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Abstract: We handle an impulsive Sturm–Liouville boundary value problem. We find the Jost solution, Jost function,
and scattering function of this problem and examine the properties of scattering function. We also study eigenvalues
and resolvent operator of this problem. Finally, we exemplify our work by taking a different problem.
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1. Introduction
First of all, let us give a brief information about the existing literature of Sturm–Liouville operators. The
investigation of the spectral theory of Sturm–Liouville operators was first started by Naimark [14] in 1960.
Naimark explored one part of the continuous spectrum. This part is a mathematical barrier to the integrity
of eigenvectors known as spectral singularity. Therefore, Guseinov [8], Levitan [9], Marchenko [11], and
Schwartz [16] studied the spectral singularities of Sturm–Liouville boundary value problem. Then, spectral
analysis and scattering analysis of some boundary value problems were investigated using the Sturm–Liouville
equations, Hamilton systems, and Schrödinger equations. We refer to these references for detailed information
[2, 4, 7, 10, 15, 18]. On the other hand, with the development of science, such equations could not mathematically
explain situations involving discontinuity. To deal with discontinuities, new conditions called jump points,
point interaction, impulsive conditions, interface points, and transmission points are added on discontinuous
points. Impulsive differential equations have great importance in physical and chemical phenomena and quantum
mechanics. The theory of impulsive differential equations is discussed in a detailed way in applied mathematics
[1, 12, 13, 17, 19]. Impulsive condition is well developed in case of continuity. The scattering analysis of the
impulsive Sturm–Liouville equation was examined in the studies of Bairamov et al. [3, 5, 6]. The difference
in our study is that the spectral parameter ζ exists both in differential equation and in boundary condition.
Moreover, the boundary condition is in the quadratic form with the ζ spectral parameter. This gives the
problem a new perspective.

We shall define the impulsive Sturm–Liouville boundary value problem (ISBVP)

−u′′ + q(z)u = ζ2u, z ∈ [0, 1) ∪ (1,∞), (1.1)
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(
ℏ0 + ℏ1ζ + ℏ2ζ2

)
u′(0) +

(
η0 + η1ζ + η2ζ

2
)
u(0) = 0, (1.2)

u(1+) = δ11u(1
−) + δ12u

′(1−), u′(1+) = δ21u(1
−) + δ22u

′(1−), (1.3)

where ζ is a spectral parameter, δ11, δ12, δ21, δ22, ℏi, ηi, i = 0, 1, 2 are real numbers, ℏ2η2 ̸= 0, δ12 ̸= 0,

δ11δ22 − δ21δ12 > 0 and q is a real valued function that satisfies the following condition

∞∫
0

(1 + z)|q(z)|dz <∞. (1.4)

Under the condition (1.4), e(z, ζ) is a solution of the equation (1.1) that satisfies the following condition

lim
z→∞

e(z, ζ)e−iζ = 1, ζ ∈ C+ := {ζ ∈ C : Imζ ≥ 0}.

The solution which is referred to as the Jost solution can be expressed as

e(z, ζ) = eiζz +

∞∫
z

K(z, t)eiζtdt, ζ ∈ C+, (1.5)

where K(z, t) is defined by the potantial function q in Levitan [9] and Marchenko [11]. The solution e(z, ζ) is
analytic with respect to ζ in C+ := {ζ ∈ C : Imζ > 0} and continuous up to the real axis.

The plan of this paper is as follows: In Section 2, we deal with the impulsive Sturm–Liouville boundary
value problem on the semiaxis. We first obtain Jost solutions and Jost function of (1.1)–(1.3), then we get the
scattering function by using the Jost function. We also investigate charactaristic properties of the scattering
function of (1.1)–(1.3). In Section 3, we define the set of eigenvalues of ISBVP (1.1)–(1.3). Furthermore, we get
an asymptotic equation for Jost function and resolvent operator of this problem. In Section 4, we are interested
in unperturbated impulsive boundary value problem of (1.1)–(1.3). Finally, we express some conclusions in
Section 5.

2. Scattering solutions and scattering function

In this section, we will be interested in equation (1.1) with the conditions (1.2) and (1.3). We obtain Jost
function and scattering function of (1.1)–(1.3). Then, we investigate the properties of scattering function.

Let S(z, ζ2) and C(z, ζ2) be the fundamental solutions of (1.1) in the interval [0, 1) fulfilling the initial
conditions

S(0, ζ2) = 0, S′(0, ζ2) = 1

and
C(0, ζ2) = 1, C ′(0, ζ2) = 0.

In addition, integral representations of the solutions S(z, ζ2) and C(z, ζ2) are expressed as follows

S(z, ζ2) =
sin ζz

ζ
+

z∫
0

A(z, t)
sinζt

ζ
dt (2.1)
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and

C(z, ζ2) = cos ζz +

z∫
0

B(z, t) cos ζtdt, (2.2)

where the kernel functions A(z, t) and B(z, t) are defined by the potential function q in Levitan [9]. It is clear
that the solutions S(z, ζ2) and C(z, ζ2) are entire functions of ζ and

W [S(z, ζ2), C(z, ζ2)] = −1, ζ ∈ C,

where W [u1, u2] denotes the wronskian of the solutions u1 and u2 of the equation (1.1). From S(z, ζ2) ,
C(z, ζ2) , and e(z, ζ), let us define the following function for ζ ∈ C+

E(z, ζ) =

{
ρ(ζ)S(z, ζ2) + τ(ζ)C(z, ζ2); z ∈ [0, 1)

e(z, ζ); z ∈ (1,∞).
(2.3)

By using (1.3), we write for ζ ∈ C+

e(1, ζ) = ρ(ζ)
{
δ11S(1, ζ

2) + δ12S
′(1, ζ2)

}
+ τ(ζ)

{
δ11C(1, ζ

2) + δ12C
′(1, ζ2)

}
e′(1, ζ) = ρ(ζ)

{
δ21S(1, ζ

2) + δ22S
′(1, ζ2)

}
+ τ(ζ)

{
δ21C(1, ζ

2) + δ22C
′(1, ζ2)

}
and from these equations, we obtain

ρ(ζ) =
1

δ12δ21 − δ11δ22
[e(1, ζ)

{
δ21C(1, ζ

2) + δ22C
′(1, ζ2)

}
−e′(1, ζ)

{
δ11C(1, ζ

2) + δ12C
′(1, ζ2)

}
] (2.4)

τ(ζ) =
1

δ11δ22 − δ12δ21
[e(1, ζ)

{
δ21S(1, ζ

2) + δ22S
′(1, ζ2)

}
−e′(1, ζ)

{
δ11S(1, ζ

2) + δ12S
′(1, ζ2)

}
]. (2.5)

The function E(z, ζ) is the Jost solution of ISBVP (1.1)-(1.3), where ρ(ζ) and τ(ζ) are defined in (2.4) and
(2.5), respectively. By using the boundary condition (1.2), we obtain

E(ζ) = (ℏ0 + ℏ1ζ + ℏ2ζ2)ρ(ζ) + (η0 + η1ζ + η2ζ
2)τ(ζ). (2.6)

The function E(ζ) is the Jost function of (1.1)–(1.3), it is analytic in C+ and continuous up to the real
axis. It is known from [11]

W [e(z, ζ), e(z,−ζ)] = −2iζ, ζ ∈ R\{0}.

Now we can give the following solution of (1.1)–(1.3) for ζ ∈ R\{0}

F (z, ζ) =

{
ψ(z, ζ); z ∈ [0, 1)

υ(ζ)e(z, ζ) + φ(ζ)e(z,−ζ); z ∈ (1,∞),
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where ψ(z, ξ) is the solution of (1.1) given by

ψ(z, ζ) = −(η0 + η1ζ + η2ζ
2)S(z, ζ2) + (ℏ0 + ℏ1ζ + ℏ2ζ2)C(z, ζ2).

It is obvious that the function ψ(z, ζ) is an entire function of ζ . From the impulsive condition (1.3), we get

υ(ζ)e(1, ζ) + φ(ζ)e(1,−ζ) = δ11ψ(1, ζ) + δ12ψ
′(1, ζ)

υ(ζ)e′(1, ζ) + φ(ζ)e′(1,−ζ) = δ21ψ(1, ζ) + δ22ψ
′(1, ζ).

Using (2.4) and (2.5), we find that

υ(ζ) =
δ11δ22 − δ12δ21

2iζ

[{
ℏ0 + ℏ1ζ + ℏ2ζ2

}
ρ(ζ) +

{
η0 + η1ζ + η2ζ

2
}
τ(ζ)

]
(2.7)

and

φ(ζ) =
δ11δ22 − δ12δ21

2iζ

[{
ℏ0 + ℏ1ζ + ℏ2ζ2

}
ρ(ζ) +

{
η0 + η1ζ + η2ζ

2
}
τ(ζ)

]
. (2.8)

Theorem 2.1 For all ζ ∈ R\{0}, E(ζ) ̸= 0.

Proof Let us assume that there exists a ζ0 in R\{0}, such that E(ζ0) = 0. From (2.7) and (2.8), we find
υ(ζ0) = φ(ζ0) = 0. Then the solution F (z, ζ0) is equal to zero identically, so it is a trivial solution of (1.1)–(1.3)
which gives a contradiction with our assumption, i.e. E(ζ) ̸= 0 for all ζ ∈ R\{0}. 2

The scattering function of (1.1)–(1.3) is defined by

S(ζ) =
E(ζ)

E(ζ)
, ζ ∈ R\{0}.

Using (2.6), we can rewrite the scattering function as follows

S(ζ) =
(ℏ0 + ℏ1ζ + ℏ2ζ2)ρ(ζ) + (η0 + η1ζ + η2ζ

2)τ(ζ)

(ℏ0 + ℏ1ζ + ℏ2ζ2)ρ(ζ) + (η0 + η1ζ + η2ζ2)τ(ζ)
(2.9)

for all ζ ∈ R\{0}.

Theorem 2.2 For all ζ ∈ R\{0}, the scattering function satisfies

S(ζ) = S−1(ζ) and S(−ζ) ̸= S(ζ).

Proof Using (2.9), we get

S(ζ) =
(ℏ0 + ℏ1ζ + ℏ2ζ2)ρ(ζ) + (η0 + η1ζ + η2ζ

2)τ(ζ)

(ℏ0 + ℏ1ζ + ℏ2ζ2)ρ(ζ) + (η0 + η1ζ + η2ζ2)τ(ζ)
. (2.10)

From (2.9) and (2.10), we find
S(ζ) = S−1(ζ).
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Similarly, using equation (2.9), we write

S(−ζ) = (ℏ0 − ℏ1ζ + ℏ2ζ2)ρ(−ζ) + (η0 − η1ζ + η2ζ
2)τ(−ζ)

(ℏ0 − ℏ1ζ + ℏ2ζ2)ρ(−ζ) + (η0 − η1ζ + η2ζ2)τ(−ζ)
. (2.11)

From (2.10) and (2.11), we get

S(−ζ) ̸= S(ζ).

2

Lemma 2.3 For ζ ∈ R\{0}, the following wronskian holds

W [E(z, ζ), F (z, ζ)] =

{
−E(ζ); z ∈ [0, 1)

−(δ11δ22 − δ12δ21)E(ζ); z ∈ (1,∞).

Proof If we write the wronskian of E(z, ζ) and F (z, ζ) for z ∈ [0, 1), we find

W [E(z, ζ), F (z, ζ)] = −(η0 + η1ζ + η2ζ
2)τ(ζ)− (η0 + η1ζ + η2ζ

2)ρ(ζ)

= −E(ζ).

Similarly, for z ∈ (1,∞), we get

W [E(z, ζ), F (z, ζ)] = φ(ζ)W [e(z, ζ), e(z,−ζ)].

After applying the definition φ(ζ) given by (2.8), we find

W [E(z, ζ), F (z, ζ)] = −(δ11δ22 − δ12δ21)E(ζ)

for z ∈ (1,∞). This completes the proof. 2

3. Resolvent operator and discrete spectrum

In this part, we give unbounded solution of (1.1)–(1.3). Afterward, we obtain resolvent operator and Green
function of ISBVP (1.1)-(1.3) by using this unbounded solution.

Theorem 3.1 The set of eigenvalues of (1.1)–(1.3) is

σd = {µ : µ = ζ2, ζ ∈ C+, E(ζ) = 0}.

Proof
lim
z→∞

ĕ(z, ζ)eiζz = 1, lim
z→∞

ĕ′(z, ζ)eiζz = −iζ, ζ ∈ C+

ĕ(z, ζ) is unbounded solution in (1,∞) of equation (1.1) satisfying above conditions [15]. It is clear that

W [e(z, ζ), ĕ(z, ζ)] = −2iζ, z ∈ (1,∞), ζ ∈ C+.
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On the other hand, for all ζ ∈ C+\{0}, equation (1.1) admits another solution as follows

G(z, ζ) =

{
ψ(z, ζ); z ∈ [0, 1)

γ(ζ)e(z, ζ) + κ(ζ)ĕ(z, ζ), z ∈ (1,∞).
(3.1)

By using the impulsive condition (1.3), we get the coefficients

κ(ζ) =
δ11δ22 − δ12δ21

2iζ
E(ζ) (3.2)

and

γ(ζ) =
1

2iζ
[ĕ(1, ζ){δ21ψ(1, ζ) + δ22ψ

′(1, ζ)} − ĕ′(1, ζ){δ11ψ(1, ζ) + δ12ψ
′(1, ζ)}] . (3.3)

It is evident from (3.1) that the first part of G(z, ζ) is in L2(0, 1). Moreover, if κ(ζ) = 0, then the second part
of the G(z, ζ) is in L2(1,∞). It follows from (3.1), (3.2), and the definition of eigenvalues in Naimark [15] that

σd = {µ : µ = ζ2, ζ ∈ C+, E(ζ) = 0}

or
σd = {µ : µ = ζ2, ζ ∈ C+, κ(ζ) = 0}.

It completes the proof. 2

By using (2.3) and (3.1), we also find

W [E(z, ζ), G(z, ζ)] =

{
−E(ζ); z ∈ [0, 1)

−(δ11δ22 − δ12δ21)E(ζ); z ∈ (1,∞)

for all ζ ∈ C+\{0}.

Theorem 3.2 The Jost function of ISBVP (1.1)–(1.3) satisfies

E(ζ) =
ζ4

δ11δ22 − δ12δ21

(
δ12ℏ2
2

+ o(1)

)
, ζ ∈ C+, |ζ| → ∞. (3.4)

Proof Using (2.1) and (2.2), we obtain for ζ ∈ C+ and |ζ| → ∞

S
(
1, ζ2

)
=
e−iζ

ζ

(
i

2
+ o(1)

)

S′ (1, ζ2) = e−iζ

(
1

2
+O

(
1

ζ

))

C
(
1, ζ2

)
= e−iζ

(
1

2
+ o(1)

)
(3.5)
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C ′ (1, ζ2) = ζe−iζ

(
− i

2
+O

(
1

ζ

))
.

Similarly from (1.5), we find for ζ ∈ C+ and |ζ| → ∞

e(1, ζ) = eiζ(1 + o(1))

e′(1, ζ) = ζeiζ
(
i+O

(
1

ζ

))
. (3.6)

By the help of (3.5) and (3.6), proof of the theorem is completed. 2

Theorem 3.3 Under condition (1.4), we get the resolvent operator of ISBVP (1.1)–(1.3)

Rζf =

∞∫
0

G(z, t; ζ)f(t)dt,

where f is an arbitrary function in L2 (0,∞) and G(z, t; ζ) is the Green function of (1.1)–(1.3) defined as

G(z, t; ζ) =


E(z, ζ)G(t, ζ)

W [E(z, ζ), G(z, ζ)]
; 0 ≤ t < z

G(z, ζ)E(t, ζ)

W [E(z, ζ), G(z, ζ)]
; z ≤ t <∞

for all z ̸= 1, t ̸= 1.

Proof In order to get the resolvent operator, we will consider the following equation

−u′′ + q(z)u− ζ2u = f(z), z ∈ [0, 1) ∪ (1,∞). (3.7)

From (2.3) and (3.1), we write the solution of (3.7)

χ(z, ζ) = a1(z)E(z, ζ) + a2(z)G(z, ζ).

Using the method of variation of parameters, a1(z) and a2(z) values are obtained as follows

a1(z) = b+

z∫
0

f(t)G(t, ζ)

W [E(z, ζ), G(z, ζ)]
dt

a2(z) = c+

∞∫
z

f(t)E(t, ζ)

W [E(z, ζ), G(z, ζ)]
dt,

where b and c are real numbers. Since the solution χ(z, ζ) is in L2(0,∞), the coefficient b also becomes zero
from the boundary condition (1.2). The proof is completed. 2
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4. An example
In this section, we give a detailed example to illustrate our results. We find the Jost solution, Jost function,
and scattering function of this example.

Let us investigate the following ISBVP

−u′′ = ζ2u, z ∈ [0, 1) ∪ (1,∞) (4.1)

with the boundary condition
u′(0) + ζ2u(0) = 0 (4.2)

and the impulsive conditions
u(1+) = δ11u(1

−) + δ12u
′(1−)

u′(1+) = δ21u(1
−) + δ22u

′(1−), (4.3)

where ζ is a spectral parameter, δ11 , δ12 , δ21 , δ22 are real numbers and δ11δ22 − δ21δ22 > 0. It is clear that

e(z, ζ) = eiζz, S
(
z, ζ2

)
=

sin ζz

ζ
, C

(
z, ζ2

)
= cos ζz.

For ζ ∈ C+, we also write the solution of (4.1)–(4.3)

E(z, ζ) =

ρ(ζ)
sin(ζz)

ζ
+ τ(ζ) cos(ζz); z ∈ [0, 1)

eiζz; z ∈ (1,∞).
(4.4)

From (4.3), we find

ρ(ζ) =
eiζ

δ12δ21 − δ11δ22

(
δ21 cos ζ − δ22ζ sin ζ − δ11iζ cos ζ + δ12iζ

2 sin ζ
)

and

τ(ζ) =
eiζ

δ11δ22 − δ21δ12

(
δ21

sin ζ

ζ
+ δ22 cos ζ − δ11i sin ζ − δ12iζ cos ζ

)
.

By using (4.2) and (4.4), we get Jost function of (4.1)–(4.3) as

E(ζ) =
eiζ

δ11δ22 − δ21δ12
[δ11i(ζ

2 sin ζ − ζ cos ζ) + δ12i(ζ
2 sin ζ + ζ3 cos ζ)

+δ21(cos ζ − ζ sin ζ)− δ22(ζ sin ζ + ζ2 cos ζ)].

The scattering function of ISBVP (4.1)–(4.3) is written as

S(ζ) =
E(ζ)

E(ζ)
,

where

E(ζ) =
e−iζ

δ11δ22 − δ21δ12
[δ11i(ζ cos ζ − ζ2 sin ζ)− δ12i(ζ

2 sin ζ + ζ3 cos ζ)

+δ21(cos ζ − ζ sin ζ)− δ22(ζ sin ζ + ζ2 cos ζ)].
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5. Conclusion
Impulsive equations have recently been developed in applied mathematics which has extensive physical and
realistic mathematical models. This study is important because it is the first study to examine the scattering
solutions of the impulsive Sturm–Liouville equation whose boundary condition is in quadratic form with the
spectral parameter. With the help of these solutions, we obtain the Jost function and scattering function of
(1.1)–(1.3). Then, we give information about the properties of the scattering function. Furthermore, we find
the resolvent operator, discrete spectrum of the problem. This study can be a reference for researchers studying
scattering theory.
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