

{
(x−k−l, . . . , x−1, y−k−l, . . . , y−1, z−k−l, . . . , z−1) ∈ R3(k+l) :

x−j = 0, y−j = 0, z−j = 0
}
. (2.24)
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Proof At the beginning of Section 2, we have acquired that the set

k+l⋃
j=1

{
(x−k−l, . . . , x−1, y−k−l, . . . , y−1, z−k−l, . . . , z−1) ∈ R3(k+l) :

x−j = 0, y−j = 0, z−j = 0
}

belongs to the forbidden set of the initial values for system (1.7). Now, we assume that xn ̸= 0 , yn ̸= 0 and
zn ̸= 0 for every n ∈ N0 . Note that the system (1.7) is undefined, when the conditions bnxn−k+anzn−k−l = 0 or
dnyn−k + cnxn−k−l = 0 or fnzn−k + enyn−k−l = 0 , that is, zn−k−l

xn−k
= − bn

an
or xn−k−l

yn−k
= −dn

cn
or yn−k−l

zn−k
= − fn

en
,

for some n ∈ N0 or are satisfied (Here we consider that an ̸= 0 , cn ̸= 0 and en ̸= 0 for every n ∈ N0 ). From
this and the substitution un = zn−l

xn
, vn = xn−l

yn
, wn = yn−l

zn
, we get

uk(m−1)+i = − bkm+i

akm+i
, vk(m−1)+i = −dkm+i

ckm+i
, wk(m−1)+i = −fkm+i

ekm+i
(2.25)

for some m ∈ N0 and i ∈ {0, 1, . . . , k − 1} . Hence, we can determine the forbidden set of the initial values for
system (1.7) by using the substitution un = zn−l

xn
, vn = xn−l

yn
, wn = yn−l

zn
. Now, we consider the functions

f̂km+i (t) := akm+it+ bkm+i, gkm+i (t) := ckm+it+ dkm+i, hkm+i (t) := ekm+it+ fkm+i, (2.26)

for some m ∈ N0 and i ∈ {0, 1, . . . , k− 1} , which correspond to the equations in (2.3). From (2.25) and (2.26),
we can write

ukm+i = f̂km+i ◦ f̂k(m−1)+i ◦ · · · ◦ f̂i (ui−k) , (2.27)

vkm+i = gkm+i ◦ gk(m−1)+i ◦ · · · ◦ gi (vi−k) , (2.28)

wkm+i = hkm+i ◦ hk(m−1)+i ◦ · · · ◦ hi (wi−k) , (2.29)

where m ∈ N0 , and i ∈ {0, 1, . . . , k − 1} . By using (2.25) and implicit forms (2.27)-(2.29) and considering

f̂−1
km+i (0) = − bkm+i

akm+i
, g−1

km+i (0) = −dkm+i

ckm+i
, h−1

km+i (0) = − fkm+i

ekm+i
, for m ∈ N0 and i ∈ {0, 1, . . . , k− 1} , we have

ui−k = f̂−1
i ◦ · · · ◦ f̂−1

km+i (0) , vi−k = g−1
i ◦ · · · ◦ g−1

km+i (0) , wi−k = h−1
i ◦ · · · ◦ h−1

km+i (0) , (2.30)

where f̂−1
km+i (t) = t−bkm+i

akm+i
, g−1

km+i (t) = t−dkm+i

ckm+i
, h−1

km+i (t) = t−fkm+i

ekm+i
, m ∈ N0, i ∈ {0, 1, . . . , k − 1} . From

(2.30), we obtain

ui−k = −
m∑
j=0

bkj+i

akj+i

j−1∏
l=0

1

akl+i
, vi−k = −

m∑
j=0

dkj+i

ckj+i

j−1∏
l=0

1

ckl+i
, wi−k = −

m∑
j=0

fkj+i

ekj+i

j−1∏
l=0

1

ekl+i
,

for some m ∈ N0 and i ∈ {0, 1, . . . , k− 1} . This means that if one of the conditions in (2.30) holds, then m -th
iteration or (m+ 1) -th iteration in system (1.7) can not be calculated. 2
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3. Case of the constant coefficients
In this section, we suppose that an = a , bn = b , cn = c , dn = d , en = e , fn = f for every n ∈ N0 . Then
system (1.7) becomes

xn =
xn−kzn−l

bxn−k + azn−k−l
, yn =

yn−kxn−l

dyn−k + cxn−k−l
, zn =

zn−kyn−l

fzn−k + eyn−k−l
, n ∈ N0. (3.1)

Then, we may assume that gcd (k, l) = 1 . Indeed, if |gcd (k, l)| = r > 1 , where gcd (k, l) denotes the greatest
common divisor of natural numbers k and l , then k = rk1 and l = rl1 for some k1, l1 ∈ N such that
gcd (k1, l1) = 1 . Since every n ∈ N0 has the form n = mr + i for some m ∈ N0 and i = 0, r − 1 , from system
(3.1) we get

xmr+i =
xr(m−k1)+izr(m−l1)+i

bxr(m−k1)+i + azr(m−k1−l1)+i
,

ymr+i =
yr(m−k1)+ixr(m−l1)+i

dyr(m−k1)+i + cxr(m−k1−l1)+i
,

zmr+i =
zr(m−k1)+iyr(m−l1)+i

fzr(m−k1)+i + eyr(m−k1−l1)+i
, n ∈ N0. (3.2)

The change of variables

x(i)
m = xmr+i, y(i)m = ymr+i, z(i)m = zmr+i, m ∈ N0, i = 0, r − 1,

in (3.2) yields that
(
x
(i)
m , y

(i)
m , z

(i)
m

)
m≥−(k1+l1)

, i = 0, r − 1 , are r independent solutions of the system

x(i)
m =

x
(i)
m−k1

z
(i)
m−l1

bx
(i)
m−k1

+ az
(i)
m−k1−l1

, y(i)m =
y
(i)
m−k1

x
(i)
m−l1

dy
(i)
m−k1

+ cx
(i)
m−k1−l1

, z(i)m =
z
(i)
m−k1

y
(i)
m−l1

fz
(i)
m−k1

+ ey
(i)
m−k1−l1

. (3.3)

Note that system (3.3) can get by taking k1 and l1 , respectively, instead of k and l in system (3.1). From now
on, we assume that the greatest common divisor of k and l is equal to 1 ; that is, gcd (k, l) = 1 . By putting the
formulas (2.6)-(2.8) into (2.21)-(2.23), we obtain the well-defined solutions of system (3.1) when gcd (k, l) = 1 .

3.1. Case k=3, l=1

In this subsection, we will give solutions of system (3.1) for the case k = 3 , l = 1 . In this case, system (3.1)
becomes

xn =
xn−3zn−1

bxn−3 + azn−4
, yn =

yn−3xn−1

dyn−3 + cxn−4
, zn =

zn−3yn−1

fzn−3 + eyn−4
, n ∈ N0. (3.4)

First note that formulas (2.9)-(2.14), in this case, can be written in the following form

u3m+i1 =
(ui1−3 (1− a)− b) am+1 + b

1− a
, m ≥ −1, i1 ∈ {0, 1, 2}, (3.5)

if a ̸= 1 , and

u3m+i1 = ui1−3 + (m+ 1) b, m ≥ −1, i1 ∈ {0, 1, 2}, (3.6)
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if a = 1 , while

v3m+i1 =
(vi1−3 (1− c)− d) cm+1 + d

1− c
, m ≥ −1, i1 ∈ {0, 1, 2}, (3.7)

if c ̸= 1 , and

v3m+i1 = vi1−3 + (m+ 1) d, m ≥ −1, i1 ∈ {0, 1, 2}, (3.8)

if c = 1 , while

w3m+i1 =
(wi1−3 (1− e)− f) em+1 + f

1− e
, m ≥ −1, i1 ∈ {0, 1, 2}, (3.9)

if e ̸= 1 , and

w3m+i1 = wi1−3 + (m+ 1) f, m ≥ −1, i1 ∈ {0, 1, 2}, (3.10)

if e = 1 .
We obtain following equations from (2.18)–(2.20) for the case k = 3 , l = 1 ,

x3m+i =
xi−3∏m

j=0 u3j+iw3j+i−1v3j+i−2
, (3.11)

y3m+i =
yi−3∏m

j=0 v3j+iu3j+i−1w3j+i−2
, (3.12)

z3m+i =
zi−3∏m

j=0 w3j+iv3j+i−1u3j+i−2
, (3.13)

for m ∈ N0 , i ∈ {−1, 0, 1} .
Let

p1 :=


0, i ≡ 0 (mod3)
1, i ≡ 1 (mod3)
2, i ≡ 2 (mod3)

, p2 :=


0, i− 1 ≡ 0 (mod3)
1, i− 1 ≡ 1 (mod3)
2, i− 1 ≡ 2 (mod3)

, p3 :=


0, i− 2 ≡ 0 (mod3)
1, i− 2 ≡ 1 (mod3)
2, i− 2 ≡ 2 (mod3)

.

3.1.1. Case a ̸= 1 , c ̸= 1 , e ̸= 1

In this case, if (3.5)–(3.10) are used in (3.11)–(3.13), it can be easily seen that the solutions of system (3.4) are
as follows.

x3m+i =
xi−3∏m

j=0
(up1−3(1−a)−b)aj+⌊ i

3
⌋+1+b

1−a

(wp2−3(1−e)−f)ej+⌊ i−1
3

⌋+1+f

1−e

(vp3−3(1−c)−d)cj+⌊ i−2
3

⌋+1+d

1−c

, (3.14)

y3m+i =
yi−3∏m

j=0
(vp1−3(1−c)−d)cj+⌊ i

3
⌋+1+d

1−c

(up2−3(1−a)−b)aj+⌊ i−1
3

⌋+1+b

1−a

(wp3−3(1−e)−f)ej+⌊ i−2
3

⌋+1+f

1−e

, (3.15)
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z3m+i =
zi−3∏m

j=0
(wp1−3(1−e)−f)ej+⌊ i

3
⌋+1+f

1−e

(vp2−3(1−c)−d)cj+⌊ i−1
3

⌋+1+d

1−c

(up3−3(1−a)−b)aj+⌊ i−2
3

⌋+1+b

1−a

, (3.16)

for every m ∈ N0 , i ∈ {−1, 0, 1} . Now we will apply these formulas.

Theorem 3.1 Assume that k = 3l = 3 , abcdef ̸= 0 , a ̸= 1 , c ̸= 1 , e ̸= 1 , and that (xn, yn, zn)n≥−4 is a

well-defined solution of system (3.4) and x−p, y−p, z−p /∈ F , for p = 1, 4 , k = 3 , l = 1 . Then the following
statements hold.

(a) If |a| > 1 and up1−3 ̸= b
1−a or |e| > 1 and wp2−3 ̸= f

1−e or |c| > 1 and vp3−3 ̸= d
1−c , then x3m+i → 0 ,

for i ∈ {−1, 0, 1} , as m → ∞ .

(b) If |c| > 1 and vp1−3 ̸= d
1−c or |a| > 1 and up2−3 ̸= b

1−a or |e| > 1 and wp3−3 ̸= f
1−e , then y3m+i → 0 ,

for i ∈ {−1, 0, 1} , as m → ∞ .

(c) If |e| > 1 and wp1−3 ̸= f
1−e or |c| > 1 and vp2−3 ̸= d

1−c or |a| > 1 and up3−3 ̸= b
1−a , then z3m+i → 0 ,

for i ∈ {−1, 0, 1} , as m → ∞ .

(d) If |a| < 1 , |e| < 1 , |c| < 1 and |bfd| < | (1− a) (1− e) (1− c) | , then |x3m+i| → ∞ , |y3m+i| → ∞ ,
|z3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(e) If |a| < 1 , |e| < 1 , |c| < 1 and |bfd| > | (1− a) (1− e) (1− c) | , then x3m+i → 0 , y3m+i → 0 , z3m+i → 0 ,
for i ∈ {−1, 0, 1} , as m → ∞ .

(f) If |a| < 1 , |e| < 1 , |c| < 1 and bfd = (1− a) (1− e) (1− c) , then the sequences x3m+i , y3m+i , z3m+i , for
i ∈ {−1, 0, 1} , are convergent.

(g) If |a| < 1 , |e| < 1 , |c| < 1 and bfd = − (1− a) (1− e) (1− c) , then the sequences x6m+i , x6m+3+i ,
y6m+i , y6m+3+i , z6m+i , z6m+3+i , for i ∈ {−1, 0, 1} , are convergent.

Proof (a)-(c) Suppose that

α(1)
m :=

(up1−3 (1− a)− b) am+⌊ i
3 ⌋+1 + b

1− a

(wp2−3 (1− e)− f) em+⌊ i−1
3 ⌋+1 + f

1− e

(vp3−3 (1− c)− d) cm+⌊ i−2
3 ⌋+1 + d

1− c
,

β(1)
m :=

(vp1−3 (1− c)− d) cm+⌊ i
3 ⌋+1 + d

1− c

(up2−3 (1− a)− b) am+⌊ i−1
3 ⌋+1 + b

1− a

(wp3−3 (1− e)− f) em+⌊ i−2
3 ⌋+1 + f

1− e
,

γ(1)
m :=

(wp1−3 (1− e)− f) em+⌊ i
3 ⌋+1 + f

1− e

(vp2−3 (1− c)− d) cm+⌊ i−1
3 ⌋+1 + d

1− c

(up3−3 (1− a)− b) am+⌊ i−2
3 ⌋+1 + b

1− a
.

We have that

lim
m→∞

|α(1)
m | = lim

m→∞
|β(1)

m | = lim
m→∞

|γ(1)
m | = +∞,
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the results easily follow by using formulas (3.14)–(3.16).
(d)-(e) In this case, we have that

lim
m→∞

|α(1)
m | = lim

m→∞
|β(1)

m | = lim
m→∞

|γ(1)
m | = |bfd|

| (1− a) (1− e) (1− c) |
,

from which along with (3.14)–(3.16) these results easily follow.
(f) After some calculation, we have that

α(1)
m =

(up1−3 (1− a)− b) am+⌊ i
3
⌋+1 + b

1− a

(wp2−3 (1− e)− f) em+⌊ i−1
3

⌋+1 + f

1− e

(vp3−3 (1− c)− d) cm+⌊ i−2
3

⌋+1 + d

1− c

= 1 +
up1−3 (1− a)− b

b
am+⌊ i

3
⌋+1 +

wp2−3 (1− e)− f

f
em+⌊ i−1

3
⌋+1 +

vp3−3 (1− c)− d

d
cm+⌊ i−2

3
⌋+1 +O ((aec)m) ,

β(1)
m =

(vp1−3 (1− c)− d) cm+⌊ i
3
⌋+1 + d

1− c

(up2−3 (1− a)− b) am+⌊ i−1
3

⌋+1 + b

1− a

(wp3−3 (1− e)− f) em+⌊ i−2
3

⌋+1 + f

1− e

= 1 +
vp1−3 (1− c)− d

d
cm+⌊ i

3
⌋+1 +

up2−3 (1− a)− b

b
am+⌊ i−1

3
⌋+1 +

wp3−3 (1− e)− f

f
em+⌊ i−2

3
⌋+1 +O ((cae)m) ,

and

γ(1)
m =

(wp1−3 (1− e)− f) em+⌊ i
3
⌋+1 + f

1− e

(vp2−3 (1− c)− d) cm+⌊ i−1
3

⌋+1 + d

1− c

(up3−3 (1− a)− b) am+⌊ i−2
3

⌋+1 + b

1− a

= 1 +
wp1−3 (1− e)− f

f
em+⌊ i

3
⌋+1 +

vp2−3 (1− c)− d

d
cm+⌊ i−1

3
⌋+1 +

up3−3 (1− a)− b

b
am+⌊ i−2

3
⌋+1 +O ((eca)m) ,

from which the convergence of the sequences
(∏m

s=0 α
(1)
s

)
m∈N0

,
(∏m

s=0 β
(1)
s

)
m∈N0

and
(∏m

s=0 γ
(1)
s

)
m∈N0

, and,

consequently, the convergence of the sequences x3m+i , y3m+i and z3m+i , for i ∈ {−1, 0, 1} from formulas
(3.14)–(3.16) easily follows.
(g) Similar to (f), we have that

α(1)
m =

(up1−3 (1− a)− b) am+⌊ i
3
⌋+1 + b

1− a

(wp2−3 (1− e)− f) em+⌊ i−1
3

⌋+1 + f

1− e

(vp3−3 (1− c)− d) cm+⌊ i−2
3

⌋+1 + d

1− c

= −
(
1 +

up1−3 (1− a)− b

b
am+⌊ i

3
⌋+1 +

wp2−3 (1− e)− f

f
em+⌊ i−1

3
⌋+1 +

vp3−3 (1− c)− d

d
cm+⌊ i−2

3
⌋+1 +O ((aec)m)

)
,

β(1)
m =

(vp1−3 (1− c)− d) cm+⌊ i
3
⌋+1 + d

1− c

(up2−3 (1− a)− b) am+⌊ i−1
3

⌋+1 + b

1− a

(wp3−3 (1− e)− f) em+⌊ i−2
3

⌋+1 + f

1− e

= −
(
1 +

vp1−3 (1− c)− d

d
cm+⌊ i

3
⌋+1 +

up2−3 (1− a)− b

b
am+⌊ i−1

3
⌋+1 +

wp3−3 (1− e)− f

f
em+⌊ i−2

3
⌋+1 +O ((cae)m)

)
,

and

γ(1)
m =

(wp1−3 (1− e)− f) em+⌊ i
3
⌋+1 + f

1− e

(vp2−3 (1− c)− d) cm+⌊ i−1
3

⌋+1 + d

1− c

(up3−3 (1− a)− b) am+⌊ i−2
3

⌋+1 + b

1− a

= −
(
1 +

wp1−3 (1− e)− f

f
em+⌊ i

3
⌋+1 +

vp2−3 (1− c)− d

d
cm+⌊ i−1

3
⌋+1 +

up3−3 (1− a)− b

b
am+⌊ i−2

3
⌋+1 +O ((eca)m)

)
,
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from which the convergence of the sequences
(∏3m+i

s=0 α
(1)
s

)
m∈N0

,
(∏3m+i

s=0 β
(1)
s

)
m∈N0

and
(∏3m+i

s=0 γ
(1)
s

)
m∈N0

,

i ∈ {−1, 0, 1} and consequently the convergence of the sequences x6m+i , x6m+3+i , y6m+i , y6m+3+i , z6m+i ,
z6m+3+i and formulas (3.14)-(3.16) easily follows.

2

Let

M1 :=
b2wp2−3vp3−3 (f − wp2−3) (d− vp3−3)

(1− a)
2 , M2 :=

b2vp1−3wp3−3 (f − wp3−3) (d− vp1−3)

(1− a)
2 ,

M3 :=
b2wp1−3vp2−3 (f − wp1−3) (d− vp2−3)

(1− a)
2 , M4 :=

d2up1−3wp2−3 (b− up1−3) (f − wp2−3)

(1− c)
2 ,

M5 :=
d2up2−3wp3−3 (b− up2−3) (f − wp3−3)

(1− c)
2 , M6 :=

d2up3−3wp1−3 (b− up3−3) (f − wp1−3)

(1− c)
2 ,

M7 :=
f2up1−3vp3−3 (b− up1−3) (d− vp3−3)

(1− e)
2 , M8 :=

f2vp1−3up2−3 (b− up2−3) (d− vp1−3)

(1− e)
2 ,

M9 :=
f2up3−3vp2−3 (b− up3−3) (d− vp2−3)

(1− e)
2 ,

M10 := up1−3wp2−3vp3−3 (b− up1−3) (f − wp2−3) (d− vp3−3) ,

M11 := vp1−3up2−3wp3−3 (d− vp1−3) (b− up2−3) (f − wp3−3) ,

M12 := wp1−3vp2−3up3−3 (f − wp1−3) (d− vp2−3) (b− up3−3) .

Theorem 3.2 Suppose that k = 3l = 3 , abdf ̸= 0 , |a| < 1 , c = −1 , e = −1 , and that (xn, yn, zn)n≥−4 is a

well-defined solution of system (3.4) and x−p, y−p, z−p /∈ F , for p = 1, 4 , k = 3 , l = 1 . Then the following
statements hold.

(a) If |M1| > 1 , then x3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(b) If |M1| < 1 , then |x3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(c) If M1 = 1 , then for i ∈ {−1, 0, 1} , the sequences x6m+i , x6m+3+i are convergent.

(d) If M1 = −1 , then the sequences x12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 , are convergent.

(e) If |M2| > 1 , then y3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(f) If |M2| < 1 , then |y3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .
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(g) If M2 = 1 , then for i ∈ {−1, 0, 1} , the sequences y6m+i , y6m+3+i are convergent.

(h) If M2 = −1 , then the sequences y12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 , are convergent.

(i) If |M3| > 1 , then z3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(j) If |M3| < 1 , then |z3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(k) If M3 = 1 , then for i ∈ {−1, 0, 1} , the sequences z6m+i , z6m+3+i are convergent.

(l) If M3 = −1 , then the sequences z12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 , are convergent.

Proof (a), (b) In this case, we have

α(1)
m =

(up1−3 (1− a)− b) am+⌊ i
3 ⌋+1 + b

1− a

(2wp2−3 − f) (−1)
m+⌊ i−1

3 ⌋+1
+ f

2

(2vp3−3 − d) (−1)
m+⌊ i−2

3 ⌋+1
+ d

2
,

from which we easily get

α
(1)
2mα

(1)
2m+1 = M1 +O

(
a2m

)
, (3.17)

from which along with (3.14) the results easily follow.
(c) In this case, we get

2m−1∏
s=0

α(1)
s =

m−1∏
s=0

(
1 +O

(
a2s

))
and

2m∏
s=0

α(1)
s =

bwp2−3vp3−3

(1− a)

(
1 +O

(
a2m

))m−1∏
s=0

(
1 +O

(
a2s

))
, (3.18)

or

2m∏
s=0

α(1)
s =

b (f − wp2−3) vp3−3

(1− a)

(
1 +O

(
a2m

))m−1∏
s=0

(
1 +O

(
a2s

))
, (3.19)

from which it follows that the sequences
(∏2m−1

s=0 α
(1)
s

)
m∈N0

and
(∏2m

s=0 α
(1)
s

)
m∈N0

converge, so by (3.14),

x6m+i and x6m+3+i are convergent, as claimed.
(d) In this case, we get

2m−1∏
s=0

α(1)
s = (−1)

m
m−1∏
s=0

(
1 +O

(
a2s

))
.

From this and (3.18),(3.19), we have that the sequences
(∏4m+j

s=0 α
(1)
s

)
m∈N0

, j = 0, 3 , are convergent and by

(3.14), x12m+3j+i , i ∈ {−1, 0, 1} , j = 0, 3 , are convergent too.
(e), (f) In this case, we have
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β(1)
m =

(2vp1−3 − d) (−1)
m+⌊ i

3 ⌋+1
+ d

2

(up2−3 (1− a)− b) am+⌊ i−1
3 ⌋+1 + b

1− a

(2wp3−3 − f) (−1)
m+⌊ i−2

3 ⌋+1
+ f

2
,

from which we easily get

β
(1)
2mβ

(1)
2m+1 = M2 +O

(
a2m

)
, (3.20)

from which along with (3.15), the results easily follow.
(g) In this case, we get

2m−1∏
s=0

β(1)
s =

m−1∏
s=0

(
1 +O

(
a2s

))
and

2m∏
s=0

β(1)
s =

bvp1−3wp3−3

(1− a)

(
1 +O

(
a2m

))m−1∏
s=0

(
1 +O

(
a2s

))
, (3.21)

or

2m∏
s=0

β(1)
s =

b (d− vp1−3)wp3−3

(1− a)

(
1 +O

(
a2m

))m−1∏
s=0

(
1 +O

(
a2s

))
, (3.22)

from which it follows that the sequences
(∏2m−1

s=0 β
(1)
s

)
m∈N0

and
(∏2m

s=0 β
(1)
s

)
m∈N0

converge, so by (3.15),

y6m+i and y6m+3+i are convergent, as claimed.
(h) In this case, we get

2m−1∏
s=0

β(1)
s = (−1)

m
m−1∏
s=0

(
1 +O

(
a2s

))
.

From this and (3.21),(3.22), we have that the sequences
(∏4m+j

s=0 β
(1)
s

)
m∈N0

, j = 0, 3 , are convergent and by

(3.15), y12m+3j+i , i ∈ {−1, 0, 1} , j = 0, 3 , are convergent too.
(i), (j) In this case, we have

γ(1)
m =

(2wp1−3 − f) (−1)
m+⌊ i

3 ⌋+1
+ f

2

(2vp2−3 − d) (−1)
m+⌊ i−1

3 ⌋+1
+ d

2

(up3−3 (1− a)− b) am+⌊ i−2
3 ⌋+1 + b

1− a
,

from which we easily get

γ
(1)
2mγ

(1)
2m+1 = M3 +O

(
a2m

)
, (3.23)

from which along with (3.16), the results easily follow.
(k) In this case, we get
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2m−1∏
s=0

γ(1)
s =

m−1∏
s=0

(
1 +O

(
a2s

))
and

2m∏
s=0

γ(1)
s =

bwp1−3vp2−3

(1− a)

(
1 +O

(
a2m

))m−1∏
s=0

(
1 +O

(
a2s

))
, (3.24)

or

2m∏
s=0

γ(1)
s =

b (f − wp1−3) vp2−3

(1− a)

(
1 +O

(
a2m

))m−1∏
s=0

(
1 +O

(
a2s

))
, (3.25)

or

2m∏
s=0

γ(1)
s =

b (f − wp1−3) (dvp2−3)

(1− a)

(
1 +O

(
a2m

))m−1∏
s=0

(
1 +O

(
a2s

))
, (3.26)

from which it follows that the sequences
(∏2m−1

s=0 γ
(1)
s

)
m∈N0

and
(∏2m

s=0 γ
(1)
s

)
m∈N0

converge, so by (3.16),

z6m+i and z6m+3+i are convergent, as claimed.
(l) In this case, we get

2m−1∏
s=0

γ(1)
s = (−1)

m
m−1∏
s=0

(
1 +O

(
a2s

))
.

From this and (3.24),(3.25) we have that the sequences
(∏4m+j

s=0 γ
(1)
s

)
m∈N0

, j = 0, 3 , are convergent and by

(3.16), z12m+3j+i , i ∈ {−1, 0, 1} , j = 0, 3 , are convergent too. 2

Theorem 3.3 Assume that k = 3l = 3 , bcdf ̸= 0 , |c| < 1 , a = −1 , e = −1 and that (xn, yn, zn)n≥−4 is a

well-defined solution of system (3.4) and x−p, y−p, z−p /∈ F , for p = 1, 4 , k = 3 , l = 1 . Then the following
statements hold.

(a) If |M4| > 1 , then x3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(b) If |M4| < 1 , then |x3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(c) If M4 = 1 , then for i ∈ {−1, 0, 1} , the sequences x6m+i , x6m+3+i are convergent.

(d) If M4 = −1 , then the sequences x12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 , are convergent.

(e) If |M5| > 1 , then y3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(f) If |M5| < 1 , then |y3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(g) If M5 = 1 , then for i ∈ {−1, 0, 1} , the sequences y6m+i , y6m+3+i are convergent.
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(h) If M5 = −1 , then the sequences y12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 , are convergent.

(i) If |M6| > 1 , then z3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(j) If |M6| < 1 , then |z3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(k) If M6 = 1 , then for i ∈ {−1, 0, 1} , the sequences z6m+i , z6m+3+i are convergent.

(l) If M6 = −1 , then the sequences z12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 are convergent.

The proof of Theorem 3.3 is similar to the proof of Theorem 3.2 and utilizes the following three relations:

α(1)
m =

(2up1−3 − b) (−1)
m+⌊ i

3 ⌋+1
+ b

2

(2wp2−3 − f) (−1)
m+⌊ i−1

3 ⌋+1
+ f

2

(vp3−3 (1− c)− d) cm+⌊ i−2
3 ⌋+1 + d

1− c
,

β(1)
m =

(vp1−3 (1− c)− d) cm+⌊ i
3 ⌋+1 + d

1− c

(2up2−3 − b) (−1)
m+⌊ i−1

3 ⌋+1
+ b

2

(2wp3−3 − f) (−1)
m+⌊ i−2

3 ⌋+1
+ f

2
,

γ(1)
m =

(2wp1−3 − f) (−1)
m+⌊ i

3 ⌋+1
+ f

2

(vp2−3 (1− c)− d) cm+⌊ i−1
3 ⌋+1 + d

1− c

(2up3−3 − b) (−1)
m+⌊ i−2

3 ⌋+1
+ b

2
,

so, it is omitted.

Theorem 3.4 Assume that k = 3l = 3 , bdef ̸= 0 , |e| < 1 , a = −1 , c = −1 and that (xn, yn, zn)n≥−4 is a

well-defined solution of system (3.4) and x−p, y−p, z−p /∈ F , for p = 1, 4 , k = 3 , l = 1 . Then the following
statements hold.

(a) If |M7| > 1 , then x3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(b) If |M7| < 1 , then |x3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(c) If M7 = 1 , then for i ∈ {−1, 0, 1} , the sequences x6m+i , x6m+3+i are convergent.

(d) If M7 = −1 , then the sequences x12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 , are convergent.

(e) If |M8| > 1 , then y3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(f) If |M8| < 1 , then |y3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(g) If M8 = 1 , then for i ∈ {−1, 0, 1} , the sequences y6m+i , y6m+3+i are convergent.

(h) If M8 = −1 , then the sequences y12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 , are convergent.

(i) If |M9| > 1 , then z3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(j) If |M9| < 1 , then |z3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(k) If M9 = 1 , then for i ∈ {−1, 0, 1} , the sequences z6m+i , z6m+3+i are convergent.
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(l) If M9 = −1 , then the sequences z12m+3j+i , for i ∈ {−1, 0, 1} , j = 0, 3 are convergent.

The proof of Theorem 3.4 is similar to the proof of Theorem 3.2 and employs the following three relations:

α(1)
m =

(2up1−3 − b) (−1)
m+⌊ i

3 ⌋+1
+ b

2

(wp2−3 (1− e)− f) em+⌊ i−1
3 ⌋+1 + f

1− e

(2vp3−3 − d) (−1)
m+⌊ i−2

3 ⌋+1
+ d

2
,

β(1)
m =

(2vp1−3 − d) (−1)
m+⌊ i

3 ⌋+1
+ d

2

(2up2−3 − b) (−1)
m+⌊ i−1

3 ⌋+1
+ b

2

(wp3−3 (1− e)− f) em+⌊ i−2
3 ⌋+1 + f

1− e
,

γ(1)
m =

(wp1−3 (1− e)− f) em+⌊ i
3 ⌋+1 + f

1− e

(2vp2−3 − d) (−1)
m+⌊ i−1

3 ⌋+1
+ d

2

(2up3−3 − b) (−1)
m+⌊ i−2

3 ⌋+1
+ b

2
,

so, it is omitted.

Theorem 3.5 Assume that k = 3l = 3 , bdf ̸= 0 , a = c = e = −1 , and that (xn, yn, zn)n≥−4 is a well-defined

solution of system (3.4) and x−p, y−p, z−p /∈ F , for p = 1, 4 , k = 3 , l = 1 . Then the following statements hold.

(a) If |M10| < 1 , then |x3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(b) If |M10| > 1 , then x3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(c) If M10 = 1 , then xm is six-periodic.

(d) If M10 = −1 , then xm is twelve-periodic.

(e) If |M11| < 1 , then |y3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(f) If |M11| > 1 , then y3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(g) If M11 = 1 , then ym is six-periodic.

(h) If M11 = −1 , then ym is twelve-periodic.

(i) If |M12| < 1 , then |z3m+i| → ∞ , for i ∈ {−1, 0, 1} , as m → ∞ .

(j) If |M12| > 1 , then z3m+i → 0 , for i ∈ {−1, 0, 1} , as m → ∞ .

(k) If M12 = 1 , then zm is six-periodic.

(l) If M12 = −1 , then zm is twelve-periodic.

Proof (a)-(l) Note that, in this case, we get

α(1)
m =

(2up1−3 − b) (−1)
m+⌊ i

3 ⌋+1
+ b

2

(2wp2−3 − f) (−1)
m+⌊ i−1

3 ⌋+1
+ f

2

(2vp3−3 − d) (−1)
m+⌊ i−2

3 ⌋+1
+ d

2
,
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β(1)
m =

(2vp1−3 − d) (−1)
m+⌊ i

3 ⌋+1
+ d

2

(2up2−3 − b) (−1)
m+⌊ i−1

3 ⌋+1
+ b

2

(2wp3−3 − f) (−1)
m+⌊ i−2

3 ⌋+1
+ f

2
,

γ(1)
m =

(2wp1−3 − f) (−1)
m+⌊ i

3 ⌋+1
+ f

2

(2vp2−3 − d) (−1)
m+⌊ i−1

3 ⌋+1
+ d

2

(2up3−3 − b) (−1)
m+⌊ i−2

3 ⌋+1
+ b

2
.

Hence
α
(1)
2mα

(1)
2m+1 = M10, β

(1)
2mβ

(1)
2m+1 = M11, γ

(1)
2mγ

(1)
2m+1 = M12, (3.27)

from which all the statements easily follow.
2

3.1.2. Case a ̸= 1 , c = 1 , e ̸= 1

In this case, if (3.5)–(3.10) are utilized in (3.11)–(3.13), it can be easily seen that the solutions of system (3.4)
are as follows.

x3m+i =
xi−3∏m

j=0
(up1−3(1−a)−b)aj+⌊ i

3
⌋+1+b

1−a

(wp2−3(1−e)−f)ej+⌊ i−1
3

⌋+1+f

1−e

(
vp3−3 +

(
j + ⌊ i−2

3 ⌋+ 1
)
d
) , (3.28)

y3m+i =
yi−3∏m

j=0

(
vp1−3 +

(
j + ⌊ i

3⌋+ 1
)
d
) (up2−3(1−a)−b)aj+⌊ i−1

3
⌋+1+b

1−a

(wp3−3(1−e)−f)ej+⌊ i−2
3

⌋+1+f

1−e

, (3.29)

z3m+i =
zi−3∏m

j=0
(wp1−3(1−e)−f)ej+⌊ i

3
⌋+1+f

1−e

(
vp2−3 +

(
j + ⌊ i−1

3 ⌋+ 1
)
d
) (up3−3(1−a)−b)aj+⌊ i−2

3
⌋+1+b

1−a

, (3.30)

for every m ∈ N0 , i ∈ {−1, 0, 1} .

3.1.3. Case a ̸= 1 , c ̸= 1 , e = 1

In this case, if (3.5)-(3.10) are employed in (3.11)–(3.13), it can be easily seen that the solutions of system (3.4)
are as follows.

x3m+i =
xi−3∏m

j=0
(up1−3(1−a)−b)aj+⌊ i

3
⌋+1+b

1−a

(
wp2−3 +

(
j + ⌊ i−1

3 ⌋+ 1
)
f
) (vp3−3(1−c)−d)cj+⌊ i−2

3
⌋+1+d

1−c

, (3.31)

y3m+i =
yi−3∏m

j=0
(vp1−3(1−c)−d)cj+⌊ i

3
⌋+1+d

1−c

(up2−3(1−a)−b)aj+⌊ i−1
3

⌋+1+b

1−a

(
wp3−3 +

(
j + ⌊ i−2

3 ⌋+ 1
)
f
) , (3.32)

z3m+i =
zi−3∏m

j=0

(
wp1−3 +

(
j + ⌊ i

3⌋+ 1
)
f
) (vp2−3(1−c)−d)cj+⌊ i−1

3
⌋+1+d

1−c

(up3−3(1−a)−b)aj+⌊ i−2
3

⌋+1+b

1−a

, (3.33)

for every m ∈ N0 , i ∈ {−1, 0, 1} .
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3.1.4. Case a = 1 , c ̸= 1 , e ̸= 1

In this case, if (3.5)-(3.10) are used in (3.11)-(3.13), it can be easily seen that the solutions of system (3.4) are
as follows.

x3m+i =
xi−3∏m

j=0

(
up1−3 +

(
j + ⌊ i

3⌋+ 1
)
b
) (wp2−3(1−e)−f)ej+⌊ i−1

3
⌋+1+f

1−e

(vp3−3(1−c)−d)cj+⌊ i−2
3

⌋+1+d

1−c

, (3.34)

y3m+i =
yi−3∏m

j=0
(vp1−3(1−c)−d)cj+⌊ i

3
⌋+1+d

1−c

(
up2−3 +

(
j + ⌊ i−1

3 ⌋+ 1
)
b
) (wp3−3(1−e)−f)ej+⌊ i−2

3
⌋+1+f

1−e

, (3.35)

z3m+i =
zi−3∏m

j=0
(wp1−3(1−e)−f)ej+⌊ i

3
⌋+1+f

1−e

(vp2−3(1−c)−d)cj+⌊ i−1
3

⌋+1+d

1−c

(
up3−3 +

(
j + ⌊ i−2

3 ⌋+ 1
)
b
) , (3.36)

for every m ∈ N0 , i ∈ {−1, 0, 1} .

3.1.5. Case a = 1 , c ̸= 1 , e = 1

In this case, if (3.5)-(3.10) are utilized in (3.11)-(3.13), it can be easily seen that the solutions of system (3.4)
are as follows.

x3m+i =
xi−3∏m

j=0

(
up1−3 +

(
j + ⌊ i

3⌋+ 1
)
b
) (

wp2−3 +
(
j + ⌊ i−1

3 ⌋+ 1
)
f
) (vp3−3(1−c)−d)cj+⌊ i−2

3
⌋+1+d

1−c

, (3.37)

y3m+i =
yi−3∏m

j=0
(vp1−3(1−c)−d)cj+⌊ i

3
⌋+1+d

1−c

(
up2−3 +

(
j + ⌊ i−1

3 ⌋+ 1
)
b
) (

wp3−3 +
(
j + ⌊ i−2

3 ⌋+ 1
)
f
) , (3.38)

z3m+i =
zi−3∏m

j=0

(
wp1−3 +

(
j + ⌊ i

3⌋+ 1
)
f
) (vp2−3(1−c)−d)cj+⌊ i−1

3
⌋+1+d

1−c

(
up3−3 +

(
j + ⌊ i−2

3 ⌋+ 1
)
b
) , (3.39)

for every m ∈ N0 , i ∈ {−1, 0, 1} .

3.1.6. Case a = 1 , c = 1 , e ̸= 1

In this case, if (3.5)–(3.10) are employed in (3.11)–(3.13), it can be easily seen that the solutions of system (3.4)
are as follows.

x3m+i =
xi−3∏m

j=0

(
up1−3 +

(
j + ⌊ i

3⌋+ 1
)
b
) (wp2−3(1−e)−f)ej+⌊ i−1

3
⌋+1+f

1−e

(
vp3−3 +

(
j + ⌊ i−2

3 ⌋+ 1
)
d
) , (3.40)

y3m+i =
yi−3∏m

j=0

(
vp1−3 +

(
j + ⌊ i

3⌋+ 1
)
d
) (

up2−3 +
(
j + ⌊ i−1

3 ⌋+ 1
)
b
) (wp3−3(1−e)−f)ej+⌊ i−2

3
⌋+1+f

1−e

, (3.41)
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z3m+i =
zi−3∏m

j=0
(wp1−3(1−e)−f)ej+⌊ i

3
⌋+1+f

1−e

(
vp2−3 +

(
j + ⌊ i−1

3 ⌋+ 1
)
d
) (

up3−3 +
(
j + ⌊ i−2

3 ⌋+ 1
)
b
) , (3.42)

for every m ∈ N0 , i ∈ {−1, 0, 1} .

3.1.7. Case a ̸= 1 , c = 1 , e = 1

In this case, if (3.5)-(3.10) are used in (3.11)-(3.13), it can be easily seen that the solutions of system (3.4) are
as follows.

x3m+i =
xi−3∏m

j=0
(up1−3(1−a)−b)aj+⌊ i

3
⌋+1+b

1−a

(
wp2−3 +

(
j + ⌊ i−1

3 ⌋+ 1
)
f
) (

vp3−3 +
(
j + ⌊ i−2

3 ⌋+ 1
)
d
) , (3.43)

y3m+i =
yi−3∏m

j=0

(
vp1−3 +

(
j + ⌊ i

3⌋+ 1
)
d
) (up2−3(1−a)−b)aj+⌊ i−1

3
⌋+1+b

1−a

(
wp3−3 +

(
j + ⌊ i−2

3 ⌋+ 1
)
f
) , (3.44)

z3m+i =
zi−3∏m

j=0

(
wp1−3 +

(
j + ⌊ i

3⌋+ 1
)
f
) (

vp2−3 +
(
j + ⌊ i−1

3 ⌋+ 1
)
d
) (up3−3(1−a)−b)aj+⌊ i−2

3
⌋+1+b

1−a

, (3.45)

for every m ∈ N0 , i ∈ {−1, 0, 1} .

3.1.8. Case a = 1 , c = 1 , e = 1

In this case, if (3.5)-(3.10) are employed in (3.11)-(3.13), it can be easily seen that the solutions of system (3.4)
are as follows.

x3m+i =
xi−3∏m

j=0

(
up1−3 +

(
j + ⌊ i

3⌋+ 1
)
b
) (

wp2−3 +
(
j + ⌊ i−1

3 ⌋+ 1
)
f
) (

vp3−3 +
(
j + ⌊ i−2

3 ⌋+ 1
)
d
) , (3.46)

y3m+i =
yi−3∏m

j=0

(
vp1−3 +

(
j + ⌊ i

3⌋+ 1
)
d
) (

up2−3 +
(
j + ⌊ i−1

3 ⌋+ 1
)
b
) (

wp3−3 +
(
j + ⌊ i−2

3 ⌋+ 1
)
f
) , (3.47)

z3m+i =
zi−3∏m

j=0

(
wp1−3 +

(
j + ⌊ i

3⌋+ 1
)
f
) (

vp2−3 +
(
j + ⌊ i−1

3 ⌋+ 1
)
d
) (

up3−3 +
(
j + ⌊ i−2

3 ⌋+ 1
)
b
) , (3.48)

for every m ∈ N0 , i ∈ {−1, 0, 1} . Now we will apply these formulas.

Theorem 3.6 Assume that k = 3l = 3 , abcdef ̸= 0 , at least one of a , c , e is equal 1 and that (xn, yn, zn)n≥−4

is a well-defined solution of system (3.4) and x−p, y−p, z−p /∈ F , for p = 1, 4 , k = 3 , l = 1 . Then xn → 0 ,
yn → 0 and zn → 0 as n → ∞ .
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Proof Let

α(2)
m :=

(up1−3 (1− a)− b) am+⌊ i
3 ⌋+1 + b

1− a

(wp2−3 (1− e)− f) em+⌊ i−1
3 ⌋+1 + f

1− e

(
vp3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
d

)
,

β(2)
m :=

(
vp1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
d

)
(up2−3 (1− a)− b) am+⌊ i−1

3 ⌋+1 + b

1− a

(wp3−3 (1− e)− f) em+⌊ i−2
3 ⌋+1 + f

1− e
,

γ(2)
m :=

(wp1−3 (1− e)− f) em+⌊ i
3 ⌋+1 + f

1− e

(
vp2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
d

)
(up3−3 (1− a)− b) am+⌊ i−2

3 ⌋+1 + b

1− a
,

α(3)
m :=

(up1−3 (1− a)− b) am+⌊ i
3 ⌋+1 + b

1− a

(
wp2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
f

)
(vp3−3 (1− c)− d) cm+⌊ i−2

3 ⌋+1 + d

1− c
,

β(3)
m :=

(vp1−3 (1− c)− d) cm+⌊ i
3 ⌋+1 + d

1− c

(up2−3 (1− a)− b) am+⌊ i−1
3 ⌋+1 + b

1− a

(
wp3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
f

)
,

γ(3)
m :=

(
wp1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
f

)
(vp2−3 (1− c)− d) cm+⌊ i−1

3 ⌋+1 + d

1− c

(up3−3 (1− a)− b) am+⌊ i−2
3 ⌋+1 + b

1− a
,

α(4)
m :=

(
up1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
b

)
(wp2−3 (1− e)− f) em+⌊ i−1

3 ⌋+1 + f

1− e

(vp3−3 (1− c)− d) cm+⌊ i−2
3 ⌋+1 + d

1− c
,

β(4)
m :=

(vp1−3 (1− c)− d) cm+⌊ i
3 ⌋+1 + d

1− c

(
up2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
b

)
(wp3−3 (1− e)− f) em+⌊ i−2

3 ⌋+1 + f

1− e
,

γ(4)
m :=

(wp1−3 (1− e)− f) em+⌊ i
3 ⌋+1 + f

1− e

(vp2−3 (1− c)− d) cm+⌊ i−1
3 ⌋+1 + d

1− c

(
up3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
b

)
,

α(5)
m :=

(
up1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
b

)(
wp2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
f

)
(vp3−3 (1− c)− d) cm+⌊ i−2

3 ⌋+1 + d

1− c
,

β(5)
m :=

(vp1−3 (1− c)− d) cm+⌊ i
3 ⌋+1 + d

1− c

(
up2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
b

)(
wp3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
f

)
,
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γ(5)
m :=

(
wp1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
f

)
(vp2−3 (1− c)− d) cm+⌊ i−1

3 ⌋+1 + d

1− c

(
up3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
b

)
,

α(6)
m :=

(
up1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
b

)
(wp2−3 (1− e)− f) em+⌊ i−1

3 ⌋+1 + f

1− e

(
vp3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
d

)
,

β(6)
m :=

(
vp1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
d

)(
up2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
b

)
(wp3−3 (1− e)− f) em+⌊ i−2

3 ⌋+1 + f

1− e
,

γ(6)
m :=

(wp1−3 (1− e)− f) em+⌊ i
3 ⌋+1 + f

1− e

(
vp2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
d

)(
up3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
b

)
,

α(7)
m :=

(up1−3 (1− a)− b) am+⌊ i
3 ⌋+1 + b

1− a

(
wp2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
f

)(
vp3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
d

)
,

β(7)
m :=

(
vp1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
d

)
(up2−3 (1− a)− b) am+⌊ i−1

3 ⌋+1 + b

1− a

(
wp3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
f

)
,

γ(7)
m :=

(
wp1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
f

)(
vp2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
d

)
(up3−3 (1− a)− b) am+⌊ i−2

3 ⌋+1 + b

1− a
,

α(8)
m :=

(
up1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
b

)(
wp2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
f

)(
vp3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
d

)
,

β(8)
m :=

(
vp1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
d

)(
up2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
b

)(
wp3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
f

)
,

γ(8)
m :=

(
wp1−3 +

(
m+ ⌊ i

3
⌋+ 1

)
f

)(
vp2−3 +

(
m+ ⌊ i− 1

3
⌋+ 1

)
d

)(
up3−3 +

(
m+ ⌊ i− 2

3
⌋+ 1

)
b

)
.

Since

lim
m→∞

|α(r)
m | = lim

m→∞
|β(r)

m | = lim
m→∞

|γ(r)
m | = ∞, r = 2, 8,

from (3.28)-(3.48) the statement easily follows. 2
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4. Conclusion
In this paper, we have considered the following three-dimensional system of difference equations

xn =
xn−kzn−l

bnxn−k + anzn−k−l
, yn =

yn−kxn−l

dnyn−k + cnxn−k−l
, zn =

zn−kyn−l

fnzn−k + enyn−k−l
,

where n ∈ N0 , k, l ∈ N , the sequences (an)n∈N0
, (bn)n∈N0

, (cn)n∈N0
, (dn)n∈N0

, (en)n∈N0
and (fn)n∈N0

are

non-zero real numbers, for all n ∈ N0 , and the initial values x−i, y−i, z−i are real numbers for i ∈ 1, k + l .
Firstly, we have obtained the closed form of well defined solutions of the aforementioned system using

suitable transformation reducing the equations of our system to linear type. Also, we describe the forbidden
set of the initial values using the obtained formulas. In addition, in the case where the coefficients are constant
and k = 3 , l = 1 in the system, we have obtained the solutions for some possible cases of a , c and e . Finally,
we have examined the asymptotic behavior of the solutions of this system for 8 -case.

We will give the following important open problem for system of difference equations theory to researchers.
Open problem: The system (1.7) can extend to the following p−dimensional system of difference equa-

tions.

x(1)
n =

x
(1)
n−kx

(3)
n−l

b
(1)
n x

(1)
n−k + a

(1)
n x

(3)
n−k−l

, x(2)
n =

x
(2)
n−kx

(4)
n−l

b
(2)
n x

(2)
n−k + a

(2)
n x

(4)
n−k−l

, . . . , x(p)
n =

x
(p)
n−kx

(2)
n−l

b
(p)
n x

(p)
n−k + a

(p)
n x

(2)
n−k−l

, n ∈ N0, (4.1)

where k, l ∈ N , the sequences
(
a
(j)
n

)
n∈N0

and
(
b
(j)
n

)
n∈N0

are non-zero real numbers, for j ∈ 1, p , and the

initial values x
(j)
−i , are real numbers for i ∈ 1, k + l , j ∈ 1, p . Can system (4.1) be solved?
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