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Abstract: This paper deals with infinite system of nonlinear two-point tempered fractional order boundary value
problems
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0Dδ2,ℓ

z

[
pj(z)

RL
0Dδ1,ℓ

z ϑj(z)
]
= λjφ

(
z, ϑ(z)

)
, z ∈ [0, T], δ1, δ2 ∈ (1, 2),

ϑj(0) = lim
z→0

[
RL
0Dδ1,ℓ

z (eℓzϑj(z))
]
= 0,

eℓTϑj(T) = lim
z→T

[
RL
0Dδ1,ℓ

z (eℓzϑj(z))
]
= 0,

where j ∈ {1, 2, 3, · · ·}, ℓ ≥ 0, RL
0D⋆,ℓ

z denotes the Riemann–Liouville tempered fractional derivative of order ⋆ ∈ {δ1, δ2} ,
ϑ(z) = (ϑj(z))

∞
j=1 , φj : [0, T] → [0, T] are continuous and we derive sufficient conditions for the existence of solutions

to the system via the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in tempered sequence
spaces.

Key words: Tempered fractional derivative, tempered sequence space, iterative system, Meir–Keeler fixed point
theorem, Hausdorff measure of noncompactness.

1. Introduction
Fractional differential equations with boundary conditions have occupied an important area in the fractional
calculus domain, since these problems appear in various applications of sciences and engineering, such as
mechanics, finance, control theory, electricity, chemistry, biology, chemistry, and economics [8, 10, 32, 35, 36].
The progress of this field has motivated researchers to investigate some interesting questions related to the
existence, uniqueness, and stability of solutions [13, 23, 25–27, 31].

The tempered fractional derivative is one of the generalized forms of the fractional derivatives. Multiplying
classical fractional derivative by an exponential factor leads to the tempered fractional derivative. This new
fractional operator depends on a parameter ℓ, and the classical Riemann–Liouville and Caputo fractional
derivatives are obtained in special cases for ℓ = 0. Nowadays, the tempered fractional derivative has become
a popular topic for investigation due to its application in physics, groundwater hydrology, poroelasticity,
geophysical flow, finance [7, 11, 12, 17, 18, 28] and so on. In [40], Zaky studied the well-posedness of the
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solution to the following two-point nonlinear tempered fractional boundary value problem

C
0Dα,ℓ

z ϑ(z) = g(z, ϑ(z)) z ∈ [0, T],α ∈ (0, 1),

aϑ(0) + beℓTϑ(T) = c,

and also derived and analyzed a Jacobi spectral-collocation method for the numerical solution. In [37], Yadav
et al. discussed the numerical approximation to solve regular tempered fractional Sturm-Liouville problem

C
zD

α,ℓ
b

[
p(z)CaDα,ℓ

z ϑ(z)
]
= λφ(z)ϑ(z)) z ∈ [a, b],α ∈ (0, 1),

ϑ(a) = 0,
[
p(z)CaDα,ℓ

z ϑ(z)
] ∣∣∣

z=b
= 0,

by using finite difference method. Recently, Pandey et al. [24] studied the properties of eigenvalue for the
regular tempered fractional Sturm-Liouville problem

C
zD

α,ℓ
b

[
p(z)CaDα,ℓ

z ϑ(z)
]
+ φ(z)ϑ(z) = λψλ(z)ϑ(z) z ∈ [a, b],α ∈ (0, 1),

ϑ(a) = 0, ϑ(b) = 0,

by using a fractional variational approach.
In functional analysis, the measure of noncompactness plays an important role which was introduced

by Kuratowski [15]. Recently, Srivastava et al. [34] studied the solvability of nonlinear functional integral
equations of two variables by using the measure of noncompactness on C([0, a] × [0, a]) and a fixed point
theorem. Moreover, the idea of measure of noncompactness has been used by many researchers in obtaining the
existence of solutions of infinite systems of integral and differential equations, see the monograph of [6]. In [21],
Mursaleen and Muhiuddine established existence theorems for the infinite systems of differential equations in
the space ℓp. Alotaibi et al. [2] discussed existence theorems for the infinite systems of linear equations in ℓ1

and ℓp . In [33], Srivastava et al. studied the existence of solutions of infinite systems of nth order differential
equations in the spaces c0 and ℓ1 via the measure of noncompactness. On the other hand, Mursaleen et al. [20]
considered the following infinite systems of three-point fractional order boundary value problems in the spaces
c0 and ℓp,

RLDα
0+(ϑj(z)) + fj(s, ϑj(z)), 0 < z < T, 1 < α < 2,

ϑj(0) = 0, ϑj(T) = aϑj(ξ), aξα−1 < Tα−1, j ∈ N,

and derived necessary conditions for the existence of solutions for the infinite system. Recently, Das et al. [9]
studied the infinite system of fractional order two-point boundary value problem

RLDα
0+(ϑj(z)) + fj(z, ϑj(z)), 0 < z < T, 1 < α < 2,

ϑj(0) = 0, ϑj(T) = 0, j ∈ N,

via Hausdorff measure of noncompactness in the tempered sequence spaces and established existence of solutions
for the infinite system. Inspired by the aforementioned studies, in this paper, we study the following infinite
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system of nonlinear two-point tempered fractional order boundary value problems

RL
0Dδ2,ℓ

z

[
pj(z)

RL
0Dδ1,ℓ

z ϑj(z)
]
= λjφ

(
z, ϑ(z)

)
, z ∈ [0, T], δ1, δ2 ∈ (1, 2),

ϑj(0) = lim
z→0

[
RL
0Dδ1,ℓ

z (eℓzϑj(z))
]
= 0,

eℓTϑj(T) = lim
z→T

[
RL
0Dδ1,ℓ

z (eℓzϑj(z))
]
= 0,

(1.1)

where j ∈ {1, 2, 3, · · ·}, ℓ ≥ 0, RL
0D∗,ℓ

z denotes the Riemann–Liouville tempered fractional derivative of order
⋆ ∈ {δ1, δ2}, ϑ(z) =

(
ϑj(z)

)∞
j=1

, φj : [0, T] → [0, T] are continuous and we establish necessary conditions for the

existence of solutions for the system via the concept of Hausdorff measure of noncompactness and Meir–Keeler
fixed point theorem in a tempered sequence space.

2. Preliminaries
In this section, we first give the definitions and some properties of the tempered fractional calculus. Denote
L([a, b]) as the integrable space which includes the Lebesgue measurable functions on the finite interval [a, b].

Let AC[a, b] be the space of real values functions ϑ(z) which are absolutely continuous on [a, b]. For n ∈ N+,

we denote ACn[a, b] as the space of real values functions ϑ(z) which have continuous derivatives up to order

n− 1 on [a, b] such that dn−1ϑ(z)
dzn−1 ∈ AC[a, b].

Definition 2.1 ([16, 30]) Suppose that the real function ϑ(z) is piecewise continuous on (a, b) and ϑ(z) ∈
L([a, b]), θ > 0, ℓ ≥ 0. The Riemann-Liouville tempered fractional integral of order θ is defined as

RL
aIθ,ℓz ϑ(z) = e−ℓz RL

aIθz
(
eℓzϑ(z)

)
=

1

Γ(θ)

∫ z

a

e−ℓ(z−y)(z− y)θ−1ϑ(y)dy,

where RL
aIθz denotes the Riemann–Liouville fractional integral [14]

RL
aIθzϑ(z) =

1

Γ(θ)

∫ z

a

(z− y)θ−1ϑ(y)dy.

Definition 2.2 ([16, 30]) For n − 1 < θ < n, n ∈ N+, ℓ ≥ 0. The Riemann–Liouville tempered fractional
derivative of order θ is defined as

RL
aDθ,ℓ

z ϑ(z) = e−ℓz RL
aDθ

z

(
eℓzϑ(z)

)
=

e−ℓz

Γ(n− θ)

dn

dyn

∫ z

a

eℓyϑ(y)

(z− y)θ−n+1
dy,

where RL
aDθ

z denotes the Riemann–Liouville fractional derivative [14]

RL
aDθ

zϑ(z) =
1

Γ(n− θ)

dn

dyn

∫ z

a

ϑ(y)

(z− y)θ−n+1
dy.

Lemma 2.3 (Composite property[16]) Let ϑ(z) ∈ ACn[a, b] and n− 1 < θ < n. Then the Riemann–Liouville
tempered fractional derivative and fractional integral have the composite property:

RL
aIθ,ℓz

[
RL
aDθ,ℓ

z ϑ(z)
]
= ϑ(z)−

n−1∑
k=0

e−ℓz(z− a)θ−k−1

Γ(θ− k)

[
RL
aDθ−k−1

z

(
eℓzϑ(z)

)∣∣∣
z=a

]
(2.1)
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and
RL
aDθ,ℓ

z

[
RL
aIθ,ℓz ϑ(z)

]
= ϑ(z). (2.2)

Remark 2.4 ([3]) For η > −1, we have

RL
aDθ

z z
η =

Γ(η + 1)

Γ(η − θ+ 1)
zη−θ,

giving inparticular RL
aDθ

z z
θ−m = 0, m = 1, 2, · · ·, N, where N is the smallest integer greater than or equal to θ.

In order to study BVP (1.1), we first consider the following linear boundary value problem,

RL
0Dδ1,ℓ

z ϑj(z) + f(z) = 0, z ∈ [0, T], δ1 ∈ (1, 2), (2.3)

ϑj(0) = eℓTϑj(T) = 0, (2.4)

where f ∈ C[0, T] is a given function.

Lemma 2.5 For every f ∈ C[0, T], the linear boundary value problem (2.3)–(2.4) has a unique solution

ϑj(z) =

∫ T

0

ℵδ1(z, y)e
−ℓ(z−y)f(y)dy, (2.5)

where

ℵδ1(z, y) =
1

Γ(δ1)


zδ1−1(T− y)δ1−1

Tδ1−1
− (z− y)δ1−1, y ≤ z,

zδ1−1(T− y)δ1−1

Tδ1−1
, z ≤ y.

Proof Applying the Rieman–Liouville tempered fractional integral operator RL
0Iδ1,ℓ

z on both sides of the first
equation of (2.3) and using composite property (2.1), we get

ϑj(z) = c0e
−ℓzzδ1−1 + c1e

−ℓzzδ1−2 − 1

Γ(δ1)

∫ z

0

e−ℓ(z−y)(z− y)δ1−1f(y)dy, (2.6)

where c0 = 1
Γ(δ1)

RL
0Dθ−1

z

(
eℓzϑ(z)

)∣∣∣
z=0

and c1 = 1
Γ(δ1−1)

RL
0Dθ−2

z

(
eℓzϑ(z)

)∣∣∣
z=0

. Using boundary conditions, we

get c1 = 0 and

c0 =
1

Tδ1−1Γ(δ1)

∫ T

0

eℓy(T− y)δ1−1f(y)dy.

Plugging c0 and c1 into (2.5), we obtain

ϑj(z) =
1

Γ(δ1)

∫ T

0

e−ℓ(z−y) z
δ1−1(T− y)δ1−1

Tδ1−1
f(y)dy

− 1

Γ(δ1)

∫ z

0

e−ℓ(z−y)(z− y)δ1−1f(y)dy (2.7)

=

∫ T

0

ℵδ1(z, y)e
−ℓ(z−y)f(y)dy
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Next we show that (2.5) is the solution of (1.1). Applying the operator RL
0Dδ1,ℓ

z to both sides of (2.7) and using
composite properity (2.2), we get

RL
0Dδ1,ℓ

z ϑj(z) =
1

Γ(δ1)

∫ T

0

e−ℓy RL
0Dδ1,ℓ

z

(
e−ℓzzδ1−1

) (T− y)δ1−1

Tδ1−1
f(y)dy− RL

0Dδ1,ℓ
z

(
RL
0Iδ1,ℓ

z f(z)
)

= −f(z),

where we use the fact
RL
0Dδ1,ℓ

z

(
e−ℓzzδ1−1

)
= e−ℓz RL

0Dδ1
z

(
zδ1−1

)
= 0

by Remark 2.4. Now from (2.7), it is clear that ϑj(0) = eℓTϑj(T) = 0. This completes the proof. 2

Lemma 2.6 The kernel ℵδ1
(z, y) has the following properties:

(i) ℵδ1
(z, y) is nonnegative and continuous on [0, T]× [0, T].

(ii) ℵδ1(z, y) ≤ ℵδ1(y, y) ≤
Tδ1−1

Γ(δ1)
for z, y ∈ [0, T]× [0, T].

(iii) max
z∈[0,T]

∫ T

0

ℵδ1(z, y)dy =
Tδ1

Γ(δ1)
.

Proof It is clear from the definition of ℵδ1
(z, y) that ℵδ1

(z, y) is continuous on [0, T]×[0, T]. For 0 ≤ y ≤ z ≤ T,

we have

ℵδ1
(z, y) =

1

Γ(δ1)

[
zδ1−1(T− y)δ1−1

Tδ1−1
− (z− y)δ1−1

]
=

1

Γ(δ1)

[
zδ1−1

(
1− y

T

)δ1−1

− zδ1−1
(
1− y

z

)δ1−1
]

≥ zδ1−1

Γ(δ1)

[(
1− y

T

)δ1−1

−
(
1− y

z

)δ1−1
]
≥ 0.

For 0 ≤ z ≤ y ≤ T, it is obvious that ℵδ1
(z, y) ≥ 0. Thus, ℵδ1

(z, y) ≥ 0 for all z, y ∈ [0, T]. Since, for
0 ≤ y ≤ z ≤ T,

∂ℵδ1
(z, y)

∂z
=

1

Γ(δ1)

[
(δ1 − 1)zδ1−2(T− y)δ1−1

Tδ1−1
− (δ1 − 1)(z− y)δ1−2

]

=
zδ1−1

Γ(δ1 − 1)

[(
1− y

T

)δ1−2

−
(
1− y

z

)δ1−2
]

≤ 0, 1 < δ1 ≤ 2,

ℵδ1(z, y) is nonincreasing with respect to z on [y, T]. It follows that

ℵδ1
(z, y) ≤ ℵδ1

(y, y) =
zδ1−1(T− y)δ1−1

Tδ1−1Γ(δ1)
≤ Tδ1−1

Γ(δ1)
.

Since, for 0 ≤ z ≤ y ≤ T,

∂ℵδ1
(z, y)

∂z
=

1

Γ(δ1)

[
(δ1 − 1)zδ1−2(T− y)δ1−1

Tδ1−1

]
≥ 0,
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ℵδ1(z, y) is nondecreasing with respect to z on [0, y]. It follows that

ℵδ1
(z, y) ≤ ℵδ1

(y, y) =
zδ1−1(T− y)δ1−1

Tδ1−1Γ(δ1)
≤ Tδ1−1

Γ(δ1)
.

The assertion (iii) is evident. 2

Lemma 2.7 Let g ∈ C[0, T]. Then the boundary value problem

RL
0Dδ2,ℓ

z

[
pj(z)

RL
0Dδ1,ℓ

z ϑj(z)
]
= g(z), z ∈ [0, T], δ1, δ2 ∈ (1, 2), (2.8)


ϑj(0) = lim

z→0

[
RL
0Dδ1,ℓ

z (eℓzϑj(z))
]
= 0,

eℓTϑj(T) = lim
z→T

[
RL
0Dδ1,ℓ

z (eℓzϑj(z))
]
= 0,

(2.9)

has a unique solution

ϑj(z) =

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pj(x)
g(x)dx

]
dy, (2.10)

where ℵδ1
(z, y) is defined in Lemma 2.5 and

ℵδ2
(y, x) =

1

Γ(δ2)


yδ2−1(T− x)δ2−1

Tδ2−1
− (y− x)δ1−1, x ≤ y,

yδ2−1(T− x)δ1−1

Tδ1−1
, y ≤ x.

Proof Let ϑj(z) = −RL
0Dδ1,ℓ

z ϑj(z) for z ∈ [0, T]. Then the boundary value problem

RL
0Dδ2,ℓ

z

[
pj(z)

RL
0Dδ1,ℓ

z ϑj(z)
]
= g(z), z ∈ [0, T], δ1, δ2 ∈ (1, 2)

ϑj(0) = lim
z→0

[
RL
0Dδ1,ℓ

z (eℓzϑj(z))
]
= 0,

eℓTϑj(T) = lim
z→T

[
RL
0Dδ1,ℓ

z (eℓzϑj(z))
]
= 0,

is equivalent to the problem
RL
0Dδ2,ℓ

z ϑj(z) +
g(z)

pj(z)
= 0, pj(z) ̸= 0, z ∈ [0, T], δ1 ∈ (1, 2),

ϑj(0) = eℓTϑj(T) = 0,

(2.11)

By Lemma 2.5, the boundary value problem (2.11) has unique solution

ϑj(z) =

∫ T

0

ℵδ2(z, y)e
−ℓ(z−y) g(y)

pj(y)
dy.

That is
RL
0Dδ1,ℓ

z ϑj(z) +

∫ T

0

ℵδ2
(z, y)e−ℓ(z−y)

pj(y)
g(y)dy = 0. (2.12)
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Again by Lemma 2.5, the differential equation (2.12) with boundary conditions

ϑj(0) = 0 and eℓTϑj(T) = 0

has a unique solution

ϑj(z) =

∫ T

0

ℵδ1(z, y)e
−ℓ(z−y)

[∫ T

0

ℵδ2
(y, x)e−ℓ(y−x)

pj(x)
g(x)dx

]
dy

=

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pj(x)
g(x)dx

]
dy.

This completes the proof. 2

From the above Lemma 2.7, it can be seen that solution of the BVP (1.1) is the solution of the follwoing integral
equation

ϑj(z) = λj

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pj(x)
φj(x, ϑ(x))dx

]
dy (2.13)

and vice versa.

Lemma 2.8 The kernel ℵδ2
(z, x) has the following properties:

(i) ℵδ2
(y, x) is nonnegative and continuous on [0, T]× [0, T].

(ii) ℵδ2(y, x) ≤ ℵδ2(x, x) ≤
Tδ2−1

Γ(δ2)
for y, x ∈ [0, T]× [0, T].

(iii) max
y∈[0,T]

∫ T

0

ℵδ2
(y, x)dx =

Tδ2

Γ(δ2)
.

Proof The proof follows from Lemma 2.6. 2

Definition 2.9 ([15]) Let (Y,d) be a metric space and X ⊂ Y. Then the Kurtowski measure of noncompactness
of X is denoted by K(X), if defined as

K(X) = inf
{
ε > 0 : X ⊂

n⋃
j=1

Ej, Ej ⊂ Y, diam(Ej) < ε, n ∈ N
}
,

here K is called Kuratowski measure of noncompactness. It is evident that

K(X) ≤ diam(X) ∀ X ⊂ Y.

Let B be a real Banach space with the norm ∥ · ∥ and A(a, a0) be a closed ball in B centered at a and radius a0 .
If F is a nonempty subset of B then F and conv(F) represents closure and convex closure of F. Furthermore, let
MB denote the family of all nonempty and bounded subsets of B and NB its subfamily consisting of all relatively
compact sets.
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Definition 2.10 ([4]) A function µ : MB → [0, 1) is called a measure of noncompactness, iff

(C1) the family kerµ = {F ∈ MB : µ(F) = 0} is nonempty and kerµ ⊂ NB .

(C2) F ⊂ E then µ(F) ≤ µ(E) .

(C3) µ(F) = µ(F) .

(C4) µ(convF) = µ(F) .

(C5) µ(λE+ (1− λ)F) ≤ λµ(E) + (1− λ)µ(F) for λ ∈ [0, 1] .

(C6) if En ∈ MB , Xn = En , En+1 ⊂ En for n = 1, 2, 3, · · · and limn→∞ µ(En) = 0 then ∩∞
n=1En ̸= ∅ .

Definition 2.11 ([6]) Let (Y,d) be a metric space, X be a bounded subset Y and A(a, a0) = {b ∈ Y : d(a, b) < a0} .
Then the Hausdorff measure of noncompactness χ(X) of X is defined by

χ(X) = inf

ε > 0 : X ⊂
n⋃

j=1

A(aj, a0j), aj ∈ Y, a0j < ε, n ∈ N

 .

Next, let c0 and c be Banach spaces with sup norms, which are defined as

c0 =

{
a ∈ ω : lim

j→∞
aj = 0, ∥a∥c0 = sup

j
|aj|

}
,

c =

{
a ∈ ω : lim

j→∞
aj = l, l ∈ C, ∥a∥c = sup

j
|aj|

}
,

respectively.

Definition 2.12 ([6]) The Hausdorff measure of noncompactness χ on the Banach space (c0, ∥ ·∥c0) is defined
by

χ(A) = lim
j→∞

{
sup

a(z)∈A

[
max
m≥j

∣∣am∣∣]} , A ∈ Mc0 .

Definition 2.13 ([22]) The (regular)measure of noncompactness µ on the Banach space (c, ∥ · ∥c) is defined
by

µ(A) = lim
j→∞

{
sup

a(z)∈A

[
sup
m≥j

∣∣am − lim
n→∞

an
∣∣]} , A ∈ Mc.

Definition 2.14 ([5]) Let σ = (σj) be such that σj is positive and nonincreasing sequence, Then σ is called
tempering sequence. Let G be set consisting of all real sequences a = (aj)

∞
j=1 such that σjaj → 0 as j → ∞ .

It is clear that G forms a linear space over the field of real numbers. We denote the space by cσ0 . Moreover, it
can be seen that cσ0 is a Banach space with the norm

∥a∥cσ0 = sup
{
σj|aj|

}
.
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Similarly, let S be a set consisting of all real sequences a = (aj)
∞
j=1 such that σjaj converges to finite limit. It

is clear that S forms a linear space over the field of real numbers. We denote the space by cσ . Moreover, it
can be seen that cσ is a Banach space with the norm

∥a∥cσ = sup
{
σj|aj|

}
.

Next, consider the function spaces C(J , cσ0 ) and C(J , cσ) , where J = [0, T], T > 0 the spaces of all
continuous functions on J with values in cσ0 and the spaces of all continuous functions on J with values in
cβ respectively. Then C(J , cσ0 ) and C(J , cσ) are Banach spaces with respect to the norms,

∥a∥C(J ,cσ0 ) = max
{
∥a(z)∥cσ0 : z ∈ J

}
, a ∈ C(J , cσ0 ),

∥a∥C(J ,cσ) = max {∥a(z)∥cσ : z ∈ J } , a ∈ C(J , cσ),

respectively (see [9]).
For any nonempty, closed, bounded, and convex subset Y of C(J , cσ0 ) or C(J , cσ) and z ∈ J , we have

χC(J ,cσ0 )(Y) = sup
{
χcσ0 (Y(z)) : t ∈ J

}
and

µC(J ,cσ)(Y) = sup {µcσ(Y(z)) : t ∈ J } .

Note that χC(J ,cσ0 ) and µC(J ,cσ) satisfy all the axioms of measure of noncompactness on C(J , cσ0 ) and C(J , cσ),
respectively (see [9]).

Definition 2.15 ([19]) Let (Y, d) be a metric space. Then a mapping T on Y is said to be a Meir-Keeler
contraction if for any ε > 0 , there exists K > 0 such that

ε ≤ d(x, y) < ε+K =⇒ d(Tx, Ty) < ε, ∀x, y ∈ Y.

Theorem 2.16 ([19]) Let (Y, d) be a complete metric space. If T : Y → Y is a Meir-Keeler contraction, then
T has a unique fixed point.

Definition 2.17 ([1]) Let C be a nonempty subset of a Banach space E and let µ be an arbitrary measure of
noncompactness on E . We say that an operator T : C → C is a Meir-Keeler condensing operator if for any
ε > 0 , there exists K > 0 such that

ε ≤ µ(Y) < ε+K =⇒ µ(T (Y)) < ε

for any bounded subset Y of C .

Theorem 2.18 ([1]) Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and let µ

be an arbitrary measure of noncompactness on E . If T : C → C is a continuous and Meir-Keeler condensing
operator, then T has at least one fixed point and the set of all fixed points of T in C is compact.
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3. Existence of solutions for tempered fractional BVP (1.1) in C(J , cσ0 )

In this section, we investigate the existence of solutions for infinite system of tempered fractional order two-point
boundary value problems (1.1) in the sequences spaces C(J , cσ0 ) .

Suppose

(G1) φj : J → R∞ and define an operator Φ : J × cσ0 → cσ0 as

(z, ϑ(z)) → (Φϑ)(z) =
(
φj(z, ϑ(z))

)∞
j=1

is the class of all functions
(
(Φϑ)(z)

)
z∈J and equicontinuous on cσ0 .

(G2) ξj(z), ζj(z) : J → R are continuous functions such that the sequence σjξj(z) converges uniformly to
zero on J and the sequence (ζj(z)) is equibounded on J , so we take ζ(z) = sup{ζj(z) : j ∈ N},
ζ⋆ = sup{ζ(z) : z ∈ J }, σ⋆ = sup{σjξj(z) : j ∈ N, z ∈ J } and

∣∣φj(z, ϑ(z))
∣∣ ≤ ξj(z) + ζj(z)

∣∣ϑj(z)∣∣, ϑj ∈ cσ0 , z ∈ J , j ∈ N.

Theorem 3.1 Suppose Tδ1+δ2eℓTζ⋆

Γ(δ1)Γ(δ2)
< 1 and (G1) − (G2) hold, then the infinite system of tempered fractional

order boundary value problems (1.1) has at least one solution ϑ(z) =
(
ϑj(z)

)∞
j=1

in C(J , cσ0 ) provided

0 < λj <
1

p⋆j
, j ∈ N,

where p⋆j = sup{pj(z) : z ∈ J }.

Proof Since sup{σj|ϑj(z)|} < +∞ for all ϑ(z) =
(
ϑj(z)

)∞
j=1

∈ C(J , cσ0 ) and z ∈ J , there exists κ > 0 such

that sup{σj|ϑj(z)|} < κ. From (G2) and (2.3), we get

∥ϑ(z)∥cσ0 = sup
j∈N

{
σj

∣∣∣∣λj ∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pj(x)
φj(x, ϑ(x))dx

]
dy

∣∣∣∣}

≤ sup
j∈N

{
σjλje

ℓT

p⋆j

∫ T

0

|ℵδ1(z, y)|
[∫ T

0

|ℵδ2(y, x)||φj(x, ϑ(x))|dx
]
dy

}

≤ sup
j∈N

{
σjλje

ℓT

p⋆j

∫ T

0

|ℵδ1
(y, y)|

[∫ T

0

|ℵδ2
(x, x)||φj(x, ϑ(x))|dx

]
dy

}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
sup
j∈N

{
σjλj

p⋆j

∫ T

0

[
ξj(x) + ζj(x)

∣∣ϑj(x)∣∣] dx}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
sup
j∈N

{∫ T

0

[σ⋆ + ζ⋆κ] dτ

}

≤ (σ⋆ + ζ⋆κ)Tδ1+δ2eℓT

Γ(δ1)Γ(δ2)
:= a.
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Therefore,
max
z∈J

∥ϑ(z)∥cσ0 ≤ a, i.e., ∥ϑ(z)∥C(J ,cσ0 ) ≤ a.

Now, let the closed ball A = A(ϑ0(z), a) centered at ϑ0(z) =
(
ϑ0(z)

)∞
j=1

, ϑ0(z) = 0, ∀ z ∈ J , j ∈ N and radius

a. Thus, A is a nonempty bounded closed convex subset of C(J , cσ0 ).
For fixed z ∈ J , define an operator Ξ = (Ξj)

∞
j=1 : C(J , cσ0 ) → C(J , cσ0 ) as

(Ξϑ)(z) = {(Ξjϑ)(z)}∞j=1 =

{
λj

∫ T

0

ℵδ1(z, y)e
−ℓz

[∫ T

0

ℵδ2(y, x)e
ℓx

pj(x)
φj(x, ϑ(x))dx

]
dy

}∞

j=1

.

Since
(
φj(z, ϑ(z))

)∞
j=1

∈ cσ0 , for z ∈ J , it follows that

lim
j→∞

{σj(Ξjϑ)(z)} = lim
j→∞

{
σjλj

∫ T

0

ℵδ1(z, y)e
−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pj(x)
φj(x, ϑ(x))dx

]
dy

}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)

∫ T

0

lim
j→∞

[σjλjp
⋆
jφj(x, ϑ(x))]dx

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)

∫ T

0

lim
j→∞

[σjφj(x, ϑ(x))]dx

=0.

Thus, (Ξϑ)(z) ∈ C(J , cσ0 ). Moreover, it can be seen that (Ξjϑ)(z) satisfies boundary conditions, i.e.

(Ξjϑ(0)) = lim
z→0

[
RL
0Dδ1,ℓ

z (eℓz
(
Ξjϑ(z))

)]
= 0,

eℓT(Ξjϑ(T)) = lim
z→T

[
RL
0Dδ1,ℓ

z (eℓz(Ξjϑ(z)))
]
= 0.

For fixed z ∈ T and ϑ(z) ∈ A, we get

∥(Ξϑ)(z)− ϑ0(z)∥cσ0 ≤ a =⇒ max
z∈J

∥(Ξϑ)(z)− ϑ0(z)∥cσ0 ≤ a

=⇒ ∥(Ξϑ)(z)− ϑ0(z)∥C(J ,cσ0 ) ≤ a,

which proves that Ξ is self mapping on A. From (G1), for any ϑ(z) =
(
ϑj(z)

)∞
j=1

∈ A and for any ε > 0 there

exists δ > 0 such that ∥(Φϑ)(z) − (Φϑ)(z)∥cσ0 < εΓ(δ1)Γ(δ2)
Tδ1+δ2eℓT

for each ϑ(z) ∈ A, whenever |ϑ(z) − ϑ(z)| ≤ δ,

where z ∈ J . Thus, for z ∈ J , we have

∥(Ξϑ)(z)− (Ξϑ)(z)∥cσ0 =sup
j∈N

{∣∣∣∣σjλj

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2(y, x)e
ℓx

pj(x)
[φj(x, ϑ(x))− φj(x, ϑ(x))]dx

]
dy

∣∣∣∣}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
sup
j∈N

{
σjλjp

⋆
j

∫ T

0

|φj(x, ϑ(x))− φj(x, ϑ(x))|dx
}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)

εΓ(δ1)Γ(δ2)

Tδ1+δ2eℓT
T < ε.
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It shows that Ξ is continuous on A for every z ∈ J .
Now, we have

χ(ΞA) = lim
j→∞

{
sup

ϑ(z)∈A
sup
m≥j

[
σm

∣∣∣∣λm ∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2(y, x)e
ℓx

pm(x)
φm(x, ϑ(x))dx

]
dy

∣∣∣∣]
}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
lim
j→∞

{
sup

ϑ(z)∈A
sup
m≥j

[∫ T

0

(
σmξm(x) + σmζm(x)

∣∣ϑm(x)
∣∣) dx]}

≤ Tδ1+δ2eℓTζ⋆

Γ(δ1)Γ(δ2)
χ(A).

Thus,

sup
z∈J

χ(ΞA) ≤ Tδ1+δ2eℓTζ⋆

Γ(δ1)Γ(δ2)
sup
z∈J

χ(A).

It follows that

χC(J ,cσ0 )(ΞA) ≤ Tδ1+δ2eℓTζ⋆

Γ(δ1)Γ(δ2)
χC(J ,cσ0 )(A) < ε.

That is

χC(J ,cσ0 )(A) <
εΓ(δ1)Γ(δ2)

Tδ1+δ2eℓTζ⋆
.

Letting δ =
ε

Tδ1+δ2eℓTζ⋆
[
Γ(δ1)Γ(δ2)− Tδ1+δ2eℓTζ⋆

]
, we obtain ε ≤ χC(J ,cσ0 )(A) < ε+ δ.

Therefore, Ξ is a Meir-Keeler condensing operator on A. Moreover, Ξ satisfies all the conditions of Theorem
2.18, i.e. Ξ has a fixed point in A. Hence, the infinite system (1.1) has a solution in C(J , cσ0 ). 2

4. Existence of solutions for tempered fractional BVP (1.1) in C(J , cσ)

In this section, we derive the sufficient conditions for the existence of solutions for infinite system of tempered
fractional order boundary value problems (1.1) in the sequences spaces C(J , cσ) .
Suppose

(H1) φj : J → R∞ and define an operator Φ : J × cσ → cσ as

(z, ϑ(z)) → (Φϑ)(z) =
(
φj(z, ϑ(z))

)∞
j=1

is the class of all functions
(
(Φϑ)(z)

)
z∈J and equicontinuous on cσ.

(H2) ηj(z), θj(z) : J → R are continuous functions such that the sequence σjηj(z) converges uniformly to
zero on J and the sequence (θj(z)) is convergence on J , so we take θ(z) = sup{θj(z) : j ∈ N},
θ⋆ = sup{θ(z) : z ∈ J }, σ⋆ = sup{σjηj(z) : j ∈ N, z ∈ J } and

φj(z, ϑ(z)) ≤ ηj(z) + θj(z)ϑj(z), ϑj ∈ cσ, z ∈ J , j = 1, 2, 3, · · ·.
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Theorem 4.1 Suppose Tδ1+δ2eℓTθ⋆

Γ(δ1)Γ(δ2)
< 1 and (H1)–(H2) hold, then the infinite systems of fractional order

boundary value problems (1.1) has at least one solution ϑ(z) =
(
ϑj(z)

)
in C(J , cσ) provided

0 < λj <
1

p⋆j
, j ∈ N,

where p⋆j = sup{pj(z) : z ∈ J }.

Proof Since sup{σj|ϑj(z)|} < +∞ for all ϑ(z) =
(
ϑj(z)

)∞
j=1

∈ C(J , cσ) and z ∈ J , there exists ϱ > 0 such

that sup{σj|ϑj(z)|} < ϱ. From (H2) and (2.3), we get

∥ϑ(z)∥cσ = sup
j∈N

{
σj

∣∣∣∣λj ∫ T

0

ℵδ1(z, y)e
−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pj(x)
φj(x, ϑ(x))dx

]
dy

∣∣∣∣}

≤ sup
j∈N

{
σjλje

ℓTp⋆j

∫ T

0

|ℵδ1
(z, y)|

[∫ T

0

|ℵδ2
(y, x)||φj(x, ϑ(x))|dx

]
dy

}

≤ sup
j∈N

{
σjλje

ℓTp⋆j

∫ T

0

|ℵδ1
(y, y)|

[∫ T

0

|ℵδ2
(x, x)||φj(x, ϑ(x))|dx

]
dy

}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
sup
j∈N

{
σjλjp

⋆
j

∫ T

0

[
ηj(x) + θj(x)

∣∣ϑj(x)∣∣] dx}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
sup
j∈N

{∫ T

0

[σ⋆ + θ⋆ϱ] dτ

}

≤ (σ⋆ + θ⋆ϱ)Tδ1+δ2eℓT

Γ(δ1)Γ(δ2)
:= b.

Therefore,

max
z∈J

∥ϑ(z)∥cσ ≤ b, i.e., ∥ϑ(z)∥C(J ,cσ) ≤ b,

Now, let the closed ball B = B(ϑ0(z), r1) centered at ϑ0(z) =
(
ϑ0(z)

)∞
j=1

, ϑ0(z) = 0 ∀ z ∈ J , j ∈ N and radius

b. Therefore, B is a nonempty bounded closed convex subset of C(J , cσ).
For fixed z ∈ J , define an operator Υ = (Υj)

∞
j=1 : C(J , cσ0 ) → C(J , cσ0 ) as

(Υϑ)(z) = {(Υjϑ)(z)}∞j=1 =

{
λj

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2(y, x)e
ℓx

pj(x)
φj(x, ϑ(x))dx

]
dy

}∞

j=1

.
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Since
(
φj(z, ϑ(z))

)∞
j=1

∈ cσ and pj(z) = p(z) for z ∈ J , it follows that ℵj(z, τ) = ℵi(z, τ) for any k, l ∈ N.

Therefore, we have

|σj(Υjϑ)(z)− σi(Υiϑ)(z)|

=

∣∣∣∣σjλj

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pj(x)
φj(x, ϑ(x))dx

]
dy

− σiλi

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2(y, x)e
ℓx

pi(x)
φi(x, ϑ(x))dx

]
dy

∣∣∣∣
=

∣∣∣∣ ∫ T

0

ℵδ1
(z, y)

[∫ T

0

ℵδ2
(y, x)e−ℓ(z−x) σjλj

pj(x)
[ηj(x) + θj(x)ϑj(x)]dx

]
dy

−
∫ T

0

ℵδ1
(z, y)

[∫ T

0

ℵδ2
(y, x)e−ℓ(z−x) σiλi

pi(x)
[ηi(x) + θi(x)ϑi(x)]dx

]
dy

∣∣∣∣
≤

∫ T

0

|ℵδ1
(z, y)|

[∫ T

0

|ℵδ2
(y, x)||e−ℓ(z−x)|

∣∣∣∣σjλjηj(x)

pj(x)
− σiλiηi(x)

pi(x)

∣∣∣∣ dx] dy
+

∫ T

0

|ℵδ1
(z, y)|

[∫ T

0

|ℵδ2
(y, x)||e−ℓ(z−x)|

∣∣∣∣σjλjθj(x)ϑj(x)

pj(x)
− σiλiθi(x)ϑi(x)

pi(x)

∣∣∣∣ dx] dy
≤

∫ T

0

|ℵδ1(z, y)|
[∫ T

0

|ℵδ2(y, x)||e−ℓ(z−x)|
∣∣∣∣σjλjηj(x)

pj(x)
− σiλiηi(x)

pi(x)

∣∣∣∣ dx] dy
+

∫ T

0

|ℵδ1
(z, y)|

[ ∫ T

0

|ℵδ2
(y, x)||e−ℓ(z−x)|

[
σjλjϑj(x)

pj(x)
|θj(x)− θi(x)|

+ |θi(x)|
∣∣∣∣σjλjϑj(x)

pj(x)
− σiλiϑi(x)

pi(x)

∣∣∣∣]dx]dy
Since (λj), (θj), (σjηj) are convergent on J and λjϑj

pj
∈ cσ, it follows that

|σj(Υjϑ)(z)− σi(Υiϑ)(z)| → 0 as j, i → ∞.

Hence, (Υϑ)(z) ∈ C(J , cσ). Moreover, it can be seen that (Υjϑ)(z) satisfies boundary conditions, i.e.

(Υjϑ(0)) = lim
z→0

[
RL
0Dδ1,ℓ

z (eℓz
(
Υjϑ(z))

)]
= 0,

eℓT(Υjϑ(T)) = lim
z→T

[
RL
0Dδ1,ℓ

z (eℓz(Υjϑ(z)))
]
= 0.

For fixed z ∈ T and ϑ(z) ∈ B, we get

∥(Υϑ)(z)− ϑ0(z)∥cσ ≤ b =⇒ max
z∈J

∥(Υϑ)(z)− ϑ0(z)∥cσ ≤ b

=⇒ ∥(Υϑ)(z)− ϑ0(z)∥C(J ,cσ) ≤ b,

which proves that Υ is self mapping on B. From (H1), for any ϑ(z) =
(
ϑj(z)

)∞
j=1

∈ B and for any ε > 0 there

exists δ > 0 such that ∥(Φϑ)(z) − (Φϑ)(z)∥cσ < εΓ(δ1)Γ(δ2)
Tδ1+δ2eℓT

T for each ϑ(z) ∈ B, whenever |ϑ(z) − ϑ(z)| ≤ δ,
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where z ∈ J . Thus, for z ∈ J , we have

∥(Υϑ)(z)− (Υϑ)(z)∥cσ =sup
j∈N

{∣∣∣∣σjλj

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pj(x)
[φj(x, ϑ(x))− φj(x, ϑ(x))]dx

]
dy

∣∣∣∣}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
sup
j∈N

{
σjλjp

⋆
j

∫ T

0

|φj(x, ϑ(x))− φj(x, ϑ(x))|dx
}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)

εΓ(δ1)Γ(δ2)

Tδ1+δ2eℓT
T < ε.

Thus, Ω is continuous on B for every z ∈ J .
Now, we have

µ(ΩB) = lim
j→∞

{
sup

ϑ(z)∈B
sup
m≥j

[∣∣∣∣σmλm

∫ T

0

ℵδ1(z, y)e
−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pm(x)
φm(x, ϑ(x))dx

]
dy

− lim
n→∞

(
σnλn

∫ T

0

ℵδ1
(z, y)e−ℓz

[∫ T

0

ℵδ2
(y, x)eℓx

pn(x)
φn(x, ϑ(x))dx

]
dy

) ∣∣∣∣]
}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
lim
j→∞

{
sup

ϑ(z)∈B
sup
m≥j

[ ∫ T

0

∣∣∣∣σmλm

pm(x)
φm(τ, ϑ(x))

− lim
n→∞

σnλn

pn(x)
φn(x, ϑ(x))

∣∣∣∣dx]
}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
lim
j→∞

{
sup

ϑ(z)∈B
sup
m≥j

[ ∫ T

0

∣∣∣∣σmλmθm(x)ϑm(x)

pm(x)

− lim
n→∞

σnλnθn(x)ϑn(x)

pn(x)

∣∣∣∣dx]
}

≤ Tδ1+δ2−1eℓT

Γ(δ1)Γ(δ2)
lim
j→∞

{
sup

ϑ(z)∈B
sup
m≥j

[ ∫ T

0

(λm|θm(τ)|
pm(x)

∣∣σmϑm(τ)− lim
n→∞

σnϑn(τ)
∣∣

−
∣∣ lim
n→∞

σnϑn(τ)

pn(x)

(
λmθm(τ)− λnθn(τ)

)∣∣)dτ]}

≤ Tδ1+δ2eℓTθ⋆

Γ(δ1)Γ(δ2)
µ(B).

Thus,

sup
z∈J

µ(ΥB) ≤ Tδ1+δ2eℓTθ⋆

Γ(δ1)Γ(δ2)
sup
z∈J

µ(B).

It follows that

µC(J ,cσ)(ΥB) ≤ Tδ1+δ2eℓTθ⋆

Γ(δ1)Γ(δ2)
µC(J ,cσ)(B) < ε =⇒ µC(J ,cσ)(B) <

εΓ(δ1)Γ(δ2)

Tδ1+δ2eℓTθ⋆
.
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Letting δ =
ε

Tδ1+δ2eℓTθ⋆
[
Γ(δ1)Γ(δ2)− Tδ1+δ2eℓTθ⋆

]
, we obtain ε ≤ µC(J ,cσ)(B) < ε+ δ.

Therefore, Υ is a Meir-Keeler condensing operator on B. Since z is arbitrary, so for every z ∈ J , Υ satisfies
all the conditions of Theorem 2.18, i.e. Υ has a fixed point in B. Hence, the infinite systems (1.1) has a solution
in C(J , cσ). 2

5. Applications

In this section, we present two examples to illustrate our main results.

Example 5.1 Consider the following infinite system of tempered fractional order boundary value problems.



RL
0D1.2,0.5

z

[
(z2 + 4)

(
RL
0D1.4,0.5

z (ϑj(z))
)]

= λj

e−jz4 cos(jz)

j
+

∞∑
i=j

ϑj(z)

4i2


ϑj(0) = lim

z→0

[
RL
0D1.4,0.5

z (e0.5zϑj(z))
]
= 0,

e0.5ϑj(1) = lim
z→1

[
RL
0D1.4,0.5

z (e0.5zϑj(z))
]
= 0, j ∈ N.

(5.1)

Thus, ℓ = 1
2 , δ1 = 1.4, δ2 = 1.2, pj(z) = z2 + 4, T = 1, J = [0, 1], and φj(z, ϑ(z)) =

e−jz4 cos(jz)
j

+
∑∞

i=j

ϑj(z)
4i2 .

Let σj =
1
j2

for all j ∈ N. Now, for ϑ(z) ∈ C(J , cσ0 ), we have

lim
j→∞

σjφj(z, ϑ(z)) = lim
j→∞

e−jz4 cos(jz)

j3
+

1

j2

∞∑
i=j

ϑj(z)

4i2

 = 0.

Next, let for any ν(z) =
(
νj(z)

)∞
j=1

∈ C(J , cσ0 ). Let ε > 0 be given and δ =
24ε

π2
such that ∥ϑ(z) −

ν(z)∥C(J ,cσ0 ) < δ. Then

∥(Φϑ)(z)− (Φν)(z)∥cσ0 =sup
j∈N

{
σj

∣∣φj(z, ϑ(z))− φj(z,ν(z))
∣∣}

=sup
j∈N

 1

j2

∞∑
i=j

1

4i2
∣∣ϑj(z)− νj(z)

∣∣
≤ π2

24
∥ϑj(z)− νj(z)∥cσ0 < ε.

Thus, ((Φϑ)(z))z∈J is equicontinuous on cσ0 . Moreover, for z ∈ J and j ∈ N, we have

|φj(z, ϑ(z))| ≤
e−jz4 | cos(jz)|

j
+

∞∑
i=j

1

4i2
|ϑj(z)|

≤ e−jz2

j
+

π2

24
|ϑj(z)|,
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where ξj(z) =
e−jz4

j
and ζj(z) =

π2

24
. Thus, ζ⋆ =

π2

24
. We note that

(
σξj(z)

)
=

(
e−jz4/j3

)
converges

uniformly to zero on J and the sequence ζj(z) is equibounded on J . Moreover,

Tδ1+δ2eℓTζ⋆

Γ(δ1)Γ(δ2)
=

√
eπ2

24Γ(1.4)Γ(1.2)
< 1.

Hence, by Theorem 3.1 the infinite systems (5.1) has a solution in C(J , cσ0 ) provided

λ < max
z∈[0,1]

1

z2 + 4
=

1

4
.

Example 5.2 Consider the system of tempered fractional order two-point boundary value problems.

RL
0D1.8,1

z

[√
z2 + 25

(
RL
0D1.1,1

z (ϑj(z))
)]

= λj

e−jz sin(jz)

j
+

∞∑
i=j

ϑj(z)

7i2


ϑj(0) = lim

z→0

[
RL
0D1.1,1

z (ezϑj(z))
]
= 0,

eϑj(1) = lim
z→1

[
RL
0D1.1,1

z (ezϑj(z))
]
= 0, j ∈ N.

(5.2)

Thus, ℓ = 1, δ1 = 1.1, δ2 = 1.8, pj(z) =
√
z2 + 25, T = 1, J = [0, 1], and φj(z, ϑ(z)) =

e−jz sin(jz)
j

+
∑∞

i=j

ϑj(z)
7i2 .

Let σj =
1
j2

for all j ∈ N. Now, for ϑ(z) ∈ C(J , cσ), we have

lim
j→∞

σjφj(z, ϑ(z)) = lim
j→∞

 sin(jz)

j3
+

1

j2

∞∑
i=j

ϑj(z)

7i2

 = 0.

This shows that
(
φj(z, ϑ(z))

)
∈ cσ. Next, let for any ν(z) =

(
νj(z)

)∞
j=1

∈ C(J , cσ). Let ε > 0 be given and

δ =
12ε

π2
such that ∥ϑ(z)− ϑ(z)∥C(J ,cσ) < δ. Then

∥(Φϑ)(z)− (νϑ)(z)∥cσ =sup
j∈N

{
σj

∣∣φj(z, ϑ(z))− φj(z,ν(z))
∣∣}

=sup
j∈N

 1

j2

∞∑
i=j

1

7i2
∣∣ϑj(z)− νj(z)

∣∣
≤ π2

42
∥ϑj(z)− νj(z)∥cσ0 < ε.

Thus, ((Φϑ)(z))z∈J is equicontinuous on cσ. Moreover, for z ∈ J and j ∈ N, we have ηj(z) =
sin jz

j
and

θj(z) =
π2

42
. Thus, θ⋆ =

π2

42
. We note that

(
σηj(z)

)
=

(
sin jz

j3

)
converges uniformly to zero on J and the
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sequence θj(z) is convergent on J . Moreover,

Tδ1+δ2eℓTθ⋆

Γ(δ1)Γ(δ2)
=

eπ2

42Γ(1.1)Γ(1.8)
< 1.

Hence, by Theorem 4.1 the infinite systems (5.2) has a solution in C(J , cσ) provided

λ < max
z∈[0,1]

1√
t2 + 25

=
1

5
.

6. Conclusion and future work
In the present paper, we studied an infinite system of tempered fractional order boundary value problem. The
fractional derivative used in our problem is the so-called tempered fractional Riemann–Liouville derivative,
which generalizes well-known Riemann–Liouville fractional derivative. By applying the Hausdorff measure of
noncompactness technique and using the Meir–Keeler fixed point theorem, we examined the existence of solution
to this infinite system. This investigation has been performed in new sequence spaces C(J , cσ0 ) and C(J , cσ)
called tempered sequence spaces. Finally, numerical examples are also provided to illustrate our obtained results.
In the future, the following aspects can be explored further:

(1) Further investigation is needed to study infinite system of singular temepered fractional Sturm–Liouville
boundary value problem. Here taking singularities over pj(z) is challenging.

(2) The idea used in this paper can be further developed to study infinite systems of fractional difference
equations [41] and dynamic equations on time scales [29, 38, 39] etc.
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