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Abstract: The error functions play very important roles in science and technology. In this investigation, the error
functions in the complex plane will be introduced, then comprehensive results together with several nonlinear implications
in relation to the related complex functions will be indicated, and some possible special results of them will be next
presented. Furthermore, various interesting or important suggestions will be also made for the scientific researchers who
are interested in this topic.
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1. Introduction, definition and preliminaries
In the literature, sometimes we deal with the well-known error functions whose independent variables can be
both real and complex variables. These are known as special functions, which are defined by integral in the
complex plane or represented by complex series, or certain forms defined or represented by those functions occur
in many branches of science and technology. Particularly, for a long time now, more comprehensive properties
or computational methods of these functions have been studied or used extensively in many scientific fields. For
these, as a useful survey, one may check out [1, 18, 23, 30], and the earlier works in [9, 26, 27, 29] and also see
the other works, as for example, in the references. Especially, in many applications, those functions must be
evaluated a large number of times. Therefore, it can be important or interesting research for both methods and
investigations. For certain studies, as an example, one may refer to the works given in [9, 11, 12, 15, 16, 19]
for probability and statistics, in [15] for data analysis, in [10] for astronomy, in [5, 27, 31] for physics, in
[32, 34, 37, 38] for a fundamental role in asymptotic expansions, in [6] for exponential asymptotics and see also
certain different results given in [2–5, 7, 8, 14, 18, 22, 24, 32–37] in the references.

Under favour of different methods, for certain possible theoretical or practical results, which will be
determined by error functions in the certain domains of the complex plane, it can be revealed various results,
which will be unusual (or useful) for certain branches of science and technology. So, the proof technique to be
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used in this investigation plays a significant role in the complex error functions in the sense of its applicable or
theoretical results in the related fields. For those, there is a need to introduce or reminder a few basic definitions
and the well-known identities specified by the error functions in the complex plane, which are given below.

First of all, here and throughout this present paper, the following notations should noted:

C , R , N and U

the set of complex numbers, the set of real numbers, the set of natural numbers and the open unit disc in the
complex plane, i.e.

U =
{
x : x ∈ C and |x| < 1

}
.

The error function with the complex variable (or parameter) x , denoted by the notation erf(x), is defined
by

erf (x) = 2√
π

∫ x

0

exp
(
− ξ2

)
dξ (1.1),

for an arbitrary integration path in the certain domains of the complex plane C. In terms of simplicity, let us
denote it as:

Ξ(x) := erf (x) (x ∈ C).

In the light of the Taylor–Mclaurin series expansion of the function f(ξ) = exp(ξ), , which is as follows
in the well-known form:

exp(ξ) = 1

0!
+

ξ

1!
+

ξ2

2!
+ · · · +

ξk

k!
+ · · ·

=

∞∑
k=0

ξk

k!
,

the following series:

exp
(
− ξ2

)
= 1− ξ2

1!
+

ξ4

2!
− · · · + (−1)k

ξ2k

k!
+ · · ·

=

∞∑
k=0

(−1)k
ξ2k

k!
, (1.2)

can be easily obtained when putting ξ := −ξ2 there.

It is easily found that the above series is uniform convergent on any open connected set of R. So, by
taking the integration of the function in the series form, given by (1.2), from the point 0 to the point x by
parts, the second definition of the complex error function Ξ(x), identified by the definition (1.1), is also stated
by the series expansion in the form:

Ξ (x) =
2√
π

(
x− x3

3
+

x5

10
− x7

42
+ · · ·+ (−1)kx2k+1

k!(2k + 1)
+ · · ·

)

=
2√
π

∞∑
k=0

(−1)kx2k+1

k!(2k + 1)
, (1.3)
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where x ∈ C.

In view of the (real)complex error function, defined by (1.1), the complementary error function in the
complex plane or the complementary complex error function, denoted by erfc(x), is also defined by

erfc (x) = 2√
π

∫ ∞

x

exp
(
− ξ2

)
dξ , (1.4)

where x ∈ C. In terms of simplicity, let us also denote it as

Ξc(x) := erfc (x) (x ∈ C).

Since the well-known property between the (complex) error function and the complementary (complex)
error function, which is

Ξ(x) = 1− Ξc(x) (x ∈ C),

the complementary complex error function (or the series expansion of the complementary (complex) error
function) can also be expressed as

Ξc (x) = 1− 2√
π

(
x− x3

3
+

x5

10
− x7

42
+ · · ·+ (−1)kx2k+1

k!(2k + 1)
+ · · ·

)

= 1− 2√
π

∞∑
k=0

(−1)kx2k+1

k!(2k + 1)
, (1.5)

where k ∈ C.

As various implications and comments of the related error functions with the complex variable x, some of
those specified by Ξ (x) and/or Ξc (x) may represent certain important (differential) inequalities or equations
and also have certain properties relating to their real and imaginary parts, especially, between 0 and 1 for the
values of x in the first quadrant of the complex plane C. Those possible properties may well have been one of
the motivations for considering the possible functions determining by the error functions, as the basic form of
the error function for complex arguments.

So, for certain novel and nonlinear applications of complex error functions and also their implications,
namely, for our main results, there is a need to indicate the well-known assertion, which is given in [28] and was
earlier proven by the help of the famous lemma in [20]. In addition, extra examples or researches, for some of
its applications as well as some of its relevant assertions, one may refer to the works given by [16, 17, 26, 27].

Lemma 1.1 Let
p(x) = 1 + akx

k + ak+1x
k+1 + ak+2x

k+2 + · · ·
(
ak ̸= 0

)
(1.6)

be an analytic function in U and also suppose that there exists a point x0 belonging to U such that

ℜe
(
p(x)

)
> 0 when |x| ≤ |x0| (1.7)

and
p(x0) ̸= 0 and ℜe

(
p(x0)

)
= 0 . (1.8)
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Then

2z0p
′(x0

)
≤ − k

(
1 +

∣∣p(x0)
∣∣2) (

k ∈ N
)
. (1.9)

2. Main Results and Implications

Due to too many complex processes in the basic results of this chapter, it is useful to introduce some special
sets. So, for convenience, we also identify a number of the following sets consisting of natural numbers, which
are described by

A = {1, 5, 9, 13, · · · } , B = {2, 6, 10, 14, · · · }

C = {3, 7, 11, 15, · · · } and D = {4, 8, 12, 16, · · · }.

Moreover, let F := A ∪ C and also let O and E denote the sets of odd and even positive integers,
respectively.

We now Start by fixing and then by proving the results consisting of various (differential) inequalities
and/or equations specified by the complex error functions, defined as (1.1)-(1.5) and certain relations or special
results relating to those are presented by the following theorems.

Theorem 2.1 Let τ ∈ N, κ ∈ N and x ∈ U and also let Φ(x) be a complex function that is in the form:

Φ(x) :=

[
d2

dz2

(
Ξ(x)

)]τ
+

[
d

dx

(
Ξ(x)

)]κ
, (2.1)

where Ξ(x) is defined by (1.1) (or (1.3)) and also the values of the complex powers above are taken their
principal values. For the mentioned function Φ(x), if any one of the cases of the proposition given by the forms

ℜe
(
Φ(x)

)



> −
(

2[1+α2]√
π

)τ

if κ ∈ F , τ ∈ O

<
(

2[1+α2]√
π

)τ

if κ ∈ F , τ ∈ E

> −
(

2α√
π

)κ

−
(

2[1+α2]√
π

)τ

if κ ∈ B , τ ∈ O

< −
(

2α√
π

)κ

+
(

2[1+α2]√
π

)τ

if κ ∈ B , τ ∈ E

>
(

2α√
π

)κ

−
(

2[1+α2]√
π

)τ

if κ ∈ D , τ ∈ O

<
(

2α√
π

)κ

+
(

2[1+α2]√
π

)τ

if κ ∈ D , τ ∈ E

, (2.2)

is provided, then

ℜe
(

d

dx

(
Ξ(x)

))
> 0 (2.3)

is provided for all α ∈ R− {0} and x ∈ U .
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Proof By considering the series expansion of the function Ξ(x), given (1.3), define a function p(x) as

p(x) =

√
π

2

d

dx

(
Ξ(x)

)
(2.4)

to prove that ℜe
(
p(x)

)
> 0 for all x ∈ U.

After a simple observation, clearly, the function p(x) above has the series form given by the expansion as in
(1.5) and also is an analytic function in the disc U, which satisfies the conditions of Lemma 1.1, i.e., p(0) = 1

and n ≥ 2.

Differentiating the both sides of (2.4) with respect to the complex variable x, we then obtain

d

dx

(
d

dx

(
Ξ(x)

))
=

d2

dx2

(
Ξ(x)

)
,

or, equivalently,

x
d2

dx2

(
Ξ(x)

)
=

2√
π
x
d

dx

(
p(x)

) (
x ∈ U

)
. (2.5)

By combining of (2.4) and (2.5), it is also arrived at the following equality:

Φ(x) =
( 2√

π

)κ [
p(x)

]κ
+

( 2√
π

)τ [
(x

d

dx

(
p(x)

)]τ
, (2.6)

where κ ∈ N and x ∈ U and the function Φ(x) is defined as in (2.1).

For the desired proof, initially, we assume that there exists a x0 in the punctured unit disc U − {0}
satisfying the hypothesis of Lemma 1.1 in (1.8), which is

ℜe
(
p(x0)

)
= 0

(
p(x0) ̸= 0

)
. (2.7)

Then, at the same time, in defiance of the mentioned lemma, the followings

p(x)
∣∣
x=x0

= p(x0) = iα , (2.8)

x
d

dx

(
p(x)

)∣∣∣
x=x0

= xp′(x0) = β (2.9)

and

β ≤ − n

2

(
1 +

∣∣p(x0)
∣∣2) = − n

2

(
1 + α2

)
(2.10)

can easily be constituted, where

n ≥ 2 ; n ∈ N ; β ∈ R and α ∈ R− {0}. (2.11)
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Thereby, under the conditions restricted as in (2.11) and also in the light of information presented by
(2.4)-(2.10), the following-extensive statement

Φ
(
x
)∣∣

x=x0
=

(
2√
π

)κ [
p(x)

∣∣
x:=x0

]κ
+
(

2√
π

)τ
[
x d
dx

(
p(x)

)∣∣∣
x:=x0

]τ
=

(
2√
π

)κ (
iα
)κ

+
(

2√
π

)τ

β τ

=
(

2α√
π

) κ

iκ +
(

2√
π

)τ

β τ

=



i
(

2α√
π

)κ

+
(

2√
π

)τ

β τ if κ ∈ A

−
(

2α√
π

)κ

+
(

2√
π

)τ

β τ if κ ∈ B

−i
(

2α√
π

)κ

+
(

2√
π

)τ

β τ if κ ∈ C(
2α√
π

)κ

+
(

2√
π

)τ

β τ if κ ∈ D

(2.12)

is then obtained. By considering the assertions given by (1.7) and also taking real part of the both sides of the
equality given by (2.12), we get that the following inequalities:

ℜe
(
Φ(x)

)



≤ −
(

2[1+α2]√
π

)τ

if κ ∈ F , τ ∈ O

≥
(

2[1+α2]√
π

)τ

if κ ∈ F , τ ∈ E

≤ −
(

2α√
π

)κ

−
(

2[1+α2]√
π

)τ

if κ ∈ B , τ ∈ O

≥ −
(

2α√
π

)κ

+
(

2[1+α2]√
π

)τ

if κ ∈ B , τ ∈ E

≤
(

2α√
π

)κ

−
(

2[1+α2]√
π

)τ

if κ ∈ D , τ ∈ O

≥
(

2α√
π

)κ

+
(

2[1+α2]√
π

)τ

if κ ∈ D , τ ∈ E

. (2.13)

But, the cases of the inequality given by (2.13), respectively, contradictions with the cases of the hypothesis
given in (2.1). This says that there is no a point x0 ∈ U satisfying the mentioned condition in (2.7). Thus, it
has to be in the form:

ℜe
(
p(x)

)
> 0

(
∀x ∈ U

)
.

Hereby, the definition constituted by (2.4) immediately yields the provision of Theorem 2.1 given in (2.3).
Therefore, this completes the proof of Theorem 2.1. 2

Through the instrument of Theorem 2.1 together with its proof or in consideration of the well-known
identity:

ℜe
(
w
)
= ℑm

(
iw

)
for all w ∈ C, the following-extensive proposition can be easily represented.

Proposition 2.2 Let τ ∈ N, κ ∈ N and x ∈ U and also let the function Φ(x) be in the form given by (2.1).
If any one of the cases of the following inequality:
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ℑm
(
iΦ(x)

)



> −
(

2[1+α2]√
π

)τ

if κ ∈ F , τ ∈ O

<
(

2[1+α2]√
π

)τ

if κ ∈ F , τ ∈ E

> −
(

2α√
π

)κ

−
(

2[1+α2]√
π

)τ

if κ ∈ B , τ ∈ O

< −
(

2α√
π

)κ

+
(

2[1+α2]√
π

)τ

if κ ∈ B , τ ∈ E

>
(

2α√
π

)κ

−
(

2[1+α2]√
π

)τ

if κ ∈ D , τ ∈ O

<
(

2α√
π

)κ

+
(

2[1+α2]√
π

)τ

if κ ∈ D , τ ∈ E

(2.14)

is satisfied, then the inequality:

ℜe
(

d

dx

(
Ξ(x)

))
> 0

holds for all α ∈ R− {0} and for any x ∈ U.

As we know, nearly all of the well-known properties relating to complex variables or complex functions
are always available and also valid for complex error functions defined as in (1.1) and (1.3). At the same time,
there are also many important special functions defined by those or related to the complex error functions given
by (1.1)-(1.3). One can see the works in [1, 7, 15, 21, 23, 27–31, 34]. In terms of the scope of this research, we
would like to remind only some of the issues raised. These are also given below.

Ξ (−x) = −Ξ (x) , (2.15)

Ξ (x) = Ξ (x) , (2.16)

Ξc (x) = Ξc (x) , (2.17)

Ξ (x) = 1− Ξc (x) , (2.18)

Ξc (−x) = 2− Ξc (x) , (2.19)

√
π Ξ (x) = 2x 1F1

(
1/2; 3/2;−x2

)
, (2.20)

and
√
π Ξ (x) = Γ

(
1/2, x2

) (
ℜe(x) > 0

)
(2.21)

and also
√
π Ξ (x) = 2x2 e−x2

1F1

(
1; 3/2;x2

)
, (2.22)

where the special functions:

1F1

(
a; b;x

)
and Γ

(
a, x

)
are the confluent hypergeometric function of the first kind and incomplete gamma function, respectively.
Specifically, for more applications relating to these special-complex functions above, one can also look over
the works in [7, 11, 16, 17].

668



IRMAK et al./Turk J Math

Especially, the derivatives of the complex error function given by the form in (1.1):

d

dx

(
Ξ (x)

)
=

2√
π

∫ x

0

e−ξ2dξ

=
2√
π
e−x2

, (2.23)

d2

dx2

(
Ξ (x)

)
=

d

dx

( 2√
π

∫ x

0

e−ξ2dξ
)

= − 2√
π
(2x)e−x2

, (2.24)

d3

dx3

(
Ξ (x)

)
=

d

dx

(
− 2√

π
(2x)e−x2

)
= − 2√

π
(4x2 − 2)e−x2

, (2.25)

and, in general, for all n (n ∈ N0 := N ∪ {0}),

dn

dxn

(
Ξ (x)

)
= (−1)n

2√
π

Hn(x)e
−x2

(2.26)

is also obtained, where Hn(x) is well-known polynomials called by Hermite polynomials in the literature.

In the literature, as a result of some simple researches and in the light of the information given in (2.23)–
(2.26), it can be easily seen that the solution of a large number of certain differential equations is the (complex)
error function given in (1.1) (or (1.3)) and the (complex) complementary error function (1.4) (or (1.5)). For
example, the function ω(x) := Ξ(x), defined by (1.1), is a solution of the following initial-value problem:

ω ′′(x) + 2xω(x) = 0

ω ′(0) = 2√
π

ω (0) = 0

 (2.27)

In consideration of the initial-value problem above, we can now present the following extensive theorem,
which is important for a wide range of relations between certain differential equations and the error functions
in the complex plane.

Theorem 2.3 Let a function ω := ω(x) be one of the solutions of the initial-value problem given by (2.27) and
also let the inequality:

ℜe
(
Φ(x)

)
<

2√
π

(
x ∈ U

)
(2.28)

be satisfied. If the function ω is a solution of the following third-order nonlinear and nonhomogenous differential
equation:

x
d3ω

dx3
+ 2

dω

dx
= Φ(x)

(
x ∈ U

)
, (2.29)
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then

ℜe
(
ω(x)

)
> 0

(
x ∈ U

)
. (2.30)

Proof In the light of the propositions stated in the hypothesis of Theorem 2.3 and since that function ω := ω(x)

is a solution of the equation given in (2.27), it must be in the form of the error function specified by (1.3). In
the light of these explanations, it is enough to follow the following steps.

Firstly, we define a function p(x) as in the (implicit) form:

2√
π
p(x) =

d

dx

(
ω(x)

)
=

dω

dx
(2.31)

to show that ℜe
(
p(x)

)
> 0 for all x ∈ U. It is obvious that this function, i.e. p(x) has the form in (1.6) and

is an analytic function in the open domain U of ⊂ C. Additionally, it satisfies the conditions of Lemma 1.1,
which are p(0) = 1 and n = 2.

The statement (2.30) also gives us

d

dx

( 2√
π
p(x)

)
=

2√
π

d

dx

(
p(x)

)

=
d

dx

(dω
dx

)
=

d2ω

dx2
. (2.32)

Moreover, in view of the equation in (2.28) and by the help of (2.31) and (2.32), the following relationship:

d3

dx3

(
ω(x)

)
+ 2

d

dx

(
ω(x)

)
= − 2x

d2

dx2

(
ω(x)

)
or, equivalently,

d3ω

dx3
+ 2

dω

dx
= − 2x

d2ω

dx2

= − 4√
π
x

d

dx

(
p(x)

)
≡ Φ(x) (say) (2.33)

is easily obtained.

We now assume that there exists a point x0 in U, and, in consideration of Lemma 1.1, the condition in
(2.2) is also satisfied. Then, with the help of the conditions given by (1.7) and (1.8) of the lemma, by making
use of

p(x)
∣∣
x=x0

= p
(
x0

)
= iα

(
α ∈ R− {0}

)
and

x
d

dx

[
p(x)

]∣∣∣
x=x0

= β
(
β ∈ R

)
,
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and, of course, by taking in consideration of the assumptions (2.10), it follows from (2.33) that

−ℜe
(
Φ
(
x0

))
=

4√
π
ℜe

(
x
d

dx

[
p(x)

]∣∣∣
x=x0

)

=
4√
π
β (2.34)

and also by using (1.9), the equality (2.34) immediately follows that

−ℜe
(
Φ
(
x0

))
=

4√
π
β

≤ − 4√
π

1 + α2

2

= −2(1 + α2)√
π

≤ − 2√
π

,

, which is a contradiction with the inequality given in (2.28). This shows that there is no point x0 ∈ U satisfying
the mentioned condition (2.7). Thus, the function p(x), defined by (2.31), immediately yields that the inequality
given by (2.30). Therefore, the proof of Theorem 2.3 is completed. 2

The explanation, highlighted for Proposition 2.2, will be a sufficient explanation for the following proposition.
So, we think that there is no need to present the details of its proof.

Proposition 2.4 Let a function ω := ω(x) be one of the solutions of the initial-value problem given by (2.27)
and let the inequality:

ℑm
(
iΦ(x)

)
<

2√
π

(
x ∈ U

)
.

be also satisfied. If the function ω(x) is a solution of the differential equation given by (2.29), then

ℜe
(
ω(x)

)
> 0

(
x ∈ U

)
.

As applications, implications and scientific interpretations of our main results above, when one focuses
on those results, it is possible to reveal a great number of different or new results (or propositions). All right,
these results can be obtained in different ways. They can basically obtain those in the three ways, which are
presented in the following ways:

(i) All of the mentioned results (or propositions) can be redetermined (or reconstituted) by selections of
the suitable values of the related parameters.

(ii) The mentioned results can be redetermined (or reinvented) by taking into consideration the basic
identities signified as in (2.1)–(2.19).

671



IRMAK et al./Turk J Math

(iii) The mentioned results can be determined (or reconstituted) by making use of the special-different
functions indicated in (2.19)–(2.122).

(iv) Numerous new results like the main results, can be obtained from the available relationships between
certain differential equations (or inequalities) and their solutions will be determined (or calculated) by the
derivatives in (2.23) –(2.26).

(v) The ideas mentioned in the previous steps (or ways) can also be extended to new (or different) results
(or propositions) determined by the complementary error function given by (1.3) (or (1.4)).

(vi) Especially, the mentioned results can be reproduced by taking into account various special results
of the Hermite polynomials specified in (2.26), as comprehensive new results.

(vii) Most specifically, with the help of various package programs, two and three dimensional graphs of
each one of various special results of possible results proposed above can also be created and then analyzed as
their certain applications of them.

From the point of view of the results of this research, of course, it is not possible to list all the possible
outcomes above. But, we want to present only one of them, as an example, and also leave the others to the
researchers who have been working on the related topics.

Proposition 2.5 If the inequality

ℜe
([

Ξ′′(x)
]2

+
[
Ξ′(x)

]2)
<

2 + α4

π

is satisfied, then the inequality:

ℜe
(
Ξ′(x)

)
> 0

is also satisfied, where the function Ξ(x) is defined by (1.1) (or (1.3)), α ∈ R− {0} and x ∈ U.

Proof By taking the values of the related parameters τ and κ as τ := 2 and κ := 2 in Theorem 2.1, the
proof of the proposition above can be easily achieved. Its proof is here omitted. 2

3. Conclusion
We conclude our investigation by remarking that here, we introduced the error functions in the complex plane
and then comprehensive results together with several nonlinear implications in relation to the related complex
functions are indicated and some possible special results of them are presented. Some interesting suggestions
have been made for the scientific researchers who are interested in this topic.
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