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Abstract: In this paper, we explore the Jost solutions and the scattering matrix of the impulsive difference Dirac systems
(IDDS) on the whole axis and study their analytic and asymptotic properties. Furthermore, characteristic properties of
the scattering matrix of the IDDS have been examined.
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1. Introduction
In mathematics and development of theoretical physics, Dirac systems have many handy applications, and it is
known that the Dirac operator finds its natural place in the attempt to obtain a relativistic wave equation for the
electron. As is known, the dynamic of developing processes is constantly depended on abrupt changes happened
at such points. Usually, these short-term perturbations are treated as having acted suddenly or in the form
of ”impulses”. The general theory of impulsive differential equations is given in [2, 8, 9, 19]. In the literature,
different names may be encountered in place of these conditions such as jump conditions, interface conditions,
point interaction conditions and transmission conditions. Furthermore, impulsive differential equations that are
mentioned with impulse effects have been evolved in modelling problems in physics, biotechnology, industrial
robotics, pharmacokinetics, population dynamics, and so forth, and, since the late 1990s, the authors have
produced an extensive portfolio of results on differential and difference equations undergoing impulse effects
[2, 15, 26].

Differential inclusions subject to the impulse conditions have played a crucial role in modeling phenomena,
especially in scenarios including automatic control systems. Also, while these processes include hereditary
phenomena such as biological and social macrosystems, some of the modeling is made via functional differential
equations with impulsive effects. Furthermore, in the studies [3, 10–14, 16, 17, 25, 29], authors have examined
the spectral and scattering properties of Sturm–Liouville and Dirac operators. Also, two component scattering
systems and the inverse problem of the one-dimensional Sturm–Liouville equations have attracted a great
amount of interest for years [4–7, 18, 28]. This attention is guided by a great deal effects of such problems
happening in fields as diversified as geophysics, relativistic quantum mechanics, voice synthesisfilter design,
transmission-line analysis and so on. In recent years, the spectral features of singular dissipative operators have
been investigated in [21–24, 27]. Also, singular Dirac systems in Weyl’s limit-circle case with finite transmission
conditions have been investigated in [1].
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This study provides a concise and selfcontained introduction to global theory of Dirac systems and to the
analysis of spectral asymptotics with impulsive conditions. To solve the problems with impulsive conditions, we
need to establish further conditions at the point where impulsive effect exists. Throughout this work in which
we examined the scattering theory of Dirac systems with impulsive conditions in entire axis, we first obtained
significant results for Jost solutions and scattering matrix of canonic Dirac systems.

2. Installation of the problem

Let ℓ2
(
Z∗,C2

)
be the space of vector-valued sequences with domain Z∗ and range C2 . We consider the operator

created in the space ℓ2
(
Z∗,C2

)
by

an+1y
(2)
n+1 + bny

(2)
n + pny

(1)
n = λy

(1)
n

an−1y
(1)
n−1 + bny

(1)
n + qny

(2)
n = λy

(2)
n , n ∈ Z∗ := Z\ {−1, 0, 1} ,

(2.1)

and the impulsive condition y(1)1 (z)

y
(2)
2 (z)

 = B

y(2)−1(z)

y
(1)
−2(z)

 , B =

(
γ11 γ12

γ21 γ22

)
, (2.2)

where B is a real matrix such that detB > 0 , {an}n∈Z, {bn}n∈Z, {pn}n∈Z and {qn}n∈Z are real sequences such
that an ̸= 0 and bn ̸= 0, (n ∈ Z) , and these sequences satisfy∑

n∈Z

|n| (|1− an|+ |1 + bn|+ |pn|+ |qn|) <∞, (2.3)

and also λ is a spectral parameter.

If an ≡ 1, bn ≡ −1 for all n ∈ Z , then the system (2.1), denoted by L , reduce to ∆y
(2)
n + pny

(1)
n = λy

(1)
n ,

−∆y
(1)
n−1 + qny

(2)
n = λy

(2)
n , n ∈ Z∗,

(2.4)

where ∆ is a forward difference operator defined by ∆yn = yn+1 − yn .

The system (2.4) is the difference analog of the well-known canonical Dirac system [10]:(
0 1

−1 0

)(
y

′

1

y
′

2

)
+

(
p(x) 0

0 q(x)

)(
y1

y2

)
= λ

(
y1

y2

)
,

, and so the system (2.4) is called a canonical difference Dirac system with impulsive condition at the point n = 0 .

In the light of [6], we know that, under the condition (2.3) for λ = 2 sin
z

2
, the system (2.1) has two

solutions

φ(z) = {φn(z)}n∈Z+ =


φ(1)

n (z)

φ
(2)
n (z)


n∈Z+

, z ∈ C+,
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and

ψ(z) = {ψn(z)}n∈Z− =


ψ(1)

n (z)

ψ
(2)
n (z)


n∈Z−

, z ∈ C+,

satisfying the following asymptotic conditions in terms of n :

φn(z) = [I2 + o(1)]

(
ei

z
2

−i

)
einz, z ∈ C+, n→ +∞, (2.5)

and

ψn(z) = [I2 + o(1)]

(
−i

ei
z
2

)
e−inz, z ∈ C+, n→ −∞, (2.6)

in which Z∓ := {∓1,∓2,∓3, · · · } and C+ := {z : z ∈ C, ℑ(z) ≥ 0} such that ℑ(z) is imaginary part of z
and also, I2 is the 2x2 identity matrix. Furthermore, it’s well-known that these solutions have the following
representations [3]:

φn(z) =

φ(1)
n (z)

φ
(2)
n (z)

 = αn

(
I2 +

∞∑
m=1

Anme
imz

)(
ei

z
2

−i

)
einz, n ∈ Z+, (2.7)

and

ψn(z) =

ψ(1)
n (z)

ψ
(2)
n (z)

 = βn

(
I2 +

−∞∑
m=−1

Bnme
−imz

)(
−i

ei
z
2

)
e−inz, n ∈ Z−, (2.8)

where

αn =

(
α11
n α12

n

α21
n α22

n

)
, βn =

(
β11
n β12

n

β21
n β22

n

)
, Anm =

(
A11

nm A12
nm

A21
nm A22

nm

)
, Bnm =

(
B11

nm B12
nm

B21
nm B22

nm

)
,

and also, Aij
nm, B

ij
nm are expressed in terms of {pn}n∈Z and {qn}n∈Z and these vector sequences satisfy that

|Aij
nm| ≤ C

∞∑
k=n+[m/2]

(|1− ak|+ |1 + bk|+ |pk|+ |qk|), i, j = 1, 2,

|Bij
nm| ≤ C

−∞∑
k=n+[m/2]+1

(|1− ak|+ |1 + bk|+ |pk|+ |qk|), i, j = 1, 2,

where [m/2] is the integer part of m/2 and C > 0 is a constant. Furthermore, these solutions are analytic
with respect to z in C+ := {z : z ∈ C, ℑ(z) > 0} and continuous in C+ . Taking into account the equations
(2.7) and (2.8), we can easily prove that the solutions φ(z) = {φn(z)}n∈Z+ and ψ(z) = {ψn(z)}n∈Z− satisfy

the following asymptotic equations for all z in C+ :

φn(z) = einz

[
−i

(
α12
n

α22
n

)
+ o(1)

]
, n ∈ Z+, |z| → +∞, (2.9)
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and

ψn(z) = e−inz

[
−i

(
β11
n

β21
n

)
+ o(1)

]
, n ∈ Z−, |z| → +∞. (2.10)

Definition 2.1 The wronskian of two solutions {Yn(z)}n∈Z∗ =


y(1)n (z)

y
(2)
n (z)


n∈Z∗

and

{Un(z)}n∈Z∗ =


u(1)n (z)

u
(2)
n (z)


n∈Z∗

of the system (2.1) is defined by

W [Yn(z), Un(z)] := an

[
y(1)n (z)u

(2)
n+1(z)− y

(2)
n+1(z)u

(1)
n (z)

]
. (2.11)

It’s easy to see that φ(z) and ψ(z) are also the solutions of the system (2.1) with the following asymptotic
equations in terms of n , respectively

φn(z) = [I2 + o(1)]

(
e−i z

2

i

)
e−inz, z ∈ C+, n→ +∞, (2.12)

and

ψn(z) = [I2 + o(1)]

(
i

e−i z
2

)
einz, z ∈ C+, n→ −∞. (2.13)

Taking into the asymptotic equations (2.7), (2.8) and (2.12), (2.13), we can easily write

W
[
φ(z), φ(z)

]
=W

[
ψ(z), ψ(z)

]
= 2i cos

z

2
. (2.14)

Two fundamental system of solutions of (2.1) are constituted separately by the sets
{
{φn(z)}n∈Z+ ,

{
φn(z)

}
n∈Z+

}
and

{
{ψn(z)}n∈Z− ,

{
ψn(z)

}
n∈Z−

}
for λ = 2 sin

z

2
and z ∈ R\ {(2k + 1)π : k ∈ Z} .

We consider the following vector sequences:

Φn(z) =

{
a(z)ψn(z) + b(z)ψn(z), n ∈ Z−

φn(z), n ∈ Z+,
(2.15)

and

Ψn(z) =

{
ψn(z), n ∈ Z−

c(z)φn(z) + d(z)φn(z), n ∈ Z+,
(2.16)

for z ∈ R\ {(2k + 1)π : k ∈ Z} .

It is clear that Φ(z) = {Φn(z)}n∈Z∗ and Ψ(z) = {Ψn(z)}n∈Z∗ are the solutions of the system (2.1) for

λ = 2 sin
z

2
, and these solutions defined by (2.15) and (2.16) are called Jost solutions of the system (2.1)-(2.2).
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Theorem 2.2 In the case that the solution Φ provides the condition (2.2), we can obtain a(z) and b(z) as

a(z) =
a−2

2icos
z

2
detB

[
v(z)φ

(1)
1 (z)− u(z)φ

(2)
2 (z)

]
, (2.17)

and
b(z) = − a−2

2icos
z

2
detB

[
v(z)φ

(1)
1 (z)− u(z)φ

(2)
2 (z)

]
, (2.18)

where 
u(z) := γ11ψ

(2)
−1(z) + γ12ψ

(1)
−2(z),

v(z) := γ21ψ
(2)
−1(z) + γ22ψ

(1)
−2(z),

(2.19)

and also the following asymptotic equations are satisfied by these functions, u(z) and v(z) , given by (2.19):

u(z) = eiz
[
−iγ11β21

−1 + o(1)
]
, z ∈ C+, |z| → +∞, (2.20)

v(z) = eiz
[
−iγ21β21

−1 + o(1)
]
, z ∈ C+, |z| → +∞. (2.21)

Proof Let the solution Φ provide the condition (2.2). In this case, we obtain
Φ

(1)
1 (z) = γ11Φ

(2)
−1(z) + γ12Φ

(1)
−2(z),

Φ
(2)
2 (z) = γ21Φ

(2)
−1(z) + γ22Φ

(1)
−2(z),

and if we take into account of the definition of Φ given by (2.15), we can easily get the following system:
φ
(1)
1 (z) = u(z)a(z) + u(z)b(z),

φ
(2)
2 (z) = v(z)a(z) + v(z)b(z),

where u(z) and v(z) are defined by (2.19).

We solve a(z) and b(z) from the last system as

a(z) =
a−2

2icos
z

2
detB

[
v(z)φ

(1)
1 (z)− u(z)φ

(2)
2 (z)

]
,

and
b(z) = − a−2

2icos
z

2
detB

[
v(z)φ

(1)
1 (z)− u(z)φ

(2)
2 (z)

]
.

On the other hand, it’s clear that the asymptotic equations (2.20) and (2.21) are obtained from (2.10). 2

Similarly, taking into account (2.8) and (2.10), the asymptotic equations

u(z) = eiz
[
iγ11β

21
−1 + o(1)

]
, z ∈ C+, |z| → +∞, (2.22)

v(z) = eiz
[
iγ21β

21
−1 + o(1)

]
, z ∈ C+, |z| → +∞, (2.23)

are satisfied and next, we can give the following theorem without proof.
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Theorem 2.3 In the event that the solution Ψ provides the condition (2.2), we can obtain c(z) and d(z) as

c(z) = − a1

2icos
z

2

[
v(z)φ

(1)
1 (z)− u(z)φ

(2)
2 (z)

]
, (2.24)

and

d(z) =
a1

2icos
z

2

[
v(z)φ

(1)
1 (z)− u(z)φ

(2)
2 (z)

]
, (2.25)

where u(z) and v(z) are given by (2.19).

From the functions given by (2.17), (2.18), (2.24) and (2.25), it’s easy to see that the following relations
are valid:

c(z) =
a1
a−2

a(z) detB, d(z) = − a1
a−2

b(z) detB. (2.26)

On the other hand, using the expressions of a(z) and b(z) given by (2.17) and (2.18), we get

M |b(z)|2 =
∣∣∣v(z)φ(1)

1 (z)
∣∣∣2 − v(z)u(z)φ

(1)
1 (z)φ

(2)
2 (z)− u(z)v(z)φ

(2)
2 (z)φ

(1)
1 (z) +

∣∣∣u(z)φ(2)
2 (z)

∣∣∣2 ,

M |a(z)|2 =
∣∣∣v(z)φ(1)

1 (z)
∣∣∣2 − u(z)v(z)φ

(1)
1 (z)φ

(2)
2 (z)− v(z)u(z)φ

(2)
2 (z)φ

(1)
1 (z) +

∣∣∣u(z)φ(2)
2 (z)

∣∣∣2 ,

where M :=

(
2

a−2
cos

z

2
detB

)2

, and, from here, we obtain the following relation:

|b(z)|2 = |a(z)|2 − a−2

a1 detB , (2.27)

and also, using (2.26) and (2.27) we obtain

|d(z)|2 = |c(z)|2 − a1 detB
a−2

. (2.28)

Using the equations given by (2.14), (2.15) and (2.16) and also taking into account the relations (2.27)
and (2.28), we can easily obtain the following theorem.

Theorem 2.4 For z ∈ R\ {(2k + 1)π : k ∈ Z} , the following wronskians hold:

(i) W
[
Φ(z),Φ(z)

]
=


− a−2

a1 detB2icos
z

2
, n ∈ Z−

2icos
z

2
, n ∈ Z+,

402



SOLMAZ and BAIRAMOV/Turk J Math

(ii) W
[
Ψ(z),Ψ(z)

]
=


−2icos

z

2
, n ∈ Z−

a1 detB
a−2

2icos
z

2
, n ∈ Z+,

(iii) W [Φ(z),Ψ(z)] =


2ib(z)cos

z

2
, n ∈ Z−

−a1 detB
a−2

2ib(z)cos
z

2
, n ∈ Z+,

(iv) W
[
Φ(z),Ψ(z)

]
=


−2ia(z)cos

z

2
, n ∈ Z−

a1 detB
a−2

2ia(z)cos
z

2
, n ∈ Z+.

3. The scattering matrix of L and its properties

We will denote the set of all spectral singularities and eigenvalues of the system (2.1)-(2.2) by σss(L) and σd(L) ,
respectively. It’s clear that the sets σss(L) and σd(L) are given as follows:

σss(L) = {z : z ∈ R, b(z) = 0} ,

σd(L) = {z : z ∈ C+, b(z) = 0} .

Theorem 3.1 b(z) ̸= 0 for all z ∈ R\ {(2k + 1)π : k ∈ Z} .

Proof On the contrary, there exists a real number z0 such that b(z0) = 0 . In this case, we get

W [Φ(z0),Ψ(z0)] = 0.

Since W [Φ(z0),Ψ(z0)] ̸= 0 for all z ∈ R\ {(2k + 1)π : k ∈ Z} from Theorem 2.4, the assumption can’t be true.
2

Remark 3.2 Since b(z) ̸= 0 for all z ∈ R\ {(2k + 1)π : k ∈ Z} , we can obtain σss(L) = ∅ .

It is clear that the set
{
Ψ,Ψ

}
forms the fundamental system of solutions of (2.1) for all z ∈ R\ {(2k + 1)π : k ∈ Z} .

Also, we introduce the following matrix function to investigate the scattering matrix of L

S(z) =

(
s11(z) s12(z)

s21(z) s22(z)

)
,

and thus, we can give the relation of the solutions of L as follows:(
Φ(z)

Φ(z)

)
= S(z)

(
Ψ(z)

Ψ(z)

)
.

If we consider Theorem 2.4, the components of the scattering matrix of L have the following forms:

s22(z) = s11(z) = b(z), z ∈ R\ {(2k + 1)π : k ∈ Z} ,
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s21(z) = s12(z) = a(z), z ∈ R\ {(2k + 1)π : k ∈ Z} ,

and also, from (2.27), the determinant of S(z) is obtained as

det S(z) =
a−2

a1 detB .

The function b(z) encountered as the component of the scattering matrix of L is called transmission
coefficient. If the function b(z) is given, the other components of the scattering matrix of L are also easily
found by using (2.26) and (2.27).

Finally, we must show that the scattering matrix S(z) is bounded in all z ∈ C+ . For this purpose, we
must obtain the asymptotic equtions of a(z) and b(z) .

Theorem 3.3 Transmission coefficient of the scattering matrix of L satisfies:

(i) a(z) = e5iz/2 [K + o(1)] , z ∈ C+, |z| → +∞,

(ii) b(z) = e5iz/2 [−K + o(1)] , z ∈ C+, |z| → +∞,

where K is a complex constant and K ̸= 0 .

Proof Using the asymptotics (2.22), (2.23) and (2.9) in the expression (2.17), we can easily write

a(z) = e5iz/2 [K + o(1)] , z ∈ C+, |z| → +∞,

where K =
α12
1 β

21
−1a−2γ22

i detB is a complex constant and K must be nonzero as the numbers α12
1 , β

21
−1, a−2 and

γ22 are different from zero. Similarly, from (2.20), (2.21) and (2.9) in the expression (2.18), we can easily show
the proof of the (ii) . 2
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