Turkish Journal of Mathematics Turk J Math

(2022) 46: 433 — 452

© TUBITAK
TUBITAK Research Article d0i:10.3906 /mat-2106-110

http://journals.tubitak.gov.tr/math/

Existence of solutions for an infinite system of tempered fractional order
boundary value problems in the spaces of tempered sequences

Khuddush MAHAMMAD*®, Rajendra Prasad KAPULA ©, Leela DODDI
Department of Applied Mathematics, College of Science and Technology, Andhra University
Visakhapatnam, India

Received: 28.06.2021 . Accepted/Published Online: 09.08.2021 . Final Version: 21.01.2022

Abstract: This paper deals with infinite system of nonlinear two-point tempered fractional order boundary value

problems

RLS2.¢ [pj (z)"5D3 49, (z)] = N\p(2,9(2)), z € [0,T), 81,82 € (1,2),

95(0) = lim [5D*(¢"9;(2))| =0,

z—0

e"9,(1) = lim [§D2 ("0 (2))] =0,

z—T

where j € {1,2,3,---}, £> 0, %D2** denotes the Riemann-Liouville tempered fractional derivative of order % € {81,682},
I(z) = (93(2))j2,, 3 : [0,T] — [0,T] are continuous and we derive sufficient conditions for the existence of solutions

to the system via the Hausdorff measure of noncompactness and Meir—Keeler fixed point theorem in tempered sequence
spaces.

Key words: Tempered fractional derivative, tempered sequence space, iterative system, Meir—Keeler fixed point

theorem, Hausdorff measure of noncompactness.

1. Introduction

Fractional differential equations with boundary conditions have occupied an important area in the fractional
calculus domain, since these problems appear in various applications of sciences and engineering, such as
mechanics, finance, control theory, electricity, chemistry, biology, chemistry, and economics [8, 10, 32, 35, 36].
The progress of this field has motivated researchers to investigate some interesting questions related to the
existence, uniqueness, and stability of solutions [13, 23, 25-27, 31].

The tempered fractional derivative is one of the generalized forms of the fractional derivatives. Multiplying
classical fractional derivative by an exponential factor leads to the tempered fractional derivative. This new
fractional operator depends on a parameter ¢, and the classical Riemann-Liouville and Caputo fractional
derivatives are obtained in special cases for £ = 0. Nowadays, the tempered fractional derivative has become
a popular topic for investigation due to its application in physics, groundwater hydrology, poroelasticity,
geophysical flow, finance [7, 11, 12, 17, 18, 28] and so on. In [40], Zaky studied the well-posedness of the
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solution to the following two-point nonlinear tempered fractional boundary value problem

D (z) = g(z,9(2)) z € [0, T, € (0, 1),

a(0) + beTY(T) = ¢,

and also derived and analyzed a Jacobi spectral-collocation method for the numerical solution. In [37], Yadav

et al. discussed the numerical approximation to solve regular tempered fractional Sturm-Liouville problem

Dy [p(2)eD5 0(2)] = N p(2)9(2)) z € [a,b], o € (0, 1),

9(a) =0, [p(z)iDE"0(z)]

z=b

by using finite difference method. Recently, Pandey et al. [24] studied the properties of eigenvalue for the

regular tempered fractional Sturm-Liouville problem

ED?’K [p(z)gﬂ))g"zﬁ(z)] + ¢(2)9(z) = Apa(z)9(z) z € [a,b], x € (0,1),
J(a) =0, 9(b) =0,

by using a fractional variational approach.

In functional analysis, the measure of noncompactness plays an important role which was introduced
by Kuratowski [15]. Recently, Srivastava et al. [34] studied the solvability of nonlinear functional integral
equations of two variables by using the measure of noncompactness on C([0,a] x [0,a]) and a fixed point
theorem. Moreover, the idea of measure of noncompactness has been used by many researchers in obtaining the
existence of solutions of infinite systems of integral and differential equations, see the monograph of [6]. In [21],
Mursaleen and Muhiuddine established existence theorems for the infinite systems of differential equations in
the space £,. Alotaibi et al. [2] discussed existence theorems for the infinite systems of linear equations in £,
and £,. In [33], Srivastava et al. studied the existence of solutions of infinite systems of n'* order differential
equations in the spaces ¢y and ¢; via the measure of noncompactness. On the other hand, Mursaleen et al. [20]
considered the following infinite systems of three-point fractional order boundary value problems in the spaces

co and £,
UDg, (95(2) + £5(s,94(z)), 0<z<T, 1<a<2,

ﬂj (O) =0, 19:] (T) = aﬂj(é), aaafl < Tail, je N,

and derived necessary conditions for the existence of solutions for the infinite system. Recently, Das et al. [9]

studied the infinite system of fractional order two-point boundary value problem

RLDg+(19j (Z)) —+ fJ (Z,’l9j(2))7 O <z< T, ]. <a< 2,

via Hausdorff measure of noncompactness in the tempered sequence spaces and established existence of solutions

for the infinite system. Inspired by the aforementioned studies, in this paper, we study the following infinite
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system of nonlinear two-point tempered fractional order boundary value problems
D2 [ps (2) DS Vs (2)] = Agp(2. 9(2), 2 € [0,T],81,85 € (1,2),

93(0) = lim [fD4(e™05(z))] =0, (1.1)

z—0

¢M95(T) = lim [§D (95 (2))] = 0,

where j € {1,2,3,---}, £ >0, R](;D;’f denotes the Riemann—Liouville tempered fractional derivative of order
* € {81,082}, U(z) = (V; (z))ji1 , @5 :[0,T] — [0, T] are continuous and we establish necessary conditions for the

existence of solutions for the system via the concept of Hausdorff measure of noncompactness and Meir—Keeler

fixed point theorem in a tempered sequence space.

2. Preliminaries

In this section, we first give the definitions and some properties of the tempered fractional calculus. Denote
L([a,b]) as the integrable space which includes the Lebesgue measurable functions on the finite interval [a, b].
Let ACla,b] be the space of real values functions ¥(z) which are absolutely continuous on [a,b]. For n € NT,

we denote AC™[a,b] as the space of real values functions J(z) which have continuous derivatives up to order

n—1 on [a,b] such that < ﬁ(z) € ACla, b].

Definition 2.1 ([16, 30]) Suppose that the real function (z) is piecewise continuous on (a,b) and ¥(z) €
L([a,b]), © >0, £> 0. The Riemann-Liouville tempered fractional integral of order © is defined as

—{z z 1 ‘ —Ll(z— —
RLHG 619( ) e £ RLHG( £ 19(2)) — F(e)/ e £( y)(z_y)S 119(y)dy,
a
where P19 denotes the Riemann-Liouville fractional integral [1/]

M0 = o / "z~ y)°1(y)dy

Definition 2.2 ([16, 30]) For n —1 < 60 <n, n € Nt £ > 0. The Riemann-Liouville tempered fractional

derivative of order © is defined as

—lz dm z eZy,&(y)
RLDB Zﬂ 722 RL]D)S Zz,ﬂ _ € /
(z) = ( (Z)) T(n—0)dy" J, (z—y)o "+l

where ®:DY denotes the Riemann—Liowville fractional derivative [14]
1 ar [ I(y)
DOy (z) = 7—/ ——=——dy.
B T Pl A e Lt

Lemma 2.3 (Composite property[16]) Let ¥(z) € AC™[a,b] and n —1 < 0 < n. Then the Riemann—Liouville

tempered fractional derivative and fractional integral have the composite property:

_ —Zz( a)e—k‘—l
(6 - k)

RLHG 14 [RL]D)G 519

M

{REDS—k—l (eézﬁ(z))

Z:J (2.1)

i
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and
D [ ()] = 9(2). (2.2)

Remark 2.4 ([3]) For n > —1, we have

RLDG ZN = P(77 + 1) znfe
a z 1‘\(77 _ e + 1) )
giving inparticular =D 28~ =0, m = 1,2,---, N, where N is the smallest integer greater than or equal to 0.

In order to study BVP (1.1), we first consider the following linear boundary value problem,

D249 (z) + £(z) =0,z € [0,T],8; € (1,2), (2.3)

95(0) = &5 (T) = 0, (2.4)

where £ € C[0,T] is a given function.

Lemma 2.5 For every £ € C[0,T], the linear boundary value problem (2.3)—(2.4) has a unique solution

T
05(2) = [ M@y E )y, (25)
where
251—1('1' _ y)51—1 B
1 T81-1 _(Z_Y)él 1; y<z
N, (z,y) = T(51) 20— L(T — y)81—1
Toi—1 , zsy

Proof Applying the Rieman—Liouville tempered fractional integral operator *5I31:¢ on both sides of the first

equation of (2.3) and using composite property (2.1), we get

1 z
9i(z) = coe 22 7 e 2 2 - / e @) (z — y)8171E(y)dy, (2.6)
I'(d1) Jo

where ¢y = F(él)R{;DS’l(eezﬁ(z))

and ¢ = ﬁﬁgmfﬂ(e&ﬁ(z))

. Using boundary conditions, we

z=0

z=0
get ¢y =0 and

1 T,
— y _ 5171
CO T51*1P(51) A € (T Y) f(Y)dy

Plugging ¢ and ¢; into (2.5), we obtain

1 T 26171(’1‘ _ y)élfl
9 - —£(z—y) £ d
J(z) F(él) /O € T51_1 (Y) y

/oz e E V) (z — y)» M (y)dy (2.7)

T
:/ Rs, (z,y)e "=V (y)dy
0
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Next we show that (2.5) is the solution of (1.1). Applying the operator *DS1¢ to both sides of (2.7) and using
composite properity (2.2), we get

RLTy 51,0 1 ! —0y RLTYS1,£ [ —fz_81—1 (T—y)>! RLTy 51,6 (RLTS1,L
ODZ ’ 19j(2) = 0 € ODZ ’ (6 z )7f(y)dy_ ODZ ’ (O]Iz ’ f(z))

I'(51) To1-1
= —1(z),
where we use the fact
RLDE1L (e~f281-1) = ¢~f2 REDS1 (z21-1) =
by Remark 2.4. Now from (2.7), it is clear that ¥;(0) = e/™9;(T) = 0. This completes the proof. O

Lemma 2.6 The kernel N5, (z,y) has the following properties:
(1) Ns,(z,y) is nonnegative and continuous on [0,T] x [0, T].

61—1

~ I(8)

(#1) s, (z,5) < N5, (y,y) < for z,y €10,T] x [0, T].

T T51
Ns. (z,y)dy = .
(i) s [ s, (2. 5)dy = g

Proof Tt is clear from the definition of N5, (z,y) that s, (z,y) is continuous on [0, T|x [0, T]. For 0 <y <z < T,
we have

1 _Zélfl(Tfy)élfl
N — _ _ o\01—1
61(Z7Y) 1—\(51) I To:1—1 (Z Y) :|
L[ 51 ( Y)51_1 20 1( Y)51_1
= 1-2 =11 _ L
() | T
Si—-1r 51—1 51 1
>E;4,<17X) > 0.
Iy | T B
For 0 < z <y < T, it is obvious that Ws,(z,y) > 0. Thus, Ns,(z,y) > 0 for all z,y € [0,T]. Since, for

0<y<z<T,

2 |- Z81=2(T _ )01—1 _9

251—1

il (G N G

S 07 1< 61 S 27
N5, (z,y) is nonincreasing with respect to z on [y, T]. It follows that

Zélfl(Tfy)Blfl Télfl

N5, (z,7) < Ng, (v,y) = T8 -10(8,) < F(51)'

Since, for 0 <z <y <T,

Mor(zy) 1 [(Br= D 2r—yo ]
0z _].—‘(51) Té1-1 =7

437



MAHAMMAD et al./Turk J Math

N5, (z,y) is nondecreasing with respect to z on [0, y]. It follows that

251—1(T_y)51—1 T61—1
< .
T51*1F(51) - P(él)

Ns, (z’ Y) < s, (Y7 Y) =
The assertion (iii) is evident.

Lemma 2.7 Let g € C[0,T]. Then the boundary value problem

RBDSZ).Z pj (Z)RéDgheﬂj (Z):| = g(z)a zc [OvTL 613 62 S (172)a

93(0) = lim [F5DZ (205 (2)] =0,
¢M9;(T) = lim DS (05 ()] =0,

has a unique solution

95z) = [ "Ry (2 y)e [ / ' Wg(@dx dy,

where Vs, (z,y) is defined in Lemma 2.5 and

y52—1(T _ X)52—1

Ns, (v, x) L To2—1 —y-0""" x<y,
X) = ——
52\Y5 F(Bg) y52—1(T_X)61—1
Télfl ? y S X

Proof Let ¥5(z) = —%D2“9;(z) for z € [0,T]. Then the boundary value problem

D22 3 (2)5DE03(2)| = g(2), 2 € [0,7], 81,8 € (1,2)
. L bz .
95(0) = lim 55 ("9;(2))] = 0,

eT,(T) = lim [0 (e20,(2))] =0,

is equivalent to the problem

Mps: () + BEL — 0 pi(2) £0,2€ 0,75, € (1,2),
¥5(0) = T9;(T) = 0,

By Lemma 2.5, the boundary value problem (2.11) has unique solution

0y(z) = /O Ns, (z,y)e LY pgj<(Yy)) iy,

That is

g(y)dy = 0.

T —0(z—y)
N
MD319;(z) + / 52(2,y)e
0 Pj (Y)
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Again by Lemma 2.5, the differential equation (2.12) with boundary conditions
95(0) =0 and eT95(T) =0

has a unique solution

(=)

Vj(z) = /T Ns, (z,y)e V) [/OT Noa X)e_[(y_X)g(x)dx] dy
T (z,y)

p;(x)
T N x
/ Ns, e 2 {/ 62(y’x)eg(x)dx} dy.
0 p;(x)
This completes the proof. O

[}

From the above Lemma 2.7, it can be seen that solution of the BVP (1.1) is the solution of the follwoing integral

equation

95(z) = A5 /OTNél(z,y)eez UOT w% (x,ﬁ(x))dx] dy (2.13)

and vice versa.
Lemma 2.8 The kernel Ns,(z,%) has the following properties:

(1) Ns,(y,%) is nonnegative and continuous on [0, T] x [0, T].

T62_1
I'(82)

(”) N52 (y,x) < N62 (Xv X) < fmn VX € [OaT] X [OvT]'

02
['(82)

T
N, (v, %)dx =
(i) max, /O 5, (¥, %)dx

Proof The proof follows from Lemma 2.6. O

Definition 2.9 ([15]) Let (Y,d) be a metric space and X C Y. Then the Kurtowski measure of noncompactness
of X is denoted by IC(X), if defined as

n
K(X) = inf {5 >0:XC U Ej, E; CY, diam(E;) <e,n € N},
j=1
here K is called Kuratowski measure of noncompactness. It is evident that
K(X) < diam(X) V XCY.

Let B be a real Banach space with the norm ||| and A(a,ag) be a closed ball in B centered at a and radius ag .
If F is a nonempty subset of B then F and conv(F) represents closure and convex closure of F. Furthermore, let

My denote the family of all nonempty and bounded subsets of B and g its subfamily consisting of all relatively
compact sets.
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Definition 2.10 ([4]) A function w: #3 — [0,1) is called a measure of noncompactness, iff
(C1) the family kerp = {F € g : W(F) =0} is nonempty and keryn C s .

(C2) FCE then wF) < u(E).

(C3) n(F) = n(F).

(Ca) m(convF) = u(F).

(C5) HAE+ (1= ANF) < Au(E) + (L= Au(F) for A€ [0,1].

(C¢) if En € Mp, Xpn=Epn, Eny1 CE, for n=1,2,3,--- and lim, o WE,) =0 then NS,E, # 0.

Definition 2.11 ([6]) Let (Y,d) be a metric space, X be a bounded subset Y and A(a,ap) = {b €Y :d(a,b) <ao}.
Then the Hausdorff measure of noncompactness x(X) of X is defined by

n
xX)=infde>0:XC U.A(aj,aoj),aj €Y,ap, <e,n €N
j=1

Next, let ¢g and ¢ be Banach spaces with sup norms, which are defined as

co = {a Cw: jli}rroloaj =0, lall¢ = sgp|aj|},

c= {aew: lim a5 =1, 1€C, |a||czsup|aj|},
5 :

—00 j
respectively.

Definition 2.12 ([6]) The Hausdorff measure of noncompactness x on the Banach space (co, || - ||c,) is defined
by

A) = lim su max |, , Ae ..
X( ) j—oo {a(z)IEJ.A |:m>j ’ |:| } ’
Definition 2.13 ([22]) The (regular)measure of noncompactness w on the Banach space (c,| - ||c) is defined
by

w(A) = lim { sup lsup ’am — lim an‘] }, Ae ..

j—oo a(z)€A | m>j n—00

Definition 2.14 ([5]) Let o = (03) be such that oy is positive and nonincreasing sequence, Then o is called
tempering sequence. Let G be set consisting of all real sequences a = (aj)J‘?il such that oya; — 0 as j — 0o .
It is clear that G forms a linear space over the field of real numbers. We denote the space by cg . Moreover, it

can be seen that c§ is a Banach space with the norm
lalleg = sup {o3las|} -
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Similarly, let S be a set consisting of all real sequences a = (aj)g";l such that oja; converges to finite limit. It

is clear that S forms a linear space over the field of real numbers. We denote the space by c®. Moreover, it

can be seen that c° is a Banach space with the norm
laflce = sup {os]as|} .

Next, consider the function spaces C(J,c§) and C(J,c?), where J = [0,T], T > 0 the spaces of all

continuous functions on J with values in c§ and the spaces of all continuous functions on J with values in

cPrespectively. Then C(J,c§) and C(J,c®) are Banach spaces with respect to the norms,
lalle(.ce) = max {[la(z)|lcg :2€ T}, a€C(T,cq),

lalle(z .eoy = max{fla(z)[lcc : 2 € T}, a€C(T,c),

respectively (see [9]).
For any nonempty, closed, bounded, and convex subset Y of C(J,c§) or C(J,c®) and z € J, we have

Xe(7.ce)(Y) = sup {xcg (Y(z)) : t € T}

and
He(,co)(Y) = sup {peo (Y(z) : t € T}

Note that xc(7.cg) and He(g co) satisty all the axioms of measure of noncompactness on C(J,cf) and C(T,<c%),

respectively (see [9]).

Definition 2.15 ([19]) Let (Y,d) be a metric space. Then a mapping T on Y is said to be a Meir-Keeler
contraction if for any € > 0, there exists K > 0 such that

e<d(z,y)<e+K = d(Tz,Ty) <e, Vx,y €Y.

Theorem 2.16 ([19]) Let (Y,d) be a complete metric space. If T : Y — Y is a Meir-Keeler contraction, then
T has a unique fized point.

Definition 2.17 ([1]) Let C be a nonempty subset of a Banach space E and let p be an arbitrary measure of
noncompactness on E. We say that an operator T : C — C is a Meir-Keeler condensing operator if for any
e > 0, there exists I > 0 such that

e<uY)<e+ K = w(T(Y)) <e

for any bounded subset Y of C.
Theorem 2.18 ([1]) Let C be a nonempty, bounded, closed, and convez subset of a Banach space E and let p
be an arbitrary measure of noncompactness on E. If T : C — C is a continuous and Meir-Keeler condensing

operator, then T has at least one fixed point and the set of all fixed points of T in C is compact.
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3. Existence of solutions for tempered fractional BVP (1.1) in C(J,c)
In this section, we investigate the existence of solutions for infinite system of tempered fractional order two-point
boundary value problems (1.1) in the sequences spaces C(J,c{).

Suppose

(G1) ¢5:J — R*> and define an operator ® : J x c§ — c§ as
(z,9(z)) = (20)(2) = (¢ (2719(2)));”;1

is the class of all functions ((<I>19)(z))Z and equicontinuous on c.

eJ

(G2) &5(2),¢5(z) + J — R are continuous functions such that the sequence 0;&;(z) converges uniformly to
zero on J and the sequence ((j(z)) is equibounded on J, so we take ((z) = sup{(;(z) : j € N},
C* =sup{((z) :z€ J}, 0" =sup{o;&;(z) : jeN,ze J} and

lo;(z,9(2)| < &5(2) + ¢5(2)|05(2)], ¥5€c], zeT,jEN.

T51+62€2T<*

Theorem 3.1 Suppose TGOTGY)

< 1 and (G1) — (G2) hold, then the infinite system of tempered fractional

order boundary value problems (1.1) has at least one solution ¥(z) = (9 (z))Joi1 in C(J,cJ) provided

1
O<}\j<j, jGN,
P;

where pj = sup{p;(z) : z € J}.

Proof Since sup{o;|d;(z)|} < +oo for all ¥(z) = (V5 (z));)c:1 €C(J,c§) and z € J, there exists £ > 0 such

that sup{o;|Y;(z)|} < k. From (G2) and (2.3), we get

y "N (z,y)e ]/ oy 0)e” (5. 00) dy'}

FHz)||co = Sup{c-
1P @)les jen | p;(x)

J

up { e [ matey Ji ' a5 (90 ] dy}

*
jEN 1]

u]p{“H [ 530 | [ sl o] dy}

IA

IN

*
JEN 1]

78148211 oA
S TraTe Sy T
L(81)I'(82) jen | P}

814821 ,T T
< o* 4+ (*k|dt
< Tormg st e

(0.* + C*/ﬁ)T51+52eZT
o I'(81)I(82)

/0 [E'J(X) + 5 (X)’ﬂj (X)H dx}

= a.
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Therefore,
max [9(2) < @, i, [9(2) e o) < o
Now, let the closed ball A = A(9¥°(z),a) centered at ¥°(z) = (190(2));)11, ¥(z) =0,Vz € J, j € N and radius

a. Thus, A is a nonempty bounded closed convex subset of C(J,cg).
For fixed z € J, define an operator = = (Z5)52; : C(J,¢cf) = C(J,¢cf) as

@)@ = (E0EE = {N | "Ry (2 )" I ey e (x, 00|y}

Pj (x) j=1

Since (ip; (2,19(2)));";1 €cg, for z € 7, it follows that

im (03(E50)(2)) = i {oins [ s (ey)e | [ B0 e ay

j—00 j—o00 P; (x)

To14+82-1,4T T
S === li Apr s (x, 0 d
~ D(01)I'(82) /o jggo[GJ 7Py (%, 0(x))]dx

1482101 T
< wrprey [ dim [o5es(x, 9(x))d
= T(51)I(52) /0 Jim [oyp;(x, 9(x))]dx

=0.
Thus, (29)(z) € C(J,cg). Moreover, it can be seen that (Z59)(z) satisfies boundary conditions, i.e.
= : 51,6 bz (= _
(E39(0)) = lim PP (2,0(2))] = 0,

e(E;9(T)) = lim [FD 4 (e*(E;9(2)))] = 0.

z—T

For fixed z € T and 9¥(z) € A, we get
@9)(z) ~ @)y <a = mas |(E0)(z) P @les <o
= [IE9)(2) = (@) lle.e5) < a

which proves that Z is self mapping on A. From (G1), for any J(z) = (9; (z)):il € A and for any £ > 0 there

exists 0 > 0 such that [[(®9)(z) — (®V)(z)cg < % for each 9(z) € A, whenever |[9(z) — J(z)| < 4,
where z € J. Thus, for z € 7, we have

o [ oz y)e ]/ el Bt o) — gy (x 00| dy\}

1(E9)(z) - (E9)(2)]lcg = S_ug{ p; (%)

je

TO1+82—1 LT N T
< m sup {O'j)\jpj /0 |<pj (X, ’19(}()) — 5 (X,ﬂ(x))dx}

jeN
TO1+82—1p0T €F(61)F(52)

< T
S T(0)T(6,) Tortoeelt - < F
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It shows that = is continuous on A for every z € 7.

Now, we have

J700 | 9(z)eAm>] P (x

X(EA) = lim { sup sup [cm ’?\m /OTN51(z,y)e—fZ [/OTW%(X,ﬁ(X))dX] dyH}

T61+627166T ) T
< m thgo {ﬁsup sup {A (G7rLE»m (x) + GT?LC77L(X)|1977L(X)|) dx:| }

(z)eAm>]
T51+526€Tc*
< ey X(A).
(61T (5:)
Thus,
T51+526ZTC*
sup x(2A) < ————sup x(A).
SO EA) S T S
It follows that
T61+626£TC*
o E < B E— o .
Xe(7.e5)(EA) < ToT () Xe(7,e)(A) <e
That is
EF(él)F(éz)
Xe( ) (A) To1 482 glT 0w
. € * .
Letting 6 = T Fo20fTlr [T(81)T(82) — o182 |, we obtain & < x¢(7,c)(A) <& +0.
Therefore, = is a Meir-Keeler condensing operator on A. Moreover, = satisfies all the conditions of Theorem
2.18, i.e. = has a fixed point in A. Hence, the infinite system (1.1) has a solution in C(J,c§). O

4. Existence of solutions for tempered fractional BVP (1.1) in C(J,c°)

In this section, we derive the sufficient conditions for the existence of solutions for infinite system of tempered
fractional order boundary value problems (1.1) in the sequences spaces C(J,c?).

Suppose

(H1) ¢j:J — R> and define an operator ® : J x c® — ¢ as
(2,9(2)) = (20)(2) = (p3(2,9(2))) _,

is the class of all functions ((@19)(2))2 and equicontinuous on c°.

eJ

(H2) mj(2),05(z) : J — R are continuous functions such that the sequence ojn;(z) converges uniformly to
zero on J and the sequence (0(z)) is convergence on J, so we take 0(z) = sup{0;(z) : j € N},
0* =sup{0(z) :z€ J}, 0 =sup{ojn;(z):jeN,ze€ J} and

@j(zaﬁ(z)) S le(z) + ej(z)ﬁj(z)v 19j € 067 z € ja.] = 1a2,37’ Tt
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1+ (LT

Theorem 4.1 Suppose TeoTE < 1 and (H1)—(Hz2) hold, then the infinite systems of fractional order

boundary value problems (1.1) has at least one solution ¥(z) = (95(z)) in C(J,c®) provided

1
0<}\j<j, jGN,
Pj

where pj = sup{p;(z) : z € J}.

Proof Since sup{o;|d;(z)|} < +oo for all ¥(z) = (V5 (z))Joi1 €C(J,c%) and z € J, there exists ¢ > 0 such

that sup{o;|Y;(z)|} < o. From (Hz) and (2.3), we get

19(2) e = sup {oj
jEN

A /OTNg;l(z,y)eéz UOT W% (x,ﬂ(x))dx: dy'}

IN

sup
jEN

{ojxje”p; / o (z.y)] [ / e 5.9l (X,ﬁ(X))IdX: dy}

IA

T T 7
sup {05685 [ Mo (591 | [ s G0l o 0t a
jeN 0 0 i

T51+52—1€€T

< TErGa S (o [ o+ 0sloste) e}
T51+52—1e€T T N N

< Tore ), o]
(0% + 0% ) TO102¢(T

STUTE)NG)

Therefore,

max [9(2) lec < b, iceey [9(2)eig.e0) < b

o0
j=1

Now, let the closed ball B = B(9°(z),r1) centered at ¥°(z) = (9°(z)) ¥ (z) =0Vz € J, j €N and radius

b. Therefore, B is a nonempty bounded closed convex subset of C(J,c).
For fixed z € J, define an operator T = (Y;)52; : C(J,cf) — C(J,¢cq) as

(oo}

(T0)@ = (1@ = { [ "Ry (2 y)e I ' W@ (x. 00| dy |

=1
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Since (¢;5(z,9(z )))J | € ¢” and p;(z) = p(z) for z € J, it follows that V;(z,T) = Ni(z,7) for any k,l € N.

Therefore, we have

|05(T39)(2) — 0:(T10)(2)]

=032y /Tm-,l(z y)e UOT W% (x,ﬂ(x))dx] dy

— o3\ /OTNél(z,y)e—fz UOT W@i(x,ﬁ(x))dx} dy’

— ‘ /OTN&(z,y) UOTNEQ(y, x)ez(zx>;j(7;j)[nj(x) +0;(x)9; (x)]dx] dy

-/ "Ny (zy) [ / "Ry, e 2ok, o) + 91<X>’9i<x>]dx} d“”

ps(x
Z e_g(z x) O—J Jnj( ) _ cyiAiT]i(X) <
< [ el [ gm0 [ SR S0
, o tlz—x) 03A30;(x)05(x)  03A:0:(x)0:(x) N
[ Wsste [ [ s om0y | SR 00 ay
2 o~ lz—%) 03A;5m; (x) 03\ (x) <
< [ e[ [ gm0y [SDmE oA ) g

/mélzy [/ N, (3, )l xn[‘“i)()ej(x)—ei(xn

O—J}\J,ﬂ] (X) 017\1?91(X)

p;j(x) pi(%)

+16:(x)]

] dx} dy

Since (A;), (83), (oyn;) are convergent on J and J % € ¢, it follows that
|oj(Y39)(z) — 03 (Y3i0)(z)| =0 as j,i— oo.
Hence, (Y9)(z) € C(J,c?). Moreover, it can be seen that (1;9)(z) satisfies boundary conditions, i.e.
(159(0)) = lim [FD3(e'% (T;0(2))] = 0,
eT(E9(T)) = lim B3 ((T,9(2))] = 0.
For fixed z € T and 9(z) € B, we get
1(r9)(z) =0°(2) e <b = max||(T)(z) = P°(2) [0 < b
= [(T9)(2) = " (@)lle(g.cr) <D,

which proves that T is self mapping on B. From (H;), for any 9(z) = (9; (z))Joi1 € B and for any € > 0 there

exists & > 0 such that ||[(®9)(z) — (DY) (2)]|cs < %T for each 9(z) € B, whenever |9(z) — 9(z)| < 4,
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where z € J. Thus, for z € J, we have

{

T61+52_1€€T
< -
— T(51)(82)

[(Y9)(z) — (Y9)(2)|lce =sup

J

TO1+82—10T 51’(51)1‘(62)

T
Gj)\j/ N5, (z,y)e " [/
0 0

sup

" R, (7, x)e’™

U1 5, 000) = 0t |

{%Mpg* /OT s (x,9(x)) — @j(x,ﬁ(x))mx}

eN

T<e

= T0(5)

To1+02 olT

Thus,  is continuous on B for every z € J.

Now, we have

pn(Q2B) = lim

sup Ssup
j—oo

I(z)eBm>j

{

— lim
n—oo

|

T51+52—162T )
lim

S TEOT0) 5% |

{
{
{

T51+52716ET
<— i
~ T(61)I(82) SRS

T51+52—16[T
<——+—— lim
= T(81)T(82) 300 | 9

T61+5266T6*

= Toores "

Thus

7

sup u(YB) <

zeJ

It follows that

T81+52€€T6*

He(g,co)(TB)

OrmAm /OTN51(27y)e_éz [/0
(onxn /OTNZ—,l(z,y)e_ez [/0

= T(5,)T (5

" Na, (7, x)e”

Pm (%)

ol D) ay H}

Pm (T, 9(x))
)

)
A |81 (T)

| — lim
— |0mUm (T) — lim 0,9, (7)]

n—oo

wm(x,ﬁ(x))dx} dy
! Néz (y7 X)ezx
pn(x)

G'”LA'HL
Pm (%)

sup sup
(z)eBm>j

I

(x,9(x))

An
N 9071,
n(%)

sup sup
(z)eBmM=>]

A

OnAn 0, (%), (%)

— lim
Pn(x)

n— 00

X
0,95 (T)
(x)

sup sup
(z)EBmM>]

— ’ lim
n— o0 pn

(AmBm () = AnB, (1)) y)dT] }

T51+526€Te*

T (5, b B

zeJ

51"(51)I‘(62)

) HC(J,CG)(B) <e = ”C(JVC“)(B) < T81+82lTQx
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. € .
Letting ¢ = T61 52 olTgx [T(8:1)T'(82) — T**T22e70*] | we obtain & < pe(7co)(B) <&+ 4.

Therefore, T is a Meir-Keeler condensing operator on B. Since z is arbitrary, so for every z € J, T satisfies
all the conditions of Theorem 2.18, i.e. T has a fixed point in B. Hence, the infinite systems (1.1) has a solution

in C(J,c). O

5. Applications

In this section, we present two examples to illustrate our main results.

Example 5.1 Consider the following infinite system of tempered fractional order boundary value problems.

€37 cos(jz) o U4(z)
D120 (2 + ) (5DL 00y (2)) ] = Ay | M) 5 It
i=j

95(0) = lim [f5D*05(e%%95(2))] =0,

eO.Sﬁj(l) _ ?_}rr% [RIGD;A’O.S(GOﬁZﬁj (Z))] — O, J c N

Thus, £ = 1,8, = 14,8y = 1.2, ps(z) =22 +4, T=1, J = [0,1], and ¢;(z,9(z)) = % +YR U
Let 05 = % for all j € N. Now, for 9(z) € C(J,c§), we have

j—oo j—oo J

. e=3%" cos (jz) 1 —
lim o5¢;(z,9(z)) = lim | ———— —ZZ

4e

2
C(J,c§). Let € > 0 be given and & = = such that ||¥(z) —

Next, let for any v(z) = (Vj(z))ocl € 2

j=
'V(Z)Hc(‘y’cg) < 6 Then

|(@9)(z) = (@V)(2)leg =sup { 03] 3(2. 9(2) - ¢3(z,v(2))] |
jeEN

Thus, ((®9)(2))zes is equicontinuous on cf. Moreover, for z € J and j € N, we have

stz 0] < UL S Loy
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—jz? 2 2 )
where &;(z) = ¢ — and (5(z) = % Thus, ¢* = 72-[—4 We note that (0&;(z)) = (6_324/j3) converges
J

uniformly to zero on J and the sequence (;(z) is equibounded on 7. Moreover,

T51+5266TC* \/67'[2
T(6)0(52)  24T(L.A)T(1.2)

<1
Hence, by Theorem 3.1 the infinite systems (5.1) has a solution in C(7,c§) provided

1
A —_ = -,
<zrél[g‘,}i] Z2+4 4

Example 5.2 Consider the system of tempered fractional order two-point boundary value problems.

L[V § 2D 0y ()] = Ay [ ) | g e

2
h| = 7i
. . (5.2)
¥5(0) = lim [f5Dz 11 (€%0;(2))] = 0,
ed;(1) = lim DL (e*95(2))] =0, j €N

Thus, £ =1,8; = 1.1, 8 = 1.8, pj(z) = V22 + 25, T=1, J = [0, 1], and ;(z, (=) = “—522 4 520 4,
Let o5 = J% for all j € N. Now, for 9(z) € C(J,c?), we have

i . sin(jz 1 X V5 (z
lim o;p;(z,9(z)) = lim g)+j22 312) _o.
i=j

j—oo j—oo ] 7

This shows that (¢5(z,9(z))) € ¢°. Next, let for any v(z) = (v; (z))?i1 € C(J,c?). Let € > 0 be given and

12¢
5= = such that [|9(z) — 9(2)|l¢(7,co) < . Then

{o3]¢3(2.9(2)) - v5(z. V(=) }

[(@9)(2) = (v0)(2)[les =sup
jEN
1 1
=sup 72;7?’ 3(2) — v5(2)|
-
< iz —vs(@)leg <e
. . . . sin jz
Thus, ((®¥)(z))zes is equicontinuous on c®. Moreover, for z € J and j € N, we have n;(z) = —— and
J

72 L, m sin jz .
0;(z) = ¥oR Thus, 0* = 15 We note that (om;(z)) = 5 ) converges uniformly to zero on J and the
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sequence 0;(z) is convergent on J. Moreover,

T51+6268T9* 67’[2
= <
T(51)T(52)  420(L.1)I(1.8)

1.

Hence, by Theorem 4.1 the infinite systems (5.2) has a solution in C(7,c®) provided

1

1
7\ < max ——— = —.
z€[0,1] V12 +25 5

6. Conclusion and future work

In the present paper, we studied an infinite system of tempered fractional order boundary value problem. The

fractional derivative used in our problem is the so-called tempered fractional Riemann-Liouville derivative,

which generalizes well-known Riemann—Liouville fractional derivative. By applying the Hausdorff measure of

noncompactness technique and using the Meir-Keeler fixed point theorem, we examined the existence of solution

to this infinite system. This investigation has been performed in new sequence spaces C(J,cJ) and C(J,c?)

called tempered sequence spaces. Finally, numerical examples are also provided to illustrate our obtained results.

In the future, the following aspects can be explored further:

(1) Further investigation is needed to study infinite system of singular temepered fractional Sturm-Liouville

boundary value problem. Here taking singularities over p;(z) is challenging.

(2) The idea used in this paper can be further developed to study infinite systems of fractional difference

equations [41] and dynamic equations on time scales [29, 38, 39] etc.
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