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Abstract: In this paper, we consider a quadratic pencil of Sturm–Liouville operator on closed sets. We study an
interior-inverse problem for this kind operator and give a uniqueness theorem with an appropriate example.
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1. Introduction
The spectral problems appear in geophysics, mathematical physics, mechanics and other branches of natural
sciences. Specifically, second order differential pencil, namely diffusion equation, originates from the problem
of describing interactions between colliding particles in physics [17]. The reconstruction of an operator from its
spectral characteristics is referred to as the inverse problem. For inverse problems of a differential pencil, such
characteristics are one spectrum and normalizing constants, two given spectra, interior spectral data, nodal
points, scattering data and the Weyl function.

The inverse problem for interior spectral data of the differential operator consists of reconstruction of
this operator from the given eigenvalues and some information on eigenfunctions at an internal point. The
interior-inverse Sturm–Liouville problem, which is one of the important subjects of inverse spectral theory, was
first studied in by Mochizuki and Trooshin in [21]. They proved that the spectrum of the problem

−y′′ + q(x)y = λy, t ∈ (0, 1)

y′(0)− hy(0) = y′(1) +Hy(1) = 0

and the logarithmic derivatives of the eigenfunctions at the point 1/2 uniquely determine the potential q(x) on
the whole interval [0, 1] almost everywhere. This kind of problems for the differential operators on a continuous
interval were studied in [8, 14],[18, 22, 23],[28, 34].

The time scale theory unifies continuous and discrete dynamic equations. This approach is used in many
important applied problems, for example, heat transfer, dynamics of population, string theory. The theory of
dynamic equations on closed sets was introduced in [16]. Nowadays, there are a few studies about the inverse
problems of differential operators defined on time scales (see [1, 2, 7, 19, 20],[24, 27] and [35]).

If T is a closed subset of R it called a time scale. The forward and backward jump operators σ , ρ : T → T
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are defined as follows:

σ (t) = inf {s ∈ T : s > t} if t ̸= supT,

ρ (t) = sup {s ∈ T : s < t} if t ̸= inf T.

The delta derivative f∆ and the nabla derivative f∇ for a function f defined on T was introduced in [4]. For
basic concepts of the time scale theory and time scales notation, we refer to the textbooks [4, 5] and [6].

In this paper, we consider an interior-inverse problem for a differential pencil on a time scale and give a
uniqueness theorem. The main result of this article is a generalization of the classical result for an interior-inverse
problem on a continuous interval.

Throughout this paper, we assume that T = [0, a1]∪ [a2, a3] is a bounded time scale for 0 < a1 ≤ a2 and
a1 + a2 = a3.

We consider following boundary value problem L = L(q, p, h,H) on T = [0, a1] ∪ [a2, a3],

ℓy := −y∆∆(t) + [q(t) + 2λp(t)]yσ(t) = λ2yσ(t), t ∈ T, (1.1)

U(y) := y∆(0)− hy(0) = 0, (1.2)

V (y) := y∆(a3) +Hy(a3) = 0 (1.3)

where q(t) and p(t) are real valued continuous functions on T ; h , H ∈ R and λ is a spectral parameter.

Together with L , we consider a boundary value problem L̃ = L(q̃, p̃, h,H) of the same form but with
different coefficients q̃(t) and p̃(t). We assume that if a certain symbol x denotes an object related to L , then

x̃ will denote an analogous object related to L̃. Also, we assume

h |y(0)|2 +H |y(a3)|2 +
a3∫
0

(∣∣y∆(t)∣∣2 + q(t) |yσ(t)|2
)
∆t > 0.

A function y, defined on T, is called a solution of equation (1) if y ∈ C2
rd(T) and y satisfies (1) for all

t ∈ T . The values of the λ parameter �for which (1)–(3) has nonzero solutions are called eigenvalues, and the
corresponding nontrivial solutions are called eigenfunctions.

We state the main result of this paper.

Let Λ := {λn, n ∈ Z} and Λ̃ :=
{
λ̃n, n ∈ Z

}
be the eigenvalues sets of L and L̃, yn(t) and ỹn(t) are

eigenfunctions related to this eigenvalues, respectively.

Theorem 1.1 If Λ = Λ̃, and for any n ∈ N,

y∇n (a2)

yn(a2)
=
ỹ∇n (a2)

ỹn(a2)
(1.4)

then q(t) = q̃(t) and p(t) = p̃(t) on T .

In case a1 = a2 and p(t) = 0 , Theorem 1 coincides with the theorem in [21]. We note that, if it is taken
a1 = a2 and T = [0, a3] in L , the classical diffusion operator is obtained. In addition, since y∆n (a1) = −y∇n (a2),
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the condition (1.4) can be replaced by
y∆n (a1)

yn(a1)
=
ỹ∆n (a1)

ỹn(a1)
.

2. Preliminaries
Let φ(t, λ) and ψ(t, λ) be the solution of (1.1) under the initial conditions

φ(0, λ) = 1, φ∆(0, λ) = h

ψ(a3, λ) = 1, ψ∆(a3, λ) = −H

respectively. The following lemmas can be given by using a similar method to that in [24].

Lemma 2.1 φ(t, λ), ψ(t, λ) and their ∆-derivatives are entire functions on λ for each fixed t.

Lemma 2.2 The eigenvalues of the problem (1.1)-(1.3) are real and algebraicly simple.

It is clear that the characteristic function of L can be given as follows

∆(λ) =W [ψ,φ] = φ∆(a3, λ) +Hφ(a3, λ).

It follows from Lemma 1 that ∆(λ) is also an entire function and so L has a discrete spectrum.
It is known from [15] that φ(t, λ) satisfies the following representation on [0, a1]

φ(t, λ) = cos (λt− α(t)) +

t∫
0

A(t, x) cosλxdx+

t∫
0

B(t, x) sinλxdx

where the kernels A(t, x) and B(t, x) are the solution of the problem

∂2A(t, x)

∂t2
− 2p(t)

∂B(t, x)

∂x
− q(t)A(t, x) =

∂2A(t, x)

∂x2
,

∂2B(t, x)

∂t2
+ 2p(t)

∂A(t, x)

∂x
− q(t)B(t, x) =

∂2B(t, x)

∂x2
,

A(0, 0) = h, B(t, 0) = 0,
∂A(t, x)

∂x

∣∣∣∣
x=0

= 0

where

q(t) + p2(t) = 2
d

dt
[A(t, t) cosα(t) +B(t, t) sinα(t)] , α(t) =

t∫
0

p(x)dx.

On the other hand, φ∆(t, λ) is continuous at a1 , and so the relation

aφ∆(a1 − 0, λ) = φ(a2, λ)− φ(a1, λ) (2.1)
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holds, where a := a2 − a1. Therefore, we obtain that if a > 0, , then the following asymptotic formula holds for
|λ| → ∞ ;

φ(a2, λ) = −aλ sin (λa1 − α(a1)) +O (exp |τ | a1) , (2.2)

where τ = Imλ.

Since φ(t, λ) satisfies the equation (1.1) for t = a1 , it follows that

(a2λ2 + bλ+ c)φ(a2, λ) + aφ∆(a2 + 0, λ) + φ(a1, λ) = 0, (2.3)

where a = a2 − a1, b = −2a2p(a1), c = −a2q(a1)− 1.

Lemma 2.3 The following asymptotic formulas hold for |λ| → ∞ :

φ(t, λ) =

 cosλt+
h

λ
sinλt+O

(
1

λ
exp |τ | t

)
, t ∈ [0, a1],

a2λ2 sinλa1 sinλ(t− a2) +O (λ exp |τ | (t− a2 + a1)), t ∈ [a2, a3],
(2.4)

φ∆(t, λ) =

{
−λ sinλt+ h cosλt+O (exp |τ | t) , t ∈ [0, a1),

a2λ3 sinλa1 cosλ(t− a2) +O
(
λ2 exp |τ | (t− a2 + a1

)
), t ∈ [a2, a3].

(2.5)

Proof It is clear that

φ(t, λ) = cosλt+
h

λ
sinλt+ (2.6)

+
1

λ

t∫
0

sinλ (t− ξ) [q(ξ) + 2λp(ξ)]φ(ξ, λ)∆ξ, t ∈ [0, a1]

On the other hand, the general solution of (1.1) on [a2, a3] is given as follow.

φ(t, λ) = c1(λ) cosλt+ c2(λ) sinλt+ (2.7)

+
1

λ

t∫
a2

sinλ (t− ξ) [q(ξ) + 2λp(ξ)]φ(ξ, λ)∆ξ.

Substituting (2.6) and (2.7) in (2.1) and (2.3) we obtain a linear system in which c1 (λ) and c2 (λ) are unknowns.
Using the solution to the system, we show that the following integral equation is valid on [a2, a3] :

φ(t, λ) = A(λ) sinλ (t− a2) +B(λ) cosλ (t− a2)+ (2.8)

+
1

λ

t∫
a2

sinλ (t− ξ) [q(ξ) + 2λp(ξ)]φ(ξ, λ)∆ξ
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where

A (λ) =

(
(a2λ2 + bλ+ c)− (a2λ+ bλ+ c+ 1)h

aλ2

)
sinλa1 +

−
(
(a2λ+ bλ+ c) (ah+ 1) + 1

aλ

)
cosλa1 +

−
(
a2λ2 + bλ+ c

λ

) a1∫
0

cosλ(a1 − ξ) [q(ξ) + 2λp(ξ)]φ(ξ)∆ξ +

−
(
a2λ2 + bλ+ c+ 1

aλ2

) a1∫
0

sinλ(a1 − ξ) [q(ξ) + 2λp(ξ)]φ(ξ)∆ξ

and

B (λ) =

(
h

λ
− aλ

)
sinλa1 + (ah+ 1) cosλa1 +

+a

a1∫
0

cosλ(a1 − ξ) [q(ξ) + 2λp(ξ)]φ(ξ)∆ξ +

+
1

λ

a1∫
0

sinλ(a1 − ξ) [q(ξ) + 2λp(ξ)]φ(ξ)∆ξ.

Thus, we calculate from (2.6) and (2.8) our desired relations. 2

It follows from ∆(λ) = φ∆(a3, λ) +Hφ(a3, λ) that the asymptotic relation

∆(λ) =
a2

2
λ3 sin 2λa1 +O

(
λ2 exp |τ | 2a1

)
(2.9)

is valid for |λ| → ∞.

Now we are ready to prove our main result. We give proof in the case a > 0 . The other case is easier
and similar.

3. Proof of the main result

Proof [Proof of the Theorem 1.] We give the proof by four steps.
Step 1: Let us write the equation (1.1) for φ and φ̃

−φ∆∆(t, λ) + [q(t) + 2λp(t)]φσ(t, λ) = λ2φσ(t, λ) (3.1)

−φ̃∆∆(t, λ) + [q̃(t) + 2λp̃(t)]φ̃σ(t, λ) = λ2φ̃σ(t, λ). (3.2)

It can be obtained from (3.1) and (3.2) that

[
φ∆(t, λ)φ̃(t, λ)− φ(t, λ)φ̃∆(t, λ)

]∆
= [q(t)− q̃(t) + 2λ(p(t)− p̃(t))]φσ(t, λ)φ̃σ(t, λ). (3.3)
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Taking P (t) = p(t)− p̃(t), Q(t) = q(t)− q̃(t) and ∆− integrating both sides of (3.3) on [0, a1] ,

[
φ∆(t, λ)φ̃(t, λ)− φ(t, λ)φ̃∆(t, λ)

]a1

0
=

a1∫
0

[Q(t) + 2λP (t)]φσ(t, λ)φ̃σ(t, λ)∆t

=

a1∫
0

[Q(t) + 2λP (t)]φ(t, λ)φ̃(t, λ)∆t.

It is obvious that

φ∆(a1, λ)φ̃(a1, λ)− φ(a1, λ)φ̃
∆(a1, λ) =

a1∫
0

[Q(t) + 2λP (t)]φ(t, λ)φ̃(t, λ)∆t.

Let

K(λ) :=

a1∫
0

[Q(t) + 2λP (t)]φ(t, λ)φ̃(t, λ)∆t.

Since
y∆n (a1)

yn(a1)
=
ỹ∆n (a1)

ỹn(a1)
,

we get that K(λn) = 0 for all λn ∈ Λ and so χ(λ) :=
K(λ)

∆(λ)
is an entire function on λ .

On the other hand, we obtain
K(λ) = O(λ exp 2 |τ | a1)

for all complex λ by using the asymptotics (2.4). From (2.9) it can be calculated that

|χ(λ)| ≤ C |λ|−2
.

for suffciently large |λ| . By the Liouville’s theorem, χ(λ) = 0 for all λ . Hence, K(λ) ≡ 0 .
Step 2: By integrating again both sides of the equality (3.3) on (0, a1) , we get

φ∆(a1, λ)φ̃(a1, λ)− φ(a1, λ)φ̃
∆(a1, λ) = K(λ) = 0

and so
φ∆(a1, λ)φ̃(a1, λ) = φ(a1, λ)φ̃

∆(a1, λ). (3.4)

Put ψ(t, λ) := φ(a1 − t, λ). It is clear that ψ(t, λ) is the solution of the following initial value problem

−y∆∆ + [q(a1 − t) + 2λp(a1 − t)]yσ = λyσ, t ∈ (0, a1)

y(a1) = 1, y∆(a1) = −h

It follows from (3.4) that

ψ∆(0, λ)ψ̃(0, λ) = ψ(0, λ)ψ̃∆(0, λ).
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Taking into account Theorem 4.1. in [32], it is concluded that q(t) = q̃(t) and p(t) = p̃(t) on [0, a1] .
Step 3: To prove that q(t) = q̃(t) and p(t) = p̃(t) on [a2, a3] , we will consider the supplementary

problem L1 :

−y∇∇ + [q1(t) + 2λp1(t)]y
ρ = λyρ, t ∈ T,

y∇(0)−Hy(0) = y∇(a3) + hy(a3) = 0,

where q1(t) = q(a3 − t) and p1(t) = p(a3 − t).

By using chain rule for nabla deriative in [3], we have that φ1(t, λ) = φ(a3 − t, λ) satisfies the equation

−φ∇∇
1 + [q1(t) + 2λp1(t)]φ

ρ
1 = λφρ

1

and the initial conditions
φ1(a3, λ) = 1, φ∇

1 (a3, λ) = −h.

Furthermore, the assumption of the theorem

φ∇
1 (a2, λn)

φ1(a2, λn)
=
φ̃∇
1 (a2, λn)

φ̃1(a2, λn)

holds.
If we repeat the calculations in the Step 1, then we replace equation (3.3) by

[
φ1(t, λ)φ̃

∇
1 (t, λ)− φ∇

1 (t, λ)φ̃1(t, λ)
]∇

= [q1(t)− q̃1(t) + 2λ(p1(t)− p̃1(t))]φ
ρ
1(t, λ)φ̃

ρ
1(t, λ). (3.5)

By integrating (in the sense of ∇ -integral) both sides of this equality on [0, a2] , we obtain

[
φ1(t, λ)φ̃

∇
1 (t, λ)− φ∇

1 (t, λ)φ̃1(t, λ)
]a2

0
=

a2∫
0

[q1(t)− q̃1(t) + 2λ(p1(t)− p̃1(t))]φ
ρ
1(t, λ)φ̃

ρ
1(t, λ)∇t

=

a1∫
0

[q1(t)− q̃1(t) + 2λ(p1(t)− p̃1(t))]φ1(t, λ)φ̃1(t, λ)∇t

+

a2∫
a1

[q1(t)− q̃1(t) + 2λ(p1(t)− p̃1(t))]φ
ρ
1(t, λ)φ̃

ρ
1(t, λ)∇t

From Step 2, since q(a1) = q̃(a1) and p(a1) = p̃(a1),then q1(a2) = q̃1(a2) and p1(a2) = p̃1(a2). Thus we get

a2∫
a1

[q1(t)− q̃1(t)]φ
ρ(t, λ)φ̃ρ(t, λ)∇t = [q1(a2)− q̃1(a2)]φ

ρ
1(a2, λ)φ̃

ρ
1(a2, λ) (a2 − a1) = 0.

Therefore we have

φ∇
1 (a2, λ)φ̃1(a2, λ)− φ1(a2, λ)φ̃

∇
1 (a2, λ) =

a1∫
0

[q1(t)− q̃1(t) + 2λ(p1(t)− p̃1(t))]φ1(t, λ)φ̃1(t, λ)∇t.
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Let

K1(λ) :=

a1∫
0

[q1(t)− q̃1(t) + 2λ(p1(t)− p̃1(t))]φ1(t, λ)φ̃1(t, λ)∇t.

It is obvious that K1(λn) = 0 for all λn ∈ Λ and so ω(λ) :=
K1(λ)

∆(λ)
is entire on λ. Similar to the calculations

in the last part of Step 1, we obtain
K1(λ) ≡ 0.

Step 4: By integrating again both sides of the equality (3.5) on (0, a1) , we get

φ∇
1 (a1, λ)φ̃1(a1, λ)− φ1(a1, λ)φ̃

∇
1 (a1, λ) = K1(λ) = 0.

Repeating the Step 2 for the supplementary problem L1 and φ1(t, λ) , it is concluded that q1(t) = q̃1(t) and
p1(t) = p̃1(t) on [0, a1] , that is q(t) = q̃(t) and p(t) = p̃(t) on [a2, a3] . This completes the proof. 2

Example 3.1 Consider the following problems on T = [0, 1/2] ∪ [1, 3/2] ,

L0 :

 −y∆∆(t) = λyσ(t), t ∈ [0, 1/2] ∪ [1, 3/2]
y∆(0) = 0
y∆(3/2) = 0

and

L̃0 :

 −y∆∆(t) + [q(t) + 2λp(t)]yσ(t) = λyσ(t), t ∈ [0, 1/2] ∪ [1, 3/2]
y∆(0) = 0
y∆(3/2) = 0.

Let Λ0 := {λn, n ∈ Z} and Λ̃0 :=
{
λ̃n, n ∈ Z

}
be the eigenvalues sets of L and L̃0, yn(t) and ỹn(t) are

eigenfunctions related to this eigenvalues, respectively. According to Theorem-1, if Λ0 = Λ̃0 and for any
n ∈ N,

y∇n (1)

yn(1)
=
ỹ∇n (1)

ỹn(1)

then q(t) ≡ p(t) = 0 on T .
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