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Abstract: A class of third order reaction-diffusion type singularly perturbed ordinary delay differential equations is
considered in this article. A fitted finite difference method on Shishkin mesh is suggested to solve the problem. Moreover,
we present a class of nonlinear problems. An error estimation is obtained based on the maximum norm and it is of almost

first order convergence. Numerical results are given to support theoretical claims.
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1. Introduction

Singularly perturbed delay differential equations (SPDDEs) have received a lot of attention in recent years since
they have been shown to be useful tools in a variety of fields of science and mathematical modeling, such as
the variational problem in control theory [7], the predator-prey model [8], and the description of the human
pupil-light reflex [12]. In recent years, many authors have developed numerical techniques for the solutions of
singularly perturbed differential equations, in particular for the third order convection-diffusion and reaction-
diffusion type problems without delay arguments in [3, 6, 22, 23] and the references therein to cite a few. Higher
order delay differential equations (DDEs) are used to model some of the scientific and engineering problems.
For example, a system of DDEs governs a mechanical system, which interestingly transformed into the third
order delay differential equation [1]. The stability results for the third order DDEs are discussed in [2, 4] and the
references therein. In [15], Nouioua et al. discussed the existence of positive periodic solutions for the third order
delay differential equation by employing Green’s function and Krasnoselskii’s fixed point theorem. Moreover,
for the third order delay differential equation with discontinuous data functions, the existence results are given
in [18]. The analysis of the third order SPDDEs has received far less attention in the literature than that of
the third order singularly perturbed differential equations. To cite a very few, the authors in [13, 18] suggested
fitted finite difference method (FFDM) for the third order SPDDEs of convection-diffusion type. The authors
in [19, 20] developed asymptotic numerical methods for both convection-diffusion and reaction-diffusion type
SPDDEs on piecewise uniform Shishkin meshes. The proposed methods are of almost first order convergence.
Sekar and Tamilselvan [16, 17] suggested FFDM for the third order SPDDEs with integral boundary conditions
and obtained almost first order convergence. In this paper, the third order equation is converted into a weakly

coupled system of equations. For a weakly coupled system, we proved the maximum principle, stability result,
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and derivative estimates, etc. Using the maximum principle, one can prove that the solution of the original
problem (2.1) is stable and it is unique, if it exists. In this paper, we proposed a FFDM for solving reaction-
diffusion type third order SPDDESs using piecewise uniform Shishkin mesh. The proposed numerical method
is uniformly convergent with order of convergence one. This method can be applied to the nonlinear problem
(Section 5).

The rest of the paper is organized as follows: In Section 2, continuous problem, maximum principle,
stability result, and the derivative estimates of the solution are presented. In Section 3, the problem is discretized
using the standard finite difference method (FDM) on piecewise uniform Shishkin mesh. An error estimate is
presented in Section 4. The quasilinearization technique is applied for nonlinear problem and then the fitted
numerical method is also applied (Section 5). In Section 6, numerical results are presented to validate the
theoretical findings. The proposed method is £— uniform convergent method. Furthermore, the method is of
first order accurate. Finally, we conclude the paper with some discussion (Section 7).

Let € be a small positive parameter such that 0 < ¢ <« 1 and C, C; denote generic positive constants
independent of ¢ and N. Furthermore, let = (0,2) be a set, its closure Q = [0,2] and Q* = Q- U Q*,
Q™ = (0,1), QF = (1,2). The set OV denotes the set of grid points {x¢, *1, ...,zn}. The collections
Y, Y1, and Ya, respectively denote C1(Q) N C3(Q), C°(Q) N CH QU {2}), and C°(Q) N C?(Q2). The norms

lwllq = sup | w(x) | and ||©||q = max{||w1]q, ||wz|la} are used in the following,.
e

2. Problem statement and analytical results
2.1. Statement of the problem

Motivated by the work of [9-11, 24|, we consider the following SPDDE:
Find u € Y such that

(2.1)

{f—:u”’(:z:) +b(x)u (z) + c(z)u(z) + d(z)u'(z — 1) = f(x), v €Q,
u(z) = ¢(x), z € [- 1,0], v/ (0) = ¢'(0), v'(2) = I, € C'([- 1,0]),

where b(z) > 8> 0, ¢(z) <~y < 0,dx) <n< 0, B8+24y+5n > 0. Furthermore, b, ¢, d, and [ are
sufficiently differentiable, bounded on Q and ¢ is sufficiently differentiable on [— 1,0].
Let w =w; and u = ug, then the above problem (2.1) can be written as follows:

Find @ = (u1, us), u; € Y7 and ug € Yy such that
Pru(z) :=u(x) —uz(x) = 0, x € QU {2}, (2.2)

Poii(z) == —euf(z) + b(x)ua(x) + c(z)ui(z) = f(z) —d(z)' (z — 1), 2 € Q- U {1},
T @) + b

In the rest of the article, we consider the above problem (2.2)-(2.3).

2.2. Stability result

In this section, a maximum principle for the above problem (2.2)-(2.3) is presented.
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Theorem 2.1 [13] Let @w = (wy, wz2) be any function satisfying w;(0) > 0 and wy(0) > 0, wa(2) > 0,
Pw(x) > 0, Ve € QU {2}, Pow(z) > 0, Vo € Q*, and wh(1l +) — wh(1 —) = [wh](1) < 0. Then
wi(x) > 0, Vz € Q, i = 1,2, where w; € C1(Q) and we € CO(Q) N CH(Q) N C2(Q¥).

Corollary 2.2 [13] If ¢ = (1,19), 11 € Y1, 1o € Yy is any function that satisfies the system (2.2)-(2.3),
then we have | ¢i(0) | < Cmax { [ 91(0) |, [v2(0) |, [v2@) |, _suwp | Pi() | sup | Pod(G)| o Ve
2€02*

¢ eQu{2}
Qi = 1,2

Note: The condition 8+ 24+ + 57 > 0 among the coefficient functions is used to prove the stability of the
solution. The consequence of the above corollary is that the solution of the above problem (2.2)-(2.3) is unique,

if it exists.

2.3. Derivative estimates

We estimate upper bounds for derivatives of the solution of the problem (2.2)-(2.3) in this section. We also
determine the sharp bounds for the derivatives.

Theorem 2.3 If u is the solution of (2.2)-(2.3), then for k = 0,1,2,3, we have

| ul®) or< Ce™77, ||l [lov< Ce 5.

Proof The proof of the theorem is similiar to that of [13, Lemma 4.1]. O

The sharp bounds on the derivatives of the solution @ is obtained by taking u as equal to sum of the regular

component ¥ and the singular component @ as described in [14]. That is,
u(z) = v(z) + w(x),

where 0 = 9y + /201 + €Uz and ¥y, U1, and Te are the solutions of the following problems:

Find Uy = (1)071,1}072) such that

0,1 (%) —wo2(z) = 0, x € Q" U{2},
b(x)vo2(x) + c(x)vor(2) + d(@)voo(z — 1) = f(z), v € Q" U{0,2}, (2.4)
v0,1(0) = #(0), vo2(z) = ¢'(2), x € [= 1,0),

01 = (v1,1,v1,2), such that

v’lﬁl(x) —vi12(z) = 0, z € Q*U{2},
b(x)vy2(z) + c(z)vi1(x) +d(@)viz(z — 1) = Vevys(z), € Q*U{2}, (2.5)
U1,1(0) = 0, ’ULQ(I) = O7 T € [7 170),

and Ug = (vs,1,v2,2), such that
Py == vy 4 (z) —vea(x) = 0, z € Q" U {2},
Py = —evy 5(2) + b(z)v2,2(7) + c(2)v2,1(7) + d(T)vap(z — 1) = Vev)5(z), v € QF, (2.6)

1)2’1(0) = 0 Vo 2((E) =0, xe€ [— 170], 1}272(2) = 0.
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Thus, the regular component o satisfies the following: Find © = (v1,v3), such that

Po(z) :=vi(z) —va(z) = 0, x € Q* U {2},

Pyo(z) := —evlh(z) + b(x)va(z) + c(z)v1(z) + d(x)va(z — 1) = f(x), = € QF,
¢'(x), ze[=1,0),

{'UO’Q(O) +1/ev1,2(0) + Veva 2(0), = = 0,

02(2) = v0,2(2) + Vev1 2(2).

Furthermore, w satisfies the following problem: Find w = (w7, ws3) such that

Piw(z) := wi(z) —wa(z) = 0, z € Q* U{2},
Pyw(z) := —ewf (z) + b(x)wa(z) + c(x)w1(z) + d(z)wa(z — 1) = 0, z € QF,

. _ () = 0’ xe[* 170)7
1(0) 0, wa(x) {(p/(O)_U2(0)7 z = 0,

[wa](1) = —[va] (1), [wh](1) = —[w5](1), w2(2) = 1 —[vo2(2) + vEv12(2)].

Theorem 2.4 If u=v+ w. Then for r = 0,1,2,3 and k = 1,2, we have

3 —r

| o-<C(1 +e777),

),

emVE pem 0 -aVE e (0,1),
em @ - DVE L om@-aVE g (1,2)

2 —r

|05 flo-< C(1L +e

—k —r

| wi (z) |< Ce* 5 {

Proof The inequalities (2.9)-(2.10) can be proved by integrating (2.4)-(2.6) and using Corollary 2.2. The
following barrier functions ¢* = (¢, 03) and * = (¢, F) are used to prove (2.11) in [0,1] and [1,2],

respectively.
Let z € [0,1], then

1 (z) = Cre{/B - \/B€_£@+ N I)\/g} twi(z), z€Q7,

pE(z) = Ci{Be ™V 4 e O = WV} L uy(a), 2 Q.

Note that, T (0) > 0, pF(0) > 0, pF(1)> 0 and

)

Pp*(x) = c{ﬁ(\ie—Wﬂ \ie— (1= Ve~ (pe=VE 4 gem 0 VE 2 0 > 0

Pyg() = C{IB) — B) — vee(w)v/Ble ™V E + [(b(x) — §) — Vec() V/Ble™ @~ VE
+Vee(x)y/BY£ 0 > 0.

By [21, Theorem 2.1], we have

2 -k — r

W (@) < Ce e VEpem G- 9VEY e0,1), r = 0,1,2,3.
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Let 2 € [1,2], then T = (wli,wg:), where

Vi (x) = Cre{/B — /Be @ DVE 4 N w)\/g} +wi(z), v € QF,
V5 () = C1{Be”  ~ 1)@4’567 - m)\/g} + wy(z), ©€ Q.

Also note that (1) > 0, ¥E(1) > 0, ¥F(2) > 0 and
Prt(a) = C{VE( e - VE 4 L @ o oVE) g o VB e o oVEy s 0 >

Pyt (z) = C{[B(b(z) — B) — Vee(z)\/Ble~ @ =~ WE L [8(b(z) — B) — vee(z)/Ble @~ DVE
+ Vee(@)V/BE £ 0 > 0.

Again by using [21, Theorem 2.1], we have

(@) | < e @ - WE - eV} s e2) - = 0,1,2,3

O
Note: It is easy to see from the above theorem that, for £ = 1,2
P PV N co
| u(2) — o) | < ce>F2 0 e reRs
em@-DWEpemC-aVE peqt

3. Finite difference method

In this section, a standard FDM is presented for (2.2)-(2.3). The index set Iy is defined as, In = {0,1,2,...,N}.

3.1. Shishkin mesh
For the discretization of the problem (2.2)-(2.3) described in Section 3.2, we shall use the mesh that is adapted
for the boundary layers at * = 0, = 2 and interior twin layers at z = 1. Therefore, the domain Q is

splitted into six subdomains namely, [0,7], [r,1 — 7], [l — 7,1], [1,1 + 7], [1 + 7,2 — 7], [2 — 7,2], where

7 = min{0.25, 2*/\5/13“]\7}. The mesh QV = {z¢,21,...,2x} is defined by g = 0.0, x; = 29 + ih, i = 1,...,%,
xi+%:x%+zH, i=1,...,7, xi+%:x%+zh, = 1,..., 5, xi+%:x%+zh7 i=1,...,%,
xi+%:x%+iH7z = 1, 7%, mi+%:x%+ih,i = 1,...7%, where h = 8N~ 7 and

3.2. A finite difference scheme

On the mesh OV, the standard FDM is applied.

PNU(x;) := D™ Uy(x;) — Us(z) = 0, i € Iy \ {0}, (3.1)
Ui(zo) = ¢(0), Uz(w0) = ¢'(0), D™ Us(zy) = D Us(wy), Valzn) = 1, (3-3)
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where 62, Dt D~ are central, forward, backward difference operators, respectively [13] and

x;) — d(z;)¢ (@ — i< X i
f*(xz): {f( 2) d( Z)SD( g 1)7 < ]%[7 UQI(xz): {0’ <

f(z), i> 5, Ug(xi_%), i>

wol2 w0l

3.3. Discrete maximum principle and stability result

Lemma 3.1 [13] Let Z(x;) = (Z1(x;), Zo(x;)) be mesh function satisfying Zi(x¢) > 0, Zo(zo) > 0,
Zy(xn) > 0, PNZ(z;) > 0, PNZ(z;) > 0, and [D]Zs(xny2) < 0. Then, Zi(x;) > 0 and Za(x;) > 0,
x; € Qv
Lemma 3.2 If U(x;) = (Uy(x;),Us(x;)) is the discrete problem solution. Then,
| Un(@i) |< Cmax{| Ur(zo) |, | Ua(o) |, | Ualen) |, max | PNU(z;) |,
N
max PNU(x; ,1€In, kK = 1,2
- | P U(x;) | } N
The numerical solution U(z;) described by (3.1)-(3.3) can be written as
U(xi) = V(wi) + W (i), (3.4)

where V(z;) and W (x;) satisfy the following:

)
PRV (2;) := —e 82Va(w;) + b(a:)Va(w) + c(zi) Vi (i) + d(zi) Vi (i) = f*(x:), i € IN\{0, 5, N}, (3.5)
Vi(zo) = v;(0), [DIVa(zy) = [v5](1), Valzn) =v2(2), § = 1,2

and

PINW(LL'Z) = D_Wl(l'i) — W2($2) =0,i€ly \ {0},
P2NW($1) = =€ 62W2(l'1) + b(.ﬁl)Wz(l‘l) + C(Z‘i)Wl(J?i) + d(.]?l)WQI(J?z) = 0, 1€ IN \ {0, %,N}, (36)
Wj(zo) = w;(0), [DIWa(zy) = =[D]Va(xy), Walan) =w2(2), j = 1,2.

The estimate of the difference between the solutions of (3.1)-(3.3) and (3.5) can be determined using the following
theorem.

Theorem 3.3 If U(z;) is a discrete problem solution of (2.2)-(2.3) defined by (3.1)-(3.3) and V(x;) is a
solution of (2.7) defined by (3.5); furthermore, if § = max{ | ¢'(0) — Va(xo) |,| Ul(x%) - Vl(x%) [ |
Us(zy) = Va(zx) || 1= Va(an) | }. Then,

N™ 1 ie{%,...,WIu{3F, ..
N~ 146, otherwise,

=~
|

| Uk(xz) — Vk(l'z) | S C{ 172.

Proof Consider a mesh function

i (i) = CLN™ Ysp(@) + n(xi) £ (Uklas) — V@), k = 1,2,
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where

0, ie{N,... 3Nyu(sN . TNy

(i) 320, ief{l,.... ¥ - 1yu{¥+ 1,.... 5},
T;) = ] r
R e

3.5, ie{L+ 1,...,N},

07 Z‘G{%,...,%}U{%,...7%}’
Polai) = ¢ (3 +%)5, ief{l,.... - 13u{3 +1,..., 5},
Sy, e (Y41, U 41, N}

{

k = 1,2 and o3 (zy) > 0, for a suitable choice of Cy > 0.
When z; € (0,7)NQY,

+ %, l‘iEQ_ﬁQN,
+ %, $i€Q+ﬂQN.

and sy(x;)) = 1 + x;, 7; € QN so(xy)

It is verified that @,f(xg) > 0,

oolwe ol

_ 47 T 23 T
PN gE (i) > O1N 1(§ - 5) + Cﬁ(g - 5) > 0,
B

P o* () > C1N™ [

A +(1 +T)’Y]+Clé[§+ 3yr]+ 0 > 0.

When z; € [1,1— 7] NQY,

1 ZT; _ 7 1 —71
Plg*(zi) =CiN~ 11 (g tPIE 02 ON 1(@ -5 )20,
1 T
PY@ (i) = CINTHB(5 +5)+(2 —7)]+ 0 > 0.
When z; € (1 —7,1)NQY,
N+ 13 19
Pig™(zi) 2 CiN™ (3) +Cid() = 0,
N -+ 1ol 1 —7 1 1 —7
Py o= (x;) > C1N [ﬁ(g + T)"’ 2’Y]+015[5(§ t )+ 3]+ 0 > 0.
When z; € (1,1 + 7)NnQY,
_ _ 1, 1+ 7 21 1+ 7
PYg*(2;) > CIN 1(§ - 2 )+015(§ - = )z0
5 3 5 3
PN @) 2 ON L 4 @ 4 o+ D+l 4 0 4+ G+ Dl E 02 0
When z; € [1 + 7,2 — 7]NQY,
N -+ . T
PlSO(fCi)ZClN (§+Z)Z 0,
3 1 1 2 —
PRGE(w) 2 ONT B + — 1) + (B = v+ (g + — )£ 0 2 0
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When z; € (2 — 7,2) N QY

PG () 2 N () +Cid(g) 2 0,

B+ 24y + 5p
8

58 + 24y + 57
8

PYgE(x;) > O1N" | ]+ C1] [+ 0 > 0.

When z; = xy, we have [D]@Qi(gc%) = CIN~ Y= 1)+ Ci6(— 1) F[4](1) < 0, for a suitable choice of
C1 > 0. Hence, the proof. O

4. Error estimate

Theorem 4.1 If V(z;) is the discrete problem solution of (2.7) defined by (3.5), then for k = 1,2, we have

| ?)k(lL'i) — Vk(fz) |§ CN™ 1, 1€ ly.

Proof Now,
P (o(x;) = V() = P 0(x;) = PNV () = (D™ = %)Ul(%‘)’
| PN (5(2i) — V(@) [S ON— 1, i e IN\{O,%,N}, k= 1.2
By the Lemma 3.2, we have
| v (2;) — V(i) KON™ Y i€y, k = 1,2
Hence, the proof. O

Theorem 4.2 If W (x;) is the discrete problem solution of (2.8) defined by (3.6). Then for k = 1,2, we have
| wi(2;) — Wi(z;) |<KCN~ 'In* N, i e Iy.

Proof Note that
| wi(@s) = Wi(z:) | < [ur(ei) = Ues) | + | or(e:) = Vi(zs) |, kB = 1,2,
Then by (2.3), Theorem 3.3, and Theorem 4.1, we have
| uk (i) = Up(i) | < | Ur(@i) = Vi) [ + [ on(ws) = Vi) [ + | un(@:) — ox () |

con-trontrontsontiedY A Y T

Therefore,

| wi(z) = Wi(2:) | <[ ug(z:) = Ug(@i) | + | v(@s) = Vi) [, & = 1,2

3N 5N TN

| w(as) — W(z) | <CN- L, ic {g,...,?}u{?,...,?}. (4.1)
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Now, consider a mesh function ¢*(z;) = (o7 (z;), i (x;)), where

GE () = LN~ Ysi () — —=(r — 2)} = (wn () — Wi (), 2 € [0,7] NV,

- %

o7 (z;) = CLN~ Hsa(zi) + —=(7 — )} £ (wa(z;) — Wa(zy)), z; € [0,7] N QY.

B

From (4.1), it is easy to verify that @f(mo) >0,k =1,2and go%t(:r%) > 0, for a suitable choice of C; > 0.

P{V@i(iﬁl) = 01N7 1[1 — SQ(IEZH + \%[1 — T+.’EZ} + (PlN — Pl)u")(xz) 2 O,
BN G*(2:) = CLN~ (o) [sa(as) + %w — )] + ()51 (1) + \%(r —z)]} + (PN — Py)i(z)
>N HE a0+ T>+\/Bf0+f}:pcfv— = %>,

Consider a mesh function @*(z;) = (¢ (2;), 3 (x;)), where

\%(xi—(l — N} £ (wi(xs) — Wi(zy)), zi €1 —7,1nQY, &k = 1,2.

From (4.1), it is easy to verify that gpki(x%) >0,k = 1,2 and @f(x%) > 0, for a suitable choice of C; > 0.

i () = 1N~ sp(z;) +

3
PNg*(x;) = C1N~ 1{5} + (P — Py)w(z;) > 0,

Py oF (2;) = C1N ™ M{b(x;)[s2(xi) + \%(% = (1 = 7))+ c(@i)[s1(xi) +

1
5 L N T )

NERINE

Similarly, one can prove that PN @™ (x;) > 0 and PN@*(x;) > 0, when z; € [I, 1 + 7] and 2; € [2 — 7,2].
Then by the Lemma 3.1, we have ¢i(z;) > 0 and ¢F (z;) > 0, x; € QN . Therefore,

(i = (1 = 7D} £ (P — Pa)(x;)

B

> CO\N~ 1{5(% +

| wy () — Wi(z;) [KCN™ 'In® N, i€ Iy, k = 1,2.

Hence, the proof O

Theorem 4.3 Let U(z;) be the numerical solution of (2.1) defined by (5.1)-(5.2). Then
| ug(x;) — Up(zi) K CN™ *In® N, iely, k = 1,2.

Proof Using the above Theorem 4.1 and Theorem 4.2, one can prove the desired result. O

5. Nonlinear problem

Consider the nonlinear BVP
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where @/(z) = «/'(x — 1), with
Fur(x7u,u/7ﬂ/) < - ﬂ < 0, Fu(.’L',U,’U,I,’EL/) >=-72 0, Fﬂ/(x,u,u',f/) > - n > 0.
Assume that the reduced problem

F(x, ug(x), up(x), 4p(z)) = 0,

up(z) = ¢(z), = € [- 1,0]

has a solution. Using the Newton’s linearisation technique defined in [5], the sequence of iterates {al* * (x)}

is obtained. Let al* + (z) = (u[lk * 1], u[zk * 1]) be the solution of the linear problem for each fixed nonnegative

integer k:
pHalk + 10 = I gy T gy = 0, 2 e (0,2, (5.3)
PHglk + 11 = — o/ Uy Lok @)l T (@) + Fa)ult T @) + dF@)al T (@) = GR ), 2 €Q, (5.4)
where
b (2) = = Fu, (w0l uf ah?), F(z) = —Fu, (@l o a7, db (@) = —Fa, (2, ol ol ),

Gk(x) = F(z, u[lk],u[f], fL[Qk]) + bk(m)u[Qk] + ck(x)u[lk] + dk(x)ﬂ[;].

For simplicity, the following are denoted F(z,u;(x), ua(x), t2(x)), F(z, u[lk] (z), u[zk] (z), ﬂ[Qk] (z)),

Fu, (2, u (@), 0l (@), a5 (2)), Fuy (2,0 (@), 0 (), @5 (2)), and FE (2,0} (2),uf (), a5 (2)) respectively

by F, F*, Fffl, Ffo and F}fZ. To prove the convergence of the successive iteration, the following theorem

is established.

Theorem 5.1 Suppose | Fuuy |s | Pusus |, | Fugus |y | Fustis Iy | Fguy | and | Faya, | are bounded above by
M < 1. Let {alM1}& be the Newton sequence defined by (5.3)-(5.4). Then, for all x € Q, we have

[l —a|< M| al —a?
Proof It is proved that
Pf@* 1 —a)= o,

pr@t+ 1 — gy = PF—JMEY PR R (P —w FE —upFF G, FE)

Ul U
= F*— P+ (uy — i) FE + (uz — ul) FE, + (a2 — 0" FE,
- - 1 _
= P {(F* + (= D+ (w2 = uf)FE, + (@ — @) L) + 5[ — w2 Py, (0)

+ (ug — uS)2 Fopy (0) + (2 — a57)2 Fayay (0)) + 2(ur — ul) (ug — ul) Py (8)

+ 2(uz — ) (@ — @) Py (8) + 2032 — @) (1 — ul) Py, (8)] } + (= o) F,

+ (ug — ulYFE 4 (i — Y FE
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where 8 = (x,6,60',0') is such that (z,u,uy, i) > 6 > (:c,u[lk],ugk],ﬂgk]).

1 _ o _
PR+ —a) = — ={ (= w2 Fy 0, 0) + (12 = o) Fuya (0) + (2 = 1) Fryin (0)
+ 2(ur — ul) (s — uf) oy (0) + 2(us — ul) (12 — 15T Foiyiy (0)

+ 20 — @) (w1 — ul) Py, (9)}.

Then,
| PER ) =) < Ml = Pl Pl - Pl - e - s |
g — s @ = |+ @b - el - |
<M —a? .
Then by the Corollary 2.2, this completes the proof. O

The numerical method discussed in this article can be applied to the sequence of iterates of the nonlinear
problem (5.1)-(5.2).

6. Numerical examples

To illustrate the efficiency of the method discussed in this article, three examples are given in this section. For
the purpose of calculating the maximum point-wise error, we use the idea of two mesh principle (when exact
solution is not known) and evaluate the convergence experiment rate in our computed solution. For this, we
put
M M oM
D = OrgiaSXM | U;" = Usi |,
where UM and UZM are the i*" components of the numerical solutions on meshes of M and 2M points,

respectively. We compute the uniform error and rate of convergence as
M M M DM
DY = max D;" and p™ =log, (DW)

The numerical results for the values of the perturbation parameter € € {27 4, 275, ..., 27 23} are described

in the following examples.
Example 6.1

—eu”(z) + 5u'(z) — 2E2y(z) —2?u'(x— 1) = 1 +cosz, x €,
u(z) = 2x+ 1, z€[- 1,0], v/(2) = 2.

Table 1 presents the values of Dﬁd and p,iw, k= 1,2 corresponding to the solution components uy and usg.

Figure 1 represents the numerical solution, Figure 2 represents the maximum error plot for solution components

up and us.

370



MAHENDRAN and SUBBURAYAN/Turk J Math

Table 1. Maximum uniform error and rate of convergence of Example 6.1.

N (Number of grid points)

24

25

26

27

28

29

210

D

7.2048 e - 2

3.5071 e - 2

1.7303 e - 2

8.5939 e - 3

4.2824 e -3

21374 e-3

1.0677e- 3

p

1.0387

1.0192

1.0097

1.0049

1.0025

1.0013

Dy

3.9860 e - 2

1.9327e-2

9.5198 e - 3

4.7243 e- 3

2.3532e-3

1.1743 e- 3

6.5349 e - 4

Py’

1.0443

1.0216

1.0108

1.0055

1.0028

8.4551e - 1

Max-Error

Max-Error

T T

T T

T T

uUul=uU 1 (x)
u2=uU 2(x)

T

0.08
0.06
0.04
0.02

0.04
0.03
0.02
0.01

30

Example 6.2

Figure 1. Numerical solution of Example 6.1.

logo(1/¢)

Component U1
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Table 2 presents the values of D,ﬂ/f and pkM, k = 1,2 corresponding to the solution components u; and
ug. Figure 3 represents the numerical solution, and Figure J represent the maximum error plot for solution
components uy and us.

Table 2. Maximum uniform error and rate of convergence of Example 6.2.

N (Number of grid points)

ol 95 96 o7 98 29 910
DM | 19058 e-2 | 9.3345e-3 | 4.5305¢e-3 | 2.2282e-3 | 1.1093 e-3 | 55135 e-4 | 2.7484 ¢ - 4
pM | 1.0298 1.0429 1.0238 1.0062 1.0087 1.0044 -
D) | 1.6476 e-2 | 8.3607 e-3 | 3.6815e-3 | 23756 e-3 | 1.2264e-3 | 6.6515e-4 | 3.6912e- 4
py | 9.7866 e - 1 | 1.1833 6.3198e-1 | 95393 e-1 | 88263e-1 | 84960e-1 | -

Figure 3. Numerical solution of Example 6.2.

Component Ul

0.02
£0.015
S5}
% 0.01
= 0.005
. 12
30 25 20 15 10 5
log 5 (1/) logoN
Component U2
0.02
£0.015
o 0.01
» .
§ //I
0 — -
30 =—————
- 5 12 11 10 9 8 7 6
0g (1) logoN

Figure 4. Numerical solution of Example 6.2.
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Example 6.3 Consider the nonlinear BVP

—eu”(z) + 2u/(z) = [/ (z— 1% z€Q,
ulz)=1+z, z€[- 1,0], v/(z)= 1, z € [- 1,0], «'(2) = 1.

Tables 3 and /j present the iterative numerical solutions for uy and us, and Table 5 presents the values of DQ/I

and pfy, k= 1, 2 corresponding to the solution components uy, us. Figures 5 and 6 represent the numerical

solution of iteratives ﬂ[lk] and ﬂgf] for fized e =2~ 92 and N = 1024.

Table 3. The iterative values of u; of the Example 6.3.

ZT; u [10] u[ll] qu] ’U/gg] ’U/gjl] u ES] u EG]

0.1250 | 1.0625 | 1.0792 | 1.0792 | 1.0792 | 1.0792 | 1.0792 | 1.0792
0.2500 | 1.1250 | 1.1462 | 1.1462 | 1.1462 | 1.1462 | 1.1462 | 1.1462
0.3750 | 1.1875 | 1.2099 | 1.2099 | 1.2099 | 1.2099 | 1.2099 | 1.2099
0.5000 | 1.2500 | 1.2726 | 1.2726 | 1.2726 | 1.2726 | 1.2726 | 1.2726
0.6250 | 1.3125 | 1.3349 | 1.3348 | 1.3348 | 1.3348 | 1.3348 | 1.3348
0.7500 | 1.3750 | 1.3962 | 1.3959 | 1.3959 | 1.3959 | 1.3959 | 1.3959
0.8750 | 1.4375 | 1.4542 | 1.4532 | 1.4532 | 1.4532 | 1.4532 | 1.4532
1.0000 | 1.5000 | 1.4999 | 1.4960 | 1.4960 | 1.4960 | 1.4960 | 1.4960
1.1250 | 1.5156 | 1.5332 | 1.5243 | 1.5243 | 1.5243 | 1.5243 | 1.5243
1.2500 | 1.5313 | 1.5562 | 1.5447 | 1.5447 | 1.5447 | 1.5447 | 1.5447
1.3750 | 1.5469 | 1.5746 | 1.5621 | 1.5621 | 1.5621 | 1.5621 | 1.5621
1.5000 | 1.5625 | 1.5915 | 1.5786 | 1.5787 | 1.5787 | 1.5787 | 1.5787
1.6250 | 1.5781 | 1.6089 | 1.5962 | 1.5962 | 1.5962 | 1.5962 | 1.5962
1.7500 | 1.5938 | 1.6311 | 1.6188 | 1.6190 | 1.6190 | 1.6190 | 1.6190
1.8750 | 1.6094 | 1.6735 | 1.6620 | 1.6625 | 1.6625 | 1.6625 | 1.6625
2.0000 | 1.6250 | 1.7985 | 1.7870 | 1.7875 | 1.7875 | 1.7875 | 1.7875

1.7 T T T T T T T T T

Iterative solutions of U

1.6 - N=1024; L

e=2"°

1.4 i

1.2 "

1 . 1 1 1 1 1 1 1 1 1

O 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 5. Iterative numerical solutions of u; stated in Example 6.3.

373



MAHENDRAN and SUBBURAYAN/Turk J Math

Table 4. The iterative values of us of the Example 6.3.

X

Y

1] [2]

Uy Uy

e

u[24] u[25]

i

0.1250
0.2500
0.3750
0.5000
0.6250
0.7500
0.8750
1.0000
1.1250
1.2500
1.3750
1.5000
1.6250
1.7500
1.8750
2.0000

0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.1250
0.1250
0.1250
0.1250
0.1250
0.1250
0.1250
0.1250

0.6340
0.5358
0.5094
0.5019
0.4981
0.4905
0.4640
0.3654
0.2668
0.1839
0.1470
0.1351
0.1397
0.1774
0.3388
1.0000

0.6340
0.5358
0.5094
0.5018
0.4977
0.4889
0.4578
0.3423
0.2269
0.1632
0.1388
0.1327
0.1402
0.1809
0.3459
1.0000

0.6340
0.5358
0.5094
0.5018
0.4977
0.4889
0.4578
0.3423
0.2269
0.1632
0.1389
0.1328
0.1406
0.1819
0.3479
1.0000

0.6340
0.5358
0.5094
0.5018
0.4977
0.4889
0.4578
0.3423
0.2269
0.1632
0.1389
0.1328
0.1406
0.1819
0.3479
1.0000

0.6340
0.5358
0.5094
0.5018
0.4977
0.4889
0.4578
0.3423
0.2269
0.1632
0.1389
0.1328
0.1406
0.1819
0.3479
1.0000

0.6340
0.5358
0.5094
0.5018
0.4977
0.4889
0.4578
0.3423
0.2269
0.1632
0.1389
0.1328
0.1406
0.1819
0.3479
1.0000

Table 5. Maximum uniform error and rate of convergence of Example 6.3.
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Figure 6. Iterative numerical solutions of u; stated in Example 6.3.

N (Number of grid points)
24 25 26 27 28 29 210
DM | 26773 e-2 | 1.4862e-2 | 7.8663 -3 | 4.0725¢-3 | 2.0707e-3 | 1.0454e-3 | 52571 e- 4
p{” 8.4910e-1 ] 9.1789e-1 | 9.4977Te-1 | 9.7583 e-1 | 98601 e-1 | 99175e-1 | -
Dé” 2.1838e-2 | 2.0830e-2 | 1.8547Te-2 | 1.1587e-2 | 8.2617e-3 | 4.4837e-3 | 2.5014e- 3
péw 6.8157e-2 | 1.6746e-1 | 6.7869e -1 | 4.8803e-1 | 88174e-1 | 84195e-1 | -
1 T T T T T T T T 1
“:‘; ————— [o] 4‘
0.9 N:17224; Iterative solutions of Uy Ei (1] ‘
0.8 =2 Uz 2] |
\ 23] |
0.7 9“ U2 4l L
U2 sl |
0.6 - a6l H
U271 |
0.5 F-——== U2 8 M
0.4 U2 =
0.3 - 1
0.2 - -
0.1 1 1 1 1 1 [
(0] 0.2 0.4 0.6 1.4 1.6 1.8 2
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7. Conclusion

In this paper, we presented the first order convergent computational method to solve reaction-diffusion type
third order SPDDEs. We observed that the second component wug of the problem (2.2)-(2.3) exhibit strong
interior twin layers at = 1 and strong boundary layers at x = 0 and x = 2. Therefore, we divided the domain
into six subdomains [0,7], [r,1 — 7], [1 — 7,1], 1,1 + 7], [1 + 7,2 — 7], [2 — 7,2]. Each subdomain has
been discretized by some set of mesh points with equal mesh size, whereas the mesh sizes between subdomains
are different. The present method is of almost first order convergence (see Tables 1 and 2). The maximum
pointwise error for the problems considered in the Examples 6.1 and 6.2 are given in Tables 1 and 2. From
Figures 1 and 3, one can see that the U; component exhibits strong interior twin layers at x = 1 and strong
boundary layers at * = 0 and x = 2. The maximum pointwise error plots of the Examples 6.1 and 6.2 have

been plotted in Figures 2 and 4. Furthermore, the nonlinear problems are linearized by using Newton’s method

of quasilinearization technique, this technique gives a sequence of successive approximations u[lm] and u[2m] with

[0] [0]
0,2

proper choice of initial guess u,; and ug 5. Next, the linearized problems are solved using the fitted numerical

methods presented in this article. Tables 3-5 present the 6 iterations of the numerical solutions and maximum

pointwise error of Example 6.3, respectively.
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