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Abstract: In this paper, we consider the existence and uniqueness for parametric boundary value problems of a coupled
system of nonlinear fractional hybrid differential equations. By the fixed point theorem in Banach algebra, an existence
theorem for parametric boundary value problems of a coupled system of nonlinear fractional hybrid differential equations
is given. Further, a uniqueness result for parametric boundary value problems of a coupled system of nonlinear fractional
hybrid differential equations is proved due to Banach’s contraction principle. Further, we give three examples to verify
the main results.
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1. Introduction
In this paper, we discuss the following parametric boundary value problems (in short PBVP) of a coupled
system of nonlinear fractional hybrid differential equations (in short FHDS)

CD
α
0+

[
y(ζ)−k1(ζ,y(ζ))

f1(ζ,y(ζ))

]
= g1(ζ, y(ζ), z(ζ)), 0 < ζ < 1,

CD
β
0+

[
z(ζ)−k2(ζ,z(ζ))

f2(ζ,z(ζ))

]
= g2(ζ, y(ζ), z(ζ)), 0 < ζ < 1,

a1

[
y(ζ)−k1(ζ,y(ζ))

f1(ζ,y(ζ))

]
ζ=0

+ b1

[
y(ζ)−k1(ζ,y(ζ))

f1(ζ,y(ζ))

]
ζ=1

= c1,

a2

[
z(ζ)−k2(ζ,z(ζ))

f2(ζ,z(ζ))

]
ζ=0

+ b2

[
z(ζ)−k2(ζ,z(ζ))

f2(ζ,y(ζ))

]
ζ=1

= c2,

(1.1)

where 0 < α, β ≤ 1, CD
α
0+ and CD

β
0+ are the Caputo derivatives, ∆ = [0, 1] , fi ∈ C(∆ × R,R \ {0}) ,

ki ∈ C(∆ × R,R) , gi ∈ C(∆ × R × R,R)(i = 1, 2) , and ai, bi, ci(i = 1, 2) are real constants with
ai + bi ̸= 0(i = 1, 2) .

The theory and the applications of the FDE have gained many researchers’ attention, see the study in
[10]. Many papers on the solvability of the nonlinear FDE and FDS, see [6, 12, 14, 15, 17]. In recent years,
the theory of the HDE has been a hot research topic; see [1–5, 7, 8, 11, 13, 16, 18]. Dhage [4] discussed the
following first order hybrid differential equation{

d
dζ

[
x(ζ)−k(ζ,x(ζ))

f(ζ,x(ζ))

]
= g(ζ, x(ζ)), ζ ∈ [ζ0, ζ0 + a],

x(ζ0) = x0 ∈ R,
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and developed the theory of the HDE and gave some original and interesting results. Dumitru Baleanu et
al. [2] investigated sufficient conditions for existence and uniqueness of solutions for a coupled system of
fractional order hybrid differential equations with multi-point hybrid boundary conditions due to Dhage and
Banach’s contraction principle. Amjad Ali [1] established necessary and sufficient conditions for existence of
positive solutions for coupled systems of nonlinear hybrid differential equations subject to nonhomogeneous
boundary conditions using hybrid fixed point theorem due to Dhage. Dhage et al. [5] studied a system of two
nonhomogeneous boundary value problems of coupled hybrid integro-differential equations of fractional order by
a hybrid fixed point theorem due to Dhage in Banach algebras. You and Sun [13] discussed a class of impulsive
coupled hybrid fractional differential system due to a new hybrid fixed point theorem in Banach algebra.

To the best of our knowledge, there are no results for the PBVP (1.1) of the nonlinear coupled FHDS.
From the above works, we consider the existence and uniqueness of the BVP (1.1) of the nonlinear coupled
FHDS. An existence theorem and a uniqueness result for the PBVP (1.1) of the nonlinear coupled FDS are
obtained. Further, three examples are given to verify the main results. To some extent, our work fills the gap
on some basic theory for BVP of the nonlinear coupled FHDS.

The paper is organized as follows: Section 2 gives some theory of fractional calculus. Section 3 establishes
an existence theorem for the PBVP (1.1) of the nonlinear coupled FHDS by the fixed point theorem in Banach
algebra. Section 4 considers a uniqueness result for the PBVP (1.1) of the nonlinear coupled FHDS by Banach’s
contraction principle. Section 5 presents three examples to verify the existence theorem.

2. Preliminary

In this section, we give some basic theory from fractional calculus, see [3, 9, 13, 18].

Definition 2.1 ([9]) The Caputo fractional derivative of order 0 < α < 1 of a continuous function f :

(0,+∞) → R is given by

CD
α

0+f(ζ) =
1

Γ(1− α)

∫ ζ

0

f ′(ω)

(ζ − ω)α
dω.

Definition 2.2 ([9]) The Riemann-Liouville fractional integral of order α > 0 of an integrable function
f : (0,+∞) → R is given by

Iα0+f(ζ) =
1

Γ(α)

∫ ζ

0

(ζ − ω)α−1f(ω)dω,

provided that the right side is pointwise defined on (0,+∞) .

Lemma 2.3 ([9]) Let α > 0 . If we assume y ∈ C(0, 1) ∩ L(0, 1), then the fractional differential equation

CD
α

0+y(ζ) = 0

has y(ζ) = c0 + c1ζ + c2ζ
2 + · · ·+ cn−1ζ

n−1, ci ∈ R, i = 0, 1, 2, · · · , n− 1, as unique solutions, where n is the
smallest integer greater than or equal to α .

Lemma 2.4 ([9]) Assume that y ∈ Cn[0, 1] with a fractional derivative of order α > 0 that belongs to Cn[0, 1] .
Then

Iα0+
CD

α

0+y(ζ) = y(ζ) + c0 + c1ζ + c2ζ
2 + · · ·+ cn−1ζ

n−1,
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for some ci ∈ R, i = 0, 1, 2, · · · , n− 1, where n is the smallest integer greater than or equal to α .

Let C(∆,R) be the space of all continuous functions defined on ∆ . ∥ · ∥ denotes a supremum norm in
C(∆,R) by

∥y∥ = sup
ζ∈∆

|y(ζ)|,

and a multiplication “ ·” in C(∆,R) by

(y · z)(ζ) = (yz)(ζ) = y(ζ)z(ζ)

for y, z ∈ C(∆,R). Clearly C(∆,R) is a Banach algebra with respect to above norm and multiplication in it.

Lemma 2.5 ([18]) Suppose that a, b, c are real constants with a + b ̸= 0 . Then for any z ∈ L(∆,R) , the
function y is a solution of the PBVP

CD
α

0+

[y(ζ)− k(ζ, y(ζ))

f(ζ, y(ζ))

]
= z(ζ), 0 < α ≤ 1, ζ ∈ ∆, (2.1)

and

a
[y(ζ)− k(ζ, y(ζ))

f(ζ, y(ζ))

]
ζ=0

+ b
[y(ζ)− k(ζ, y(ζ))

f(ζ, y(ζ))

]
ζ=1

= c, (2.2)

if and only if y satisfies the integral equation

y(ζ) = f(ζ, y(ζ))
( 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1z(ω)dω

+
1

a+ b

(
c− b

Γ(α)

∫ 1

0

(1− ω)α−1z(ω)dω
))

+ k(ζ, y(ζ)), ζ ∈ ∆. (2.3)

Let Ũ = C(∆,R) . Define multiplication and the sum on X ×X as

(y1, z1) + (y2, z2) = (y1 + y2, z1 + z2),

p(y, z) = (py, pz), p ∈ R.

Lemma 2.6 ([3]) Let U = U × U . Define the product in X by

(y1, z1)(y2, z2) = (y1y2, z1z2),

and
∥(y, z)∥ = 2(∥y∥+ ∥z∥).

Then U is a Banach algebra with respect to the above norm and multiplication.

Lemma 2.7 ([13]) Let S̃ be a nonempty, closed, convex and bounded subset of a Banach algebra X and
U = Ũ × Ũ , S = S̃ × S̃ . Suppose Ãi, C̃i : Ũ → Ũ , B̃i : S̃ → Ũ(i = 1, 2) are operators satisfying
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(a) There exist 0 < ρ̃i, δ̃i < 1 , such that, respectively,

∥ Ãiy − Ãiz ∥≤ ρ̃i ∥ y − z ∥, ∥ C̃iy − C̃iz ∥≤ δ̃i ∥ y − z ∥,

for all y, z ∈ Ũ , i = 1, 2 , ρ̃ = max
{
ρ̃1, ρ̃2}, δ = max{δ̃1, δ̃2

}
,

(b) B̃i is completely continuous, i = 1, 2 ,

(c) y = Ã1yB̃1z + C̃1y for all z ∈ S̃ ⇒ y ∈ S̃ , and z = Ã2zB̃2y + C̃2z for all y ∈ S̃ ⇒ z ∈ S̃ ,

(d) 4ρ∥B̃(S̃)∥+ δ̃ < 1, ∥B̃(S̃)∥ = max{sup{∥B̃1(y)∥ : y ∈ S̃}, sup{∥B̃2(y)∥ : y ∈ S̃}} .

Then the operator equation (T̃1(y, z), T̃2(y, z)) = (y, z) has a fixed point in S , where T̃1, T̃2 : U → Ũ are
defined by

T̃1(y, z) = Ã1yB̃1z + C̃1y, T̃2(y, z) = Ã2zB̃2y + C̃2z, (y, z) ∈ U.

3. Existence result
In this section, we discuss the existence results for the PBVP (1.1) of the nonlinear coupled FHDS.

We present the following hypotheses.

(H1) There exist constants Li > 0 (i = 1, 2) and L̄i > 0 (i = 1, 2) such that

|fi(ζ, y)− fi(ζ, z)| ≤ Li|y − z|

and
|ki(ζ, y)− ki(ζ, z)| ≤ L̄i|y − z|

for all ζ ∈ ∆ and y, z ∈ R.

(H2) There exist two nonnegative functions di(ζ) ∈ L(0, 1) (i = 1, 2) such that gi(ζ, y, z) ≤ di(ζ) +mi|y|ρi +

ni|z|θi , where mi, ni ≥ 0, 0 < ρi, θi < 1, for i = 1, 2 .

Now we will give the following existence theorem for the PBVP (1.1) of the nonlinear coupled FHDS.

Theorem 3.1 Suppose that (H1) and (H2) hold. Then the PBVP (1.1) of the nonlinear coupled FHDS has a
solution.

Proof. By Lemma 2.5, the system (1.1) is equivalent to the following integral system



y(ζ) = f1(ζ, y(ζ))
(

1
Γ(α)

∫ ζ

0
(ζ − ω)α−1g1(ω, y(ω), z(ω))dω

+ 1
a1+b1

(
c1 − b1

Γ(α)

∫ 1

0
(1− ω)α−1g1(ω, y(ω), z(ω))dω

))
+k1(ζ, y(ζ)), ζ ∈ ∆.

z(ζ) = f2(ζ, z(ζ))
(

1
Γ(β)

∫ ζ

0
(ζ − ω)β−1g2(ω, y(ω), z(ω))dω

+ 1
a2+b2

(
c2 − b2

Γ(β)

∫ 1

0
(1− ω)β−1g2(ω, y(ω), z(ω))dω

))
+k2(ζ, z(ζ)), ζ ∈ ∆.

(3.1)

Set U = C(∆,R) and define a subset S of U by

S = {y ∈ U | ∥y∥ ≤ R},
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where

R ≥max
{
5l1, 5l̄1,

5|c1|
|a1 + b1|

, 5l2, 5l̄2,
5|c2|

|a2 + b2|
,

(
5m1(|b1|+ |a1 + b1|)
|a1 + b1|Γ(α+ 1)

) 1
1−ρ1

,

(
5n1(|b1|+ |a1 + b1|)
|a1 + b1|Γ(α+ 1)

) 1
1−θ1

,

(
5m2(|b2|+ |a2 + b2|)
|a2 + b2|Γ(β + 1)

) 1
1−ρ2

,

(
5n2(|b2|+ |a2 + b2|)
|a2 + b2|Γ(β + 1)

) 1
1−θ2

,

F0M1 +K0

1− L1M1 − L̄1
,

F0M2 +K0

1− L2M2 − L̄2

}
,

and

l1 = max
ζ∈∆

1

Γ(α)

∫ t

0

(ζ − ω)α−1d1(ω)dω, l̄1 =
|b1|

|a1 + b1|Γ(α)

∫ 1

0

(1− ω)α−1d1(ω)dω,

l2 = max
ζ∈∆

1

Γ(β)

∫ ζ

0

(ζ − ω)β−1d2(ω)dω, l̄2 =
|b2|

|a2 + b2|Γ(β)

∫ 1

0

(1− ω)β−1d2(ω)dω,

M1 =
K

Γ(α+ 1)

(
1 +

|b1|
|a1 + b1|

)
+

|c1|
|a1 + b1|

,

M2 =
K

Γ(β + 1)

(
1 +

|b2|
|a2 + b2|

)
+

|c2|
|a2 + b2|

,

K = max
ζ∈∆

{|g1(ζ, y(ζ), z(ζ))|, |g2(ζ, y(ζ), z(ζ))|},

F0 = max{sup
ζ∈∆

|f1(ζ, 0)|, sup
ζ∈∆

|f2(ζ, 0)|},

K0 = max{sup
ζ∈∆

|k1(ζ, 0)|, sup
ζ∈∆

|k2(ζ, 0)|}, L = max{L1, L2}, L̄ = max{L̄1, L̄2},

M = max{M1,M2}, 4LM + 4L̄ < 1.

Clearly, S is a closed, convex and bounded subset of the Banach space U .
Define the operators Ai, Ci : U → U and Bi : S → U (i = 1, 2) by

A1y(ζ) = f1(ζ, y(ζ)), A2z(ζ) = f2(ζ, z(ζ)), ζ ∈ ∆, (3.2)



B1z(ζ) = 1
Γ(α)

∫ ζ

0
(ζ − ω)α−1g1(ω, y(ω), z(ω))dω

+ 1
a1+b1

(
c1 − b1

Γ(α)

∫ 1

0
(1− ω)α−1g1(ω, y(ω), z(ω))dω

)
, ζ ∈ ∆.

B2y(ζ) = 1
Γ(β)

∫ ζ

0
(ζ − ω)β−1g2(ω, y(ω), z(ω))dω

+ 1
a2+b2

(
c2 − b2

Γ(β)

∫ 1

0
(1− ω)β−1g2(ω, y(ω), z(ω))dω

)
, ζ ∈ ∆.

(3.3)

and
C1y(ζ) = k1(ζ, y(ζ)), C2z(ζ) = k2(ζ, z(ζ)), ζ ∈ ∆. (3.4)

616



ZHAO and SUN/Turk J Math

Then the system (3.1) is transformed into the system of operator equation as

{
y(ζ) = A1y(ζ)B1z(ζ) + C1y(ζ),

z(ζ) = A2z(ζ)B2y(ζ) + C2z(ζ).

Set U = U × U, S = S × S. Define operators A, C : U → U and B : S → U by

A(y(ζ), z(ζ)) = (A1y(ζ), A2z(ζ)), B(y(ζ), z(ζ)) = (B1z(ζ), B2y(ζ)),

C(y(ζ), z(ζ)) = (C1y(ζ), C2z(ζ)).

and define the operators T1 : U → U , T2 : U → U by

T1(y, z) = A1yB1z + C1y, T2(y, z) = A2zB2y + C2z.

Thus, we just prove that (T1(y, z), T2(y, z)) = (y, z) has one solution in S .

Next, we prove the operators Ai, Bi , and Ci (i = 1, 2) satisfy all the conditions of Lemma 2.7.

Firstly, we prove that (a) of Lemma 2.7 is satisfied. Let y, z ∈ U . Then by (H1) ,

|Aiy(ζ)−Aiz(ζ)| = |fi(ζ, y(ζ))− fi(ζ, z(ζ))| ≤ Li|y(ζ)− z(ζ)| ≤ Li∥y − z∥, i = 1, 2,

for all ζ ∈ ∆ . Taking supremum over ζ , then we have

∥Aiy −Aiz∥ ≤ Li∥y − z∥, i = 1, 2,

for all y, z ∈ U. Similarly, it can be implied that

∥Ciy − Ciz∥ ≤ L̄i∥y − z∥, i = 1, 2,

for all y, z ∈ U. Thus, Ai and Ci (i = 1, 2) satisfy (a) of Lemma 2.7.

Next, we prove Bi (i = 1, 2) are compact and continuous operators on S into U . Firstly, we prove
Bi (i = 1, 2) are continuous on S . Let {(yn, zn)} be a sequence in S converging to (y, z) ∈ S . Then by the
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Lebesgue dominated convergence theorem,

lim
n→∞

B1zn(ζ)

= lim
n→∞

( 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, yn(ω), zn(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, yn(ω), zn(ω))dω

))
= lim

n→∞

1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, yn(ω), zn(ω))dω

+ lim
n→∞

1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, yn(ω), zn(ω))dω

)

=
1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y(ω), z(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y(ω), z(ω))dω

)
= B1z(ζ),

for all ζ ∈ ∆ . This shows that B1 is a continuous operator on S . Similarly, we can prove that B2 is also a
continuous operator on S .

Next we prove Bi (i = 1, 2) are compact operators on S. It is enough to show that Bi(S) (i = 1, 2) are
uniformly bounded and equicontinuous sets in U. On the one hand, let y ∈ S be arbitrary. Then by (H2) ,

|B1z(ζ)| =
∣∣∣ 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y(ω), z(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y(ω), z(ω))dω

) ∣∣∣
≤ 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1 |g1(ω, y(ω), z(ω))| dω

+
|b1|

|a1 + b1|Γ(α)

∫ 1

0

(1− ω)α−1|g1(ω, y(ω), z(ω))|dω +
|c1|

|a1 + b1|

≤ l1 +
m1R

ρ1 + n1R
θ1

Γ(α+ 1)
+ l̄1 +

|b1|(m1R
ρ1 + n1R

θ1)

|a1 + b1|Γ(α+ 1)
+

|c1|
|a1 + b1|

≤ R,

for all ζ ∈ ∆. Taking supremum over ζ, ∥B1z∥ ≤ R for all y ∈ S. Similarly, we can conclude that ∥B2z∥ ≤ R

for all z ∈ S. This shows that Bi (i = 1, 2) are uniformly bounded on S.
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On the other hand, let ζ1, ζ2 ∈ ∆ . Then for any z ∈ S, we get

|B1z(ζ1)−B1z(ζ2)|

=
∣∣∣ 1

Γ(α)

∫ ζ1

0

(ζ1 − ω)α−1g1(ω, y(ω), z(ω))dω

− 1

Γ(α)

∫ ζ2

0

(ζ2 − ω)α−1g1(ω, y(ω), z(ω))dω
∣∣∣

≤ 1

Γ(α)

∣∣∣ ∫ ζ1

0

(ζ1 − ω)α−1g1(ω, y(ω), z(ω))dω

−
∫ ζ1

0

(ζ2 − ω)α−1g1(ω, y(ω), z(ω))dω

+

∫ ζ1

0

(ζ2 − ω)α−1g1(ω, y(ω), z(ω))dω −
∫ ζ2

0

(ζ2 − ω)α−1g1(ω, y(ω), z(ω))dω
∣∣∣

=
K

Γ(α+ 1)
(ζα2 − ζα1 − (ζ2 − ζ1)

α) .

Since the functions ζα is uniformly continuous on compact ∆ , from the above analysis, B1(S) is an equicon-
tinuous set in U. Thus, B1 is completely continuous likewise B2 .

Next, we show that (c) of Lemma 2.7 is satisfied. Let y ∈ S and z ∈ S be arbitrary such that
y = A1yB1z + C1y, z = A2zB2y + C2z. Then, by assumption (H1), we have

|y(ζ)|

≤ |A1y(ζ)||B1z(ζ)|+ |C1y(ζ)|

= |f1(ζ, y(ζ))|
∣∣∣ 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y(ω), z(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y(ω), z(ω))dω
)∣∣∣+ |k1(ζ, y(ζ))|

≤ [|f1(ζ, y(ζ))− f1(ζ, 0)|+ |f1(ζ, 0)|] ·
(

K

Γ(α+ 1)

(
1 +

|b1|
|a1 + b1|

)
+

|c1|
|a1 + b1|

)
+ |k1(ζ, y(ζ))− k1(ζ, 0)|+ |k1(ζ, 0)|

≤ [L1|y(ζ)|+ F0]M1 + L̄1|y(ζ)|+K0.

Thus, we get

|y(ζ)| ≤ F0M1 +K0

1− L1M1 − L̄1
.

Taking supremum over ζ,

∥y∥ ≤ F0M1 +K0

1− L1M1 − L̄1
≤ R.

Similarly, we can obtain that

∥z∥ ≤ F0M2 +K0

1− L2M2 − L̄2
≤ R.
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This shows that (c) of Lemma 2.7 is satisfied.
Finally, we obtain

∥B(S)∥

= max{sup{∥B1(y)∥ : y ∈ S}, sup{∥B2(y)∥ : y ∈ S}}

= max
{ K

Γ(α+ 1)

(
1 +

|b1|
|a1 + b1|

)
+

|c1|
|a1 + b1|

,

K

Γ(β + 1)

(
1 +

|b2|
|a2 + b2|

)
+

|c2|
|a2 + b2|

}
= max{M1,M2} = M.

and so,
4L∥B(S)∥+ L̄ = 4LM + L̄ < 1.

This shows that (d) of Lemma 2.7 is satisfied.
Thus, all the conditions of Lemma 2.7 are satisfied and (T1(y, z), T2(y, z)) = (y, z) has one solution in

S . Therefore, the PBVP (1.1) of the nonlinear coupled FHDS has a solution.

4. Uniqueness of solution

In this section, we give the uniqueness of the solution for the PBVP (1.1) of the nonlinear coupled FHDS.
We present the following hypotheses.

(H3) There exist constants hi > 0 (i = 1, 2) and h̄i > 0 (i = 1, 2) such that

|gi(ζ, y, z)− gi(ζ, y
′, z′)| ≤ hi|y − y′|+ h̄i|z − z′|

for all ζ ∈ ∆ and y, y′, z, z′ ∈ R.

Next define the following notations

K ′ = max
ζ∈∆

{|f1(ζ, y(ζ))|, |f2(ζ, z(ζ))|}, µ1 =
K ′

Γ(α+ 1)

(
1 +

|b1|
|a1 + b1|

)
, µ2 =

K ′

Γ(β + 1)

(
1 +

|b2|
|a2 + b2|

)
.

Now we will present the following uniqueness of solutions for the PBVP (1.1) of the nonlinear coupled
FHDS.

Theorem 4.1 Suppose that (H1) and (H3) hold. If

2
(
µ1(h1 + h̄1) + µ2(h2 + h̄2) + 2M + 2L̄

)
< 1.

Then the PBVP (1.1) of the nonlinear coupled FHDS has a unique solution.

Proof. Define U = C(∆,R) and choose a subset S′ of U by

S′ = {y ∈ U | ∥y∥ ≤ R′},
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where

R′ ≥ 4MF0 + 4K0

1− 2(LM + L̄)
,

and F0, K0, L, L̄, M are defined in Theorem 3.1. Thus, we just prove that (T1(y, z), T2(y, z)) = (y, z) has
one solution in S′ = S′ × S′.

For (y, z) ∈ S′ and ζ ∈ ∆, we have

|T1(y(ζ), z(ζ))|

≤ |A1y(ζ)||B1z(ζ)|+ |C1y(ζ)|

= |f1(ζ, y(ζ))|
∣∣∣ 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y(ω), z(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y(ω), z(ω))dω
)∣∣∣+ |k1(ζ, y(ζ))|

≤ [|f1(ζ, y(ζ))− f1(ζ, 0)|+ |f1(ζ, 0)|] ·
(

K

Γ(α+ 1)

(
1 +

|b1|
|a1 + b1|

)
+

|c1|
|a1 + b1|

)
+ |k1(ζ, y(ζ))− k1(ζ, 0)|+ |k1(ζ, 0)|

≤ [L1|y(ζ)|+ F0]M1 + L̄1|y(ζ)|+K0.

Taking supremum over ζ, we have

∥T1(y, z)∥ ≤ [L1∥y∥+ F0]M1 + L̄1∥y∥+K0.

Similarly, we can obtain that

∥T2(y, z)∥ ≤ [L2∥z∥+ F0]M2 + L̄2∥z∥+K0.

Thus, we get

∥T (y, z)∥ = 2(∥T1(y, z)∥+ ∥T2(y, z)∥)

≤ 2(L1M1 + L̄1)∥y∥+ 2(L2M2 + L̄2)∥z∥+ 2(M1 +M2)F0 + 4K0

≤ 2(LM + L̄)R′ + 4MF0 + 4K0 ≤ R′.
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For (y1, z1)(ζ), (y2, z2)(ζ) ∈ U × U and any ζ ∈ ∆ , we have

|T1(y2, z2)(ζ)− T1(y1, z1)(ζ)|

≤ |A1y2(ζ)B1z2(ζ) + C1y2(ζ)− (A1y1(ζ)B1z1(ζ) + C1y1(ζ))|

=
∣∣∣f1(ζ, y2(ζ))( 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y2(ω), z2(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y2(ω), z2(ω))dω
))

+ k1(ζ, y2(ζ))

− f1(ζ, y1(ζ))
( 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y1(ω), z1(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y1(ω), z1(ω))dω
))

− k(ζ, y1(ζ))
∣∣∣

=
∣∣∣f1(ζ, y2(ζ))( 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y2(ω), z2(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y2(ω), z2(ω))dω
))

+ k(ζ, y2(ζ))

− f1(ζ, y2(ζ))
( 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y1(ω), z1(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y1(ω), z1(ω))dω
))

+ f1(ζ, y2(ζ))
( 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y1(ω), z1(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y1(ω), z1(ω))dω
))

− f1(ζ, y1(ζ))
( 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y1(ω), z1(ω))dω

+
1

a1 + b1

(
c1 −

b1
Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y1(ω), z1(ω))dω
))

− k1(ζ, y1(ζ))
∣∣∣

≤ |f1(ζ, y2(ζ))|

∣∣∣∣∣ 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1 (g1(ω, y2(ω), z2(ω))− g1(ω, y1(ω), z1(ω))) dω

∣∣∣∣∣
+

|f1(ζ, y2(ζ))| |c1|
|a1 + b1|

∣∣∣∣∫ 1

0

(1− ω)α−1 (g1(ω, y2(ω), z2(ω))− g1(ω, y1(ω), z1(ω))) dω

∣∣∣∣
+ |f1(ζ, y2(ζ))− f1(ζ, y1(ζ))|

( ∣∣∣∣∣ 1

Γ(α)

∫ ζ

0

(ζ − ω)α−1g1(ω, y1(ω), z1(ω))dω

∣∣∣∣∣
+

|c1|
|a1 + b1|

+
|b1|

|a1 + b1|

∣∣∣∣ 1

Γ(α)

∫ 1

0

(1− ω)α−1g1(ω, y1(ω), z1(ω))dω

∣∣∣∣ )+ |k1(ζ, y2(ζ))− k1(ζ, y1(ζ))|
∣∣∣
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≤ K ′

Γ(α+ 1)
(h1∥y2 − y1∥+ h̄1∥z2 − z1∥) +

K ′

Γ(α+ 1)
· |c1|
|a1 + b1|

(h1∥y2 − y1∥+ h̄1∥z2 − z1∥)

+ ∥y2 − y1∥
(

K

Γ(α+ 1)
+

|c1|
|a1 + b1|

+
|b1|

|a1 + b1|
· K

Γ(α+ 1)

)
+ L̄∥y2 − y1∥

≤ µ1(h1∥y2 − y1∥+ h̄1∥z2 − z1∥) + (M + L̄)∥y2 − y1∥.

Taking supremum over ζ, we get

∥T1(y2, z2)− T1(y1, z1)∥

≤
(
µ1h1 +M + L̄

)
∥y2 − y1∥+ µ1h̄1∥z2 − z1∥

≤
(
µ1h1 +M + L̄+ µ1h̄1

)
∥y2 − y1∥+

(
µ1h1 +M + L̄+ µ1h̄1

)
∥z2 − z1∥

=
(
µ1(h1 + h̄1) +M + L̄

)
(∥y2 − y1∥+ ∥z2 − z1∥).

Similarly, we can obtain that

∥T2(y2, z2)− T2(y1, z1)∥ ≤
(
µ2(h2 + h̄2) +M + L̄

)
(∥y2 − y1∥+ ∥z2 − z1∥).

Thus, we get

∥T (y2, z2)− T (y1, z1)∥

≤ 2
(
µ1(h1 + h̄1) + µ2(h2 + h̄2) + 2M + 2L̄

)
(∥y2 − y1∥+ ∥z2 − z1∥)

≤ (∥y2 − y1∥+ ∥z2 − z1∥),

which implies that T is a contraction. By Banach’s contraction principle, the operator T has a unique fixed
point which is the unique solution of the PBVP (1.1) of the nonlinear coupled FHDS.

5. Examples

In this section, we will present three examples to illustrate the main results.

Example 5.1 Consider the following PBVP



CD
1
2

0+

[
y(ζ)− 1

32 sin y(ζ)
1
4

√
y2(ζ)+1

]
= ζ

2 + (ζ − 1
4 )

4(y(ζ)ρ1 + z(ζ)θ1), 0 < ζ < 1,

CD
1
3

0+

[
z(ζ)− 1

24 arctan z(ζ)

1+ 1
3 cos z(ζ)

]
= ζ2 + (ζ − 1

4 )
4(y(ζ)ρ2 + z(ζ)θ2), 0 < ζ < 1,[

y(ζ)− 1
8 sin y(ζ)√

u2(ζ)+1

]
ζ=0

+
[
y(ζ)− 1

8 sin y(ζ)√
u2(ζ)+1

]
ζ=1

= 1
16 ,[

z(ζ)− 1
24 arctan z(ζ)

1+ 1
3 cos z(ζ)

]
ζ=0

+
[
z(ζ)− 1

24 arctan z(ζ)

1+ 1
3 cos z(ζ)

]
ζ=1

= 1
20 ,

(5.1)

where 0 < ρi, θi < 1 (i = 1, 2) .

Choose d1(ζ) =
ζ
2 , d2(ζ) = ζ2 and mi = ni =

81
256 (i = 1, 2) . Then hypotheses (H1) and (H2) hold.

Therefore, by Theorem 3.1, the PBVP (5.1) has a solution.
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Example 5.2 Consider the following PBVP



CD
1
2

0+

[
y(ζ)− ζ

50eζ
|y(ζ)|− sin y(ζ)

3ζ4

1+ 1
10 cos ζ|y(ζ)|

]
= (ζ − 1

2 )
4(y(ζ)ρ1 + z(ζ)θ1), 0 < ζ < 1,

CD
1
3

0+

[
z(ζ)− arctan ζ

40 |z(ζ)|− ζ4

7eζ

1
16 (z(ζ)+

√
z2(ζ)+1)

]
= (ζ − 1

2 )
4(y(ζ)ρ2 + z(ζ)θ2), 0 < ζ < 1,[

y(ζ)− ζ

50eζ
|y(ζ)|− sin y

3ζ4

1+ 1
10 cos ζ|y(ζ)|

]
ζ=0

+
[
y(ζ)− ζ

50eζ
|y(ζ)|− sin y

3ζ4

1+ 1
10 cos ζ|y(ζ)|

]
ζ=1

= 0,[
z(ζ)− arctan ζ

40 |z(ζ)|− ζ4

7eζ

1
16 (z(ζ)+

√
z2(ζ)+1)

]
ζ=0

+
[
z(ζ)− arctan ζ

40 |z(ζ)|− ζ4

7eζ

1
16 (z(ζ)+

√
z2(ζ)+1)

]
ζ=1

= 0,

(5.2)

where 0 < ρi, θi < 1 (i = 1, 2) .

Choose d1(ζ) = d2(ζ) = 0 and mi = ni = 1
256 (i = 1, 2) . Then hypotheses (H1) and (H2) hold.

Therefore, by Theorem 3.1, the PBVP (5.2) has a solution.

Example 5.3 Consider the following PBVP



CD
1
2

0+

[
y(ζ)− 1

100 cos y(ζ)

1+ 1
100 sin y(ζ)

]
= 1

31 + 1
200

|y(ζ)|
1+|y(ζ)| +

1
100

|z(ζ)|
1+|z(ζ)| , 0 < ζ < 1,

CD
1
2

0+

[
y(ζ)− 1

100 sin y(ζ)

1+ 1
100 cos y(ζ)

]
= 1

31 + 1
100

|y(ζ)|
1+|y(ζ)| +

1
200

|z(ζ)|
1+|z(ζ)| , 0 < ζ < 1,[

y(ζ)− 1
100 cos y(ζ)

1+ 1
100 sin y(ζ)

]
ζ=0

+
[
y(ζ)− 1

100 cos y(ζ)

1+ 1
100 sin y(ζ)

]
ζ=1

= 0,[
y(ζ)− 1

100 sin y(ζ)

1+ 1
100 cos y(ζ)

]
ζ=0

+
[
y(ζ)− 1

100 sin y(ζ)

1+ 1
100 cos y(ζ)

]
ζ=1

= 0.

(5.3)

It is easy to check that α = β = 0.5 , a1 = b1 = a2 = b2 = 1 , c1 = c2 = 0 , L = L̄ = 0.01 ,
h1 = h̄2 = 0.005 , h̄1 = h2 = 0.01 , K = 0.0473 , K ′ = 1.01 , M = 0.08 , µ1 = µ2 = 1.709 . Then, we have

2
(
µ1(h1 + h̄1) + µ2(h2 + h̄2) + 2M + 2L̄

)
= 0.46254 < 1.

Thus, hypotheses (H1) and (H3) hold. Therefore, by Theorem 4.1, the PBVP (5.3) has a unique solution.

6. Conclusion
In this paper, we have studied the solvability for the PBVP (1.1) of the nonlinear coupled FHDS. We have
presented an existence theorem and a uniqueness result for the PBVP (1.1) of the nonlinear coupled FHDS due
to the fixed point theorem in Banach algebra and Banach’s contraction principle. The main results have been
well illustrated with the help of three examples.
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