
Turk J Math
(2022) 46: 387 – 396
© TÜBİTAK
doi:10.3906/mat-2104-97

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Discrete impulsive Sturm–Liouville equation with hyperbolic eigenparameter

Turhan KÖPRÜBAŞI1,∗, Yelda AYGAR KÜÇÜKEVCİLİOĞLU2
1Department of Mathematics, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey

2Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey

Received: 22.04.2021 • Accepted/Published Online: 17.06.2021 • Final Version: 21.01.2022

Abstract: Let L denote the selfadjoint difference operator of second order with boundary and impulsive conditions
generated in ℓ2 (N) by

an−1yn−1 + bnyn + anyn+1 = (2 cosh z) yn , n ∈ N \ {k − 1, k, k + 1} ,

y0 = 0 ,{
yk+1 = θ1yk−1

△yk+1 = θ2 ▽ yk−1
, θ1, θ2 ∈ R,

where {an}n∈N , {bn}n∈N are real sequences and △,▽ are respectively forward and backward operators. In this paper,
the spectral properties of L such as the resolvent operator, the spectrum, the eigenvalues, the scattering function and
their properties are investigated. Moreover, an example about the scattering function and the existence of eigenvalues is
given in the special cases, if

∞∑
n=1

n (|1− an|+ |bn|) < ∞.

Key words: Discrete equations, impulsive condition, hyperbolic eigenparameter, spectral analysis, scattering function,
resolvent operator, eigenvalues

1. Introduction
Difference equations are among the important study topics of many mathematicians from the recent past to the
present. It can be shown as reasons for this are that the solutions of difference equations can be obtained with
the help of computers and these equations arise as a mathematical model in many daily events about biology,
economics, engineering and physics, especially Newtonian mechanics. Some problems about spectral theory of
difference equations with spectral singularities have been debated in [1,3,4,6,9,13,17–19,22,23].

Let us consider the discrete Sturm–Liouville problem (DSP)

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N = {1, 2, . . .} , (1.1)

with the boundary condition
∞∑

n=0
hnyn = 0 , where {an}n∈N , {bn}n∈N , {hn}n∈N are complex sequences and

λ is a spectral parameter. The spectral properties of the DSP (1.1) such as the spectrum, spectral singularities
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and principal functions have been investigated in [10]. It is concluded that the spectral singularities are poles
of the resolvent that are imbedded in the continuous spectrum and are not eigenvalues. Also, the results
about the spectrum of the DSP (1.1) are applied to the nonselfadjoint Jacobi matrices and discrete Schrödinger
operators in the same study. The spectral analysis of a nonselfadjoint second order difference equation with
principal functions has been investigated in [2]. In that study, it is shown that the Jost solution of this equation
has an analytic continuation to the lower half-plane and the finiteness of the eigenvalues and the spectral
singularities of the difference equation is obtained as a result of this analytic continuation. Furthermore, in the
course of many physical events, impulses are observed at certain moments of the time. The solutions of the
impulsive difference equations, which occur when the mathematical model of the impulsive physical phenomena
such as temperature distribution and heat transfer are made in the set of integers, have extra equation jumps
at certain points. Therefore, examining problems involving impulsive difference equations is very important,
both theoretically and practically. The spectral analysis of some impulsive difference equation problems with
scattering function have been debated by various authors in recent years [5,7,8,11,20,21,23,24] and their studies
have led to the rapid development of the theory of discrete difference equations.

Let L denote the selfadjoint difference operator of second order generated in ℓ2 (N) by

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N \ {k − 1, k, k + 1} , (1.2)

with boundary and impulsive conditions
y0 = 0 , (1.3)

{
yk+1 = θ1yk−1

△yk+1 = θ2 ▽ yk−1
, θ1, θ2 ∈ R, (1.4)

where {an}n∈N , {bn}n∈N are real sequences, an ̸= 0 for all n ∈ N ∪ {0} , θ1θ2 ̸= 0, λ is a hyperbolic
eigenparameter and △,▽ are forward and backward operators, respectively. Moreover, we can write the
difference equation (1.2) in the following Sturm–Liouville form:

▽(an △ yn) + vnyn = λyn, n ∈ N,

where vn = an−1 + an + bn .
Differently other studies in the literature, the specific feature of this paper which is one of the articles

have applicability in a lot of branches of mathematical physics and chemistry is the discrete Sturm–Liouville
equation with boundary and impulsive conditions is taken under investigation for hyperbolic eigenparameter.
In this paper, we investigate various spectral properties of L ; i.e. we investigate the spectrum, the scattering
function and their properties if

∞∑
n=1

n (|1− an|+ |bn|) <∞. (1.5)

2. Spectral properties of scattering function and spectrum

Let us define two semistrips T− = {z ∈ C : z = ξ + iτ, ξ < 0, τ ∈ [0, 2π]} and T = T− ∪ T0 , where T0 =

{z ∈ C : z = iτ, τ ∈ [0, 2π]} . Under the condition (1.5), Eq. (1.2) has the solution

fn(z) = αne
nz

(
1 +

∞∑
m=1

Anme
mz

)
, n ∈ {k + 1, k + 2, . . .} ,
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satisfying the condition lim
n→∞

e−nzfn(z) = 1, z ∈ T− for λ = 2 cosh z and αn, Anm are expressed in terms of

{an}n∈N and {bn}n∈N as

αn =

( ∞∏
i=n

ai

)−1

An,1 = −
∞∑

i=n+1

bi

An,2 =

∞∑
i=n+1

(
1− a2i

)
+

∞∑
i=n+1

bi

∞∑
j=i+1

bj

An,m+2 = An+1,m +

∞∑
i=n+1

(
1− a2i

)
Ai+1,m −

∞∑
i=n+1

biAi,m+1

from [15, 16]. Moreover

|Anm| ≤ B

∞∑
k=n+[|m2 |]

(|1− ak|+ |bk|)

holds, where B > 0 is constant and
[∣∣m

2

∣∣] is the integer part of m
2 . Hence, fn(z) is analytic with respect to

z in Cleft = {z ∈ C : Rez < 0} , continuous on the real axis and fn(z) = fn(z + 2πi) for all z ∈ Cleft .
Now, we consider the elementary {φn(z)} and {ψn(z)} , n = 0, 1, . . . , k − 1 solutions of (1.2) for z ∈ T

subject to the initial conditions

φ0(z) = 0 , φ1(z) = 1
ψ0(z) = a−1

0 , ψ1(z) = 0 .
(2.1)

Then, we find the wronskian of φn(z) and ψn(z) as

W [φn(z), ψn(z)] = an [φn(z)ψn+1(z)− φn+1(z)ψn(z)]

= a0 [φ0(z)ψ1(z)− φ1(z)ψ0(z)]

= −1

and also they are entire functions for z ∈ C.
In here, we define the Jost solution of L by using fn(z) , φn(z) and ψn(z)

Jn(z) =

{
p(z)φn(z) + r(z)ψn(z) ; n = 0, 1, . . . , k − 1

fn(z) ; n = k + 1, k + 2, . . .
(2.2)

for z ∈ T , where

p(z) =
ak−2

θ1θ2
[θ1ψk−1(z)△ fk+1(z)− θ2fk+1(z)▽ ψk−1(z)]

r(z) = −ak−2

θ1θ2
[θ1φk−1(z)△ fk+1(z)− θ2fk+1(z)▽ φk−1(z)] , z ∈ Cleft
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can be obtained from the conditions (1.4). Furthermore,

W [fn(z), fn(−z)] = lim
n→∞

{an [fn(z)fn+1(−z)− fn+1(z)fn(−z)]}

= lim
n→∞

{
an

[
e−zfn(z)e

−nzfn+1(−z)e(n+1)z
]}

− lim
n→∞

{
an

[
ezfn+1(z)e

−(n+1)zfn(−z)enz
]}

= e−z − ez

= −2 sinh z (2.3)

for z ∈ T0 \ {iπ} . If we take the another F solution of L as

Fn(z) =

{
φn(z) ; n = 0, 1, . . . , k − 1

q(z)fn(z) + t(z)fn(−z) ; n = k + 1, k + 2, . . .
(2.4)

for z ∈ T0 \ {iπ} , where

q(z) = − ak+1

2 sinh z
[θ1φk−1(z)△ fk+1(−z)− θ2fk+1(−z)▽ φk−1(z)]

t(z) =
ak+1

2 sinh z
[θ1φk−1(z)△ fk+1(z)− θ2fk+1(z)▽ φk−1(z)] ,

then we get t(z) = q(−z) = q(z) due to φn(−z) = φn(z) and the following result:

Lemma 2.1

W [Jn(z), Fn(z)] =

{
r(z) ; n = 0, 1, . . . , k − 1

ak+1

ak−2
θ1θ2r(z) ; n = k + 1, k + 2, . . .

for z ∈ T0 \ {iπ} .

Proof From (2.1)–(2.4), we find

W [Jn(z), Fn(z)] = a0 [J0(z)F1(z)− J1(z)F0(z)]

= a0 [p(z)φ0(z) + r(z)ψ0(z)]φ1(z)

−a0 [p(z)φ1(z) + r(z)ψ1(z)]φ0(z)

= r(z)

for n = 0, 1, . . . , k − 1 and

W [Jn(z), Fn(z)] = ak+1 [Jk+1(z)Fk+2(z)− Jk+2(z)Fk+1(z)]

= ak+1t(z) [fk+1(z)fk+2(−z)− fk+2(z)fk+1(−z)]

= t(z)W [fn(z), fn(−z)]

=
ak+1

ak−2
θ1θ2r(z)

for n = k + 1, k + 2, . . . since t(z) = − ak+1

ak−2

θ1θ2r(z)
2 sinh z . 2
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Moreover, if f̃n(z) is unbounded solution of Eq. (1.2) for n = k + 1, k + 2, . . . with lim
n→∞

enz f̃n(z) = 1,

z ∈ Cleft , then

W
[
fn(z), f̃n(z)

]
= −2 sinh z

for T \ {iπ} , and we can define the another G solution of L as

Gn(z) =

{
φn(z) ; n = 0, 1, . . . , k − 1

k(z)fn(z) + l(z)f̃n(z) ; n = k + 1, k + 2, . . .
(2.5)

for z ∈ T , where

k(z) = − ak+1

2 sinh z

[
θ1φk−1(z)△ f̃k+1(z)− θ2f̃k+2(z)▽ φk−1(z)

]
l(z) =

ak+1

2 sinh z
[θ1φk−1(z)△ fk+1(z)− θ2fk+1(z)▽ φk−1(z)] .

Also, the function Gn(z) is unbounded solution of L and

l(z) = t(z) = q(z) = −ak+1

ak−2

θ1θ2
2 sinh z

r(z) (2.6)

for z ∈ T0 \ {iπ} .
If Equations (2.2) and (2.5) are taken into account,

W [Jn(z), Gn(z)] =

{
r(z) ; n = 0, 1, . . . , k − 1

ak+1

ak−2
θ1θ2r(z) ; n = k + 1, k + 2, . . .

is obtained for z ∈ T .

Theorem 2.2 r(z) ̸= 0 for all z in T0 \ {iπ} .

Proof Suppose that r(z0) = 0 for at least z0 ∈ T0 \ {iπ} . From (2.6), t(z0) = q(z0) = 0. Then, the solution
Fn(z0) = 0, n ∈ N ∪ {0} is trivial by using the impulsive conditions (1.4) which is a contradiction. 2

Definition 2.3 The scattering function of L is defined by

S(z) =
J0(z)

J0(z)

with respect to the Jost solution of L .

Because of the fact that {an}n∈N , {bn}n∈N are real sequences and an ̸= 0 for all n ∈ N∪ {0} , it can be

written that Jn(z) = Jn(−z) for z ∈ T0 \ {iπ} . Then, the scattering function

S(z) =
r(z)

r(z)
=
a0J0(z)

a0J0(z)
=
J0(−z)
J0(z)

=
r(−z)
r(z)

(2.7)
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and so

S(z) =
θ1φk−1(−z)△ fk+1(−z)− θ2fk+1(−z)▽ φk−1(−z)

θ1φk−1(z)△ fk+1(z)− θ2fk+1(z)▽ φk−1(z)

with lim
z→0

S(z) = S(0) = 1 . In addition,

S(−z) = J0(z)

J0(−z)
= S−1(z) = S(z)

for z ∈ T0 \ {iπ} by using the equalities (2.7).

Theorem 2.4 The resolvent operator of L is

Rλgn =

∞∑
m=1

Rnmgm , {gm} ∈ ℓ2 (N)

for all z ∈ T \ {iπ} and r(z) ̸= 0 , where

Rnm (z) =

{
− GmJn

W [Jm,Gm] ; m ≤ n

− GnJm

W [Jm,Gm] ; m > n

is the Green function of L for m , n ̸= k .

Proof Since Jn(z) and Gn(z) are fundamental solutions of L ,

yn(z) = ηnJn(z) + ζnGn(z)

is the general solution of
▽(an △ yn) + vnyn − λyn = gn,

where ηn , ζn are nonzero coefficients and vn = an−1 + an + bn . Then,

ηn = −
n∑

m=1

Gmgm
W [Jm, Gm]

, m ̸= k

ζn = −
∞∑

m=n+1

Jmgm
W [Jm, Gm]

, m ̸= k

are obtained using the method of variation of parameters, and so they represent the Green function and resolvent
operator of L . 2

Theorem 2.5 Under the condition (1.5), σc(L) = [−2, 2] where σc(L) is the continuous spectrum of L .

Proof Let L1 and L2 denote the operators generated in ℓ2 (N) by the difference expressions

(l1y)n = yn−1 + yn+1, n ∈ N \ {k − 1, k + 1}
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and
(l2y)n = (an−1 − 1) yn−1 + (an − 1) yn+1 + bnyn, n ∈ N \ {k − 1, k, k + 1} ,

respectively. It is apparent that L = L1 +L2, L1 = L∗
1 and from the condition (1.5) L2 is a compact operator

in ℓ2 (N) . Then, we obtain

σc(L) = σc(L1) = σ(L1) = [−2, 2]

by using the Weyl theorem of a compact perturbation ([14]). 2

Theorem 2.6

σd(L) = {λ ∈ C : λ = 2 cosh z, z ∈ T−, r(z) = 0} ,

σss(L) = ∅,

where σd(L) and σss(L) are the sets of eigenvalues and spectral singularities of L , respectively.

Proof The Jost solution Jn(z) ∈ ℓ2 (N) because the first part of it consists of a finite number of elements and
fn(z) is also in ℓ2 (N) . Moreover, due to the condition (1.3),

0 = J0(z) = p(z)φ0(z) + r(z)ψ0(z) =
r(z)

a0

hence r(z) = 0 . Therefore, from the definition of spectral singularities and eigenvalues in [12] and Theorem
2.2.,

σd(L) = {λ ∈ C : λ = 2 cosh z, z ∈ T−, r(z) = 0}

and

σss(L) = {λ ∈ C : λ = 2 cosh z, z ∈ T0 \ {iπ} , r(z) = 0}
= ∅.

2

Therefore, in the light of the last theorem, the quantitative properties of zeros of r(z) in T− are required
to investigate the quantitative properties of the eigenvalues of L .

3. Special cases

Let us choose the operator M in ℓ2 (N) generated by the equation

yn−1 + yn+1 = λyn, n ∈ N \ {4, 5, 6} , (3.1)

with boundary and impulsive conditions

y0 = 0 ,{
y6 = θ1y4

△y6 = θ2 ▽ y4
, θ1, θ2 ∈ R, (3.2)
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where θ1θ2 ̸= 0 and λ = 2 cosh z is a hyperbolic eigenparameter. Also, {φn(z)} and {ψn(z)} , n = 0, 1, 2, 3, 4

are the elementary solutions of (3.1) for z ∈ T subject to the initial conditions (2.1) and clearly fn(z) = enz .
In additon, we get from (3.1) that

φ3(λ) = λ2 − 1 , φ4(λ) = λ3 − 2λ
ψ3(λ) = −λ , ψ4(λ) = 1− 2λ2 .

After that, we find

p(z) =
1

θ1θ2
[θ1ψ4(z)△ f6(z)− θ2f6(z)▽ ψ4(z)]

= e4z
[
e4z − e3z + e2z − ez + 1

θ1
− e5z − e4z + e3z − e2z + ez − 1

θ2

]
.

r(z) = − 1

θ1θ2
[θ1φ4(z)△ f6(z)− θ2f6(z)▽ φ4(z)]

= e3z
[
e6z − e5z + e4z − e3z + e2z − ez + 1

θ1
− e7z − e6z + e5z − e4z + e3z − e2z + ez − 1

θ2

]
from (3.2), and the Jost solution of M

Jn(z) =

{
e6z
[
p(1)(z)φn(z) + r(1)(z)ψn(z)

]
; n = 0, 1, 2, 3, 4

enz ; n = 6, 7, 8, . . .
,

where

p(1)(z) =
λ2 − λ− 1

θ1
−
(
λ2 − 1

)
(ez − 1)

θ2
,

r(1)(z) =
λ
(
λ2 − λ− 2

)
+ 1

θ1
−
λ
(
λ2 − 2

)
(ez − 1)

θ2
.

By using (2.8), the scattering function of M is

S(z) =
θ1φ4(−z)△ f6(−z)− θ2f6(−z)▽ φ4(−z)

θ1φ4(z)△ f6(z)− θ2f6(z)▽ φ4(z)

= e−6z

[
θ2
(
e−6z − e−5z + e−4z − e−3z + e−2z − e−z + 1

)
θ2 (e6z − e5z + e4z − e3z + e2z − ez + 1)− θ1 (e7z − e6z + e5z − e4z + e3z − e2z + ez − 1)

−
θ1
(
e−7z − e−6z + e−5z − e−4z + e−3z − e−2z + e−z − 1

)
θ2 (e6z − e5z + e4z − e3z + e2z − ez + 1)− θ1 (e7z − e6z + e5z − e4z + e3z − e2z + ez − 1)

]

for z ∈ T0 \ {iπ} .
Moreover, we obtain the eigenvalues of M

σd(M) = {λ ∈ C : λ = 2 cosh z, z ∈ T−, r(z) = 0} .

Since λ = 2 cosh z and r(z) = 0 in σd(M) , then we get

e6z − e5z + e4z − e3z + e2z − ez + 1

e7z − e6z + e5z − e4z + e3z − e2z + ez − 1
=
θ1
θ2
.
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If θ2 = α for α ̸= 0 , then

e7z − (α+ 1)
(
e6z − e5z + e4z − e3z + e2z − ez + 1

)
= 0 (3.3)

can be obtained. From (3.3), it is easily seen that α ̸= 1 ; i.e. θ1 ̸= θ2 .
Case 1: For α = 1 , we find

ez ≈ 1.30699 ,

ez ≈ 0.917886− i0.707524 , ez ≈ 0.917886 + i0.707524 ,
ez ≈ 0.106125− i1.049262 , ez ≈ 0.106125 + i1.049262 ,
ez ≈ −0.677506− i0.751906 , ez ≈ −0.677506 + i0.751906.

Since these equations do not have any root in T− , then σd(M) = ∅ .
Case 2: For α = 999999 , then

ez ≈ 999999 ,

ez ≈ 0.900969− i0.433883 , ez ≈ 0.900969 + i0.433883 ,
ez ≈ 0.222521− i0.974928 , ez ≈ 0.222521 + i0.974928 ,
ez ≈ −0.623489− i0.781831 , ez ≈ −0.623489 + i0.781831.

Since there are two roots for the last phrase z1 ≈ −2.53669×10−7+i4.03919 and z2 ≈ −2.53669×10−7+i2.24399

in T− , then the set of eigenvalues of M is σd(M) = {λ ∈ C : λ = 2 cosh zk; k = 1, 2} . In additon, we can note
that, the eigenvalues of M will appear for big enough α ; i.e. α→ ∞.
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