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Abstract: Let GL(n) = GL(n,C) denote the complex general linear group and let G ⊂ GL(n) be one of the classical
complex subgroups O(n) , SO(n) , and Sp(2k) (in the case n = 2k ). We take a finite dimensional polynomial GL(n) -
module W and consider the symmetric algebra S(W ) . Extending previous results for G = SL(n) , we develop a method
for determining the Hilbert series H(S(W )G, t) of the algebra of invariants S(W )G . Our method is based on simple
algebraic computations and can be easily realized using popular software packages. Then we give many explicit examples
for computing H(S(W )G, t) . As an application, we consider the question of regularity of the algebra S(W )O(n) . For

n = 2 and n = 3 we give a complete list of modules W , so that if S(W )O(n) is regular then W is in this list. As a
further application, we extend our method to compute also the Hilbert series of the algebras of invariants Λ(S2V )G and
Λ(Λ2V )G , where V = Cn denotes the standard GL(n) -module.
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1. Introduction
Let GL(n) = GL(n,C) be the general linear group with its canonical action on the n -dimensional complex
vector space V = Cn and let W be a finite dimensional polynomial GL(n) -module. Then W can be written
as a direct sum of its irreducible components

W =
⊕
λ

k(λ)V n
λ , (1.1)

where λ = (λ1, . . . , λn) ∈ Nn
0 , λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 , is a nonnegative integer partition and V n

λ is the
irreducible GL(n) -module with highest weight λ . (In particular, V = V n

(1) .) We consider the symmetric
algebra

S(W ) =
⊕
i≥0

SiW,

where SiW denotes the i -th symmetric power of W . Then GL(n) and its subgroups act canonically on S(W )

by the usual diagonal action and we can construct the algebra of invariants S(W )G , where G is a subgroup
of GL(n) . In classical invariant theory usually one considers the algebra of polynomial functions C[W ] . The
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group GL(n) and its subgroups G act canonically on C[W ] by the formula

(gf)(v) = f(g−1v) for all v ∈ W and f ∈ C[W ].

One uses this action and studies the algebras of invariants C[W ]G , where again G is a subgroup of GL(n) .
But for our purposes it is more convenient to work with S(W ) instead with C[W ] .

We recall the following definition.

Definition 1.1 Let A =
⊕
i≥0

Ai be a finitely generated N0 -graded (commutative or noncommutative) algebra

over C with homogeneous components Ai of degree i = 0, 1, 2, . . . , and such that A0 = C or A0 = 0 . The
Hilbert series of A is the formal power series

H(A, t) =
∑
i≥0

(dimAi)ti.

The Hilbert series H(A, t) is one of the most important invariants of the graded algebra A . In particular, when
we consider a minimal set of generators of A , the Hilbert series H(A, t) gives information about the lowest
degree of the generators in this set and the maximal number of generators in each degree.

Both algebras C[W ]G and S(W )G have a natural N0 -grading which is inherited, respectively, from
the N0 -gradings of C[W ] and S(W ) . Furthermore, C[W ]G and S(W )G for G = O(n) , SO(n) , Sp(2k) are
isomorphic as N0 -graded algebras and hence H(C[W ]G, t) = H(S(W )G, t) . In the sequel we shall work and
state our results in S(W ) .

There are many methods to compute the Hilbert series H(C[W ]G, t) (see, e.g., [3]). In a series of joint
papers of the first named author (see [1] for an account), one more method for computing the Hilbert series
H(S(W )SL(n), t) of the algebra of invariants S(W )SL(n) has been developed. It is based on the method of Elliott
[5] from 1903 for finding the nonnegative solutions of linear systems of homogeneous Diophantine equations,
further developed by MacMahon [13] in his Ω -calculus (or partition analysis), and combined with the approach
of Berele [2] in the study of cocharacters of algebras with polynomial identities. Our goal in this paper is to
extend the latter method and to determine also the Hilbert series of the algebras of invariants S(W )G for
G = O(n) , G = SO(n) , or G = Sp(2k) . As in the case of S(W )SL(n) the advantage of our method is that it is
based on simple algebraic computations and can be easily realized using popular software packages. Our main
results in this direction are given in Section 4.

In Sections 5 and 6, using our results from Section 4, we compute the Hilbert series of S(W )G for many
explicit examples of polynomial GL(n) -modules W . In Section 5 we consider arbitrary dimension n and in
Section 6, we focus on the cases n = 2 and n = 3 . As an application of our computations, we address the
question of regularity of the algebra of invariants S(W )O(n) .

Recall that for any reductive complex linear algebraic group G , a finite dimensional representation W

of G is called coregular if the algebra of invariants C[W ]G is regular, i.e. isomorphic to a polynomial algebra.
The irreducible coregular representations of connected simple complex algebraic groups were classified by Kac,
Popov and Vinberg in 1976 (see [10]). Then in 1978 Schwarz classified the reducible coregular representations
of connected simple complex algebraic groups (see [15]). However, not much is known in general for coregular
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O(n) -representations. In Section 6, for n = 2 and n = 3 we give a complete list of polynomial GL(n) -modules
W , so that if S(W )O(n) is regular then W is in this list (Theorems 6.7 and 6.11).

In Sections 7 and 8, as a further application of our method, we compute also the Hilbert series of the
algebras of invariants Λ(S2V )G and Λ(Λ2V )G for G = O(n) , SO(n) , Sp(2k) , where Λ(W ) and Λ2(W ) denote,
respectively, the exterior algebra and the second exterior power of the GL(n) -module W .

2. Decomposition of irreducible GL(2k)-modules over Sp(2k)

In this section n = 2k . By V 2k
λ we denote again the irreducible GL(2k) -module with highest weight λ . Our

goal is to decompose V 2k
λ as a module over Sp(2k) and to determine the dimension of the subspace of invariants

(V 2k
λ )Sp(2k) . Some of the results in this and in the next section can be found using different methods in [14].

The irreducible representations of Sp(2k) are indexed by nonnegative integer partitions µ with at most k parts,
i.e. µ = (µ1, . . . , µk, 0, . . . , 0) (see, e.g., [6, 7]). We denote them by V 2k

⟨µ⟩ . For a partition λ = (λ1, . . . , λn) we

write λ′ = (λ′
1, . . . , λ

′
n) for the transpose and by 2δ = (2δ1, . . . , 2δn) we denote an even partition. With these

notations the following Littlewood–Richardson branching rule holds.

Proposition 2.1 [8, 11] Let λ be a partition in at most k parts. Then

V 2k
λ ↓ Sp(2k) ∼=

⊕
µ,2δ

cλµ(2δ)′V
2k
⟨µ⟩, (2.1)

where the sum runs over all partitions µ and all even partitions 2δ . Here the coefficients cλµν are the Littlewood–
Richardson coefficients.

Since in the statement of Proposition 2.1 the partition λ is in at most k parts, the same holds for the
partitions µ . Hence we do obtain the decomposition of V 2k

λ into a direct sum of irreducible Sp(2k) -modules
V 2k
⟨µ⟩ . When the partition λ has more than k parts, then on the right side of Equation (2.1) there will appear

terms V 2k
⟨µ⟩ , for which µ has more that k parts. In the paper [11], it is shown how to regard such terms as

elements of the Grothendieck group of Sp(2k) -modules with the help of modification rules. For the group
Sp(2k) the modification rule is as follows. Let µ = (p, µ′

2, . . . , µ
′
q)

′ , i.e. let µ have p rows with p > k . Then
the following equivalence formula is derived in [11]:

V 2k
⟨µ⟩ = (−1)x+1V 2k

⟨σ⟩, (2.2)

where the Young diagram of σ is obtained from the Young diagram of µ by the removal of a continuous
boundary hook of length 2p− n− 2 starting from the bottom box of the first column of the Young diagram of
µ . Here x denotes the depth of the hook, i.e. x+1 is the number of columns in the hook. We then repeat this
process of removal of a continuous boundary hook until we obtain an admissible Young diagram, i.e. a Young
diagram corresponding to a partition µ with at most k parts. We write zero for the multiplicity of V 2k

⟨µ⟩ in the

branching formula if the process stops before we obtain an admissible Young diagram (because 2p−n− 2 = 0)
or we obtain a configuration of boxes which is not a Young diagram. The latter happens if for the columns of
the configuration corresponding to σ the rule σ′

1 ≥ σ′
2 ≥ · · · ≥ σ′

n is violated.
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Proposition 2.2 Let µ be a partition with more than k parts and let V 2k
⟨µ⟩ be the element of the Grothendieck

group of Sp(2k)-modules defined by formula (2.2). Then V 2k
⟨µ⟩ is equivalent neither to the trivial one-dimensional

Sp(2k)-module V 2k
⟨(0,...,0)⟩ , nor to its inverse in the Grothendieck group of Sp(2k)-modules.

Proof Let V 2k
⟨µ⟩ be as in the statement of the proposition. Let us assume that, starting with the Young

diagram of the partition µ and removing continuous boundary hooks, we obtain the admissible Young diagram
without boxes corresponding to the partition (0, . . . , 0) . Hence, one step before the end of the process we shall
reach a partition ν = (ν1, 1, . . . , 1) with p > k parts. Since ν will disappear in the next step, its Young diagram
has exactly 2p− 2k− 2 boxes, i.e. ν1 + p− 1 = 2p− 2k− 2 and ν1 = p− 2k− 1 = p−n− 1 < 0 because ν is a
partition in p ≤ n parts. This contradiction shows that V 2k

⟨µ⟩ cannot be equivalent to the trivial one-dimensional

Sp(2k) -module V 2k
⟨(0,...,0)⟩ . 2

Corollary 2.3 Let V 2k
λ be any irreducible GL(2k)-module. Then

dim(V 2k
λ )Sp(2k) =

{
1 if λ1 = λ2, λ3 = λ4, . . . , λ2k−1 = λ2k

0 otherwise.

Proof By Propositions 2.1 and 2.2, and the modification rules stated between them, it is sufficient to calculate
in (2.1) the Littlewood–Richardson coefficient cλµ(2δ)′ for the partition µ = (0, . . . , 0) and to show that

cλµ(2δ)′ =

{
1, if λ = (2δ)′

0, otherwise.

In order to calculate cλµ(2δ)′ , we start with the diagram of (2δ)′ and add to it the boxes of the diagram of µ

to obtain the diagram of λ filling in the boxes from µ with integers following the Littlewood–Richardson rule
(see, e.g., [12]). Then cλµ(2δ)′ is equal to the possible ways to do these fillings in. Since the diagram of µ has no

boxes, the only diagram we obtain, and exactly once, is the diagram of (2δ)′ , i.e. cλµ(2δ)′ = 1 for λ = (2δ)′ and

cλµ(2δ)′ = 0 otherwise. Clearly, λ = (2δ)′ means that λ1 = λ2 , λ3 = λ4 , …, λ2k−1 = λ2k . 2

3. Decomposition of irreducible GL(n)-modules over O(n) and SO(n)

In this section we determine the dimensions of the subspaces of O(n) - and SO(n) -invariants (V n
λ )O(n) and

(V n
λ )SO(n) . We use a similar approach as in Section 2. We start with the description of the structure of V n

λ as
an O(n) -module. The irreducible representations of O(n) are indexed by partitions µ with µ′

1 + µ′
2 ≤ n , i.e.

the sum of the lengths of the first two columns of the Young diagram of µ should be at most n (see, e.g., [6, 7]).
We denote the corresponding O(n) -modules by V n

[µ] . With these notations the following Littlewood–Richardson
rule holds.

Proposition 3.1 [8, 11] Let λ be a partition with at most n/2 parts. Then

V n
λ ↓ O(n) ∼=

⊕
µ,2δ

cλµ(2δ)V
n
[µ],
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where the sum runs over all partitions µ and all even partitions 2δ = (2δ1, . . . , 2δn) .

When λ has more than n/2 parts the above branching formula does not hold and we use again the
modification rules from [11]. The Young diagram of a parition µ = (p, µ′

2, . . . , µ
′
q)

′ is called inadmissible for
O(2k) or O(2k + 1) if p > k , i.e. if the first column in the Young diagram of µ has more than k boxes. For
such µ , we regard the term V n

[µ] as an element of the Grothendieck group of O(n) -modules using the following

equivalence formula from [11]:
V n
[µ] = (−1)xεV n

[σ], (3.1)

where the Young diagram of σ is obtained from the Young diagram of µ by the removal of a continuous
boundary hook of length 2p− n starting in the first column of µ . Here again x denotes the depth of the hook
and ε is the determinant of the matrix of the particular group element from O(n) acting on V n

λ . As before,
we repeat the process of removal of a continuous boundary hook until we obtain an admissible Young diagram
or until we obtain a configuration of boxes which is not a Young diagram. In the latter case we write zero in
the branching formula. Using this modification rule and repeating the arguments in the proof of Proposition
2.2 we obtain the following statement.

Proposition 3.2 Let µ be a partition with more than
⌊
n
2

⌋
parts and let V n

[µ] be the element of the Grothendieck

group of O(n)-modules defined by formula (3.1). Then V n
[µ] is equivalent neither to the trivial one-dimensional

O(n)-module, nor to its inverse in the Grothendieck group of O(n)-modules.

Then, as in Section 2, we obtain the description of the GL(n) -modules V n
λ which contain the trivial

O(n) -module V n
[(0,...,0)] .

Corollary 3.3 Let V n
λ be any irreducible GL(n)-module. Then

dim(V n
λ )O(n) =

{
1 if λ is an even partition
0 otherwise.

When we consider the subgroup SO(n) , then ε = 1 for any group element in the equivalence formula
(3.1). Furthermore, all irreducible O(n) -modules V n

[µ] remain irreducible when restricted to SO(n) , except for

the case n = 2k and µ = (µ1, . . . , µk, 0, . . . , 0) with µk ̸= 0 . Such representations split into two irreducible
SO(n) -representations. Using these considerations we make the following observation.

Proposition 3.4 Let µ be a partition with more than
⌊
n
2

⌋
parts and let V n

[µ] be the element of the Grothendieck

group of SO(n)-modules defined by formula (3.1). Then V n
[µ] is equivalent to the trivial one-dimensional SO(n)-

module if and only if µ = (1, 1, . . . , 1)︸ ︷︷ ︸
n

.

Corollary 3.5 Let V n
λ be any irreducible GL(n)-module. Then

dim(V n
λ )SO(n) =

{
1 if λ is an even or an odd partition
0 otherwise.
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Proof In view of Propositions 3.1 and 3.4 we only need to evaluate the Littlewood–Richardson coefficient
cλµ(2δ) for µ = (0, . . . , 0) and µ = (1, 1, . . . , 1)︸ ︷︷ ︸

n

. For µ = (0, . . . , 0) this is trivial.

When µ = (1, 1, . . . , 1) we use the following Pieri rule (see, e.g., [6]): cλµ(2δ) = 1 if and only if we can

obtain λ from 2δ by adding one box to each row. In all other cases cλµ(2δ) = 0 . In other words, the only

possibility for λ is λ = (2δ1 + 1, . . . , 2δn + 1) . Thus the statement follows. 2

4. Determining the Hilbert series

The goal of this section is to determine the Hilbert series H(S(W )G, t) for G = O(n) , SO(n) , and Sp(2k) by
using Hilbert series of multigraded algebras. We recall that if

A =
⊕
µ∈Nn

0

A(µ)

is a finitely generated algebra with an Nn
0 -grading, then the Hilbert series of A with respect to this grading is

the formal power series H(A, x1, . . . , xn) ∈ Z[[x1, . . . , xn]] defined by

H(A, x1, . . . , xn) =
∑

µ=(µ1,...,µn)∈Nn
0

dimA(µ)xµ1

1 · · ·xµn
n .

This definition makes sense also for multigraded vector spaces. One example of a vector space with an Nn
0 -

grading is the GL(n) -module V n
λ together with its weight space decomposition. The Hilbert series of V n

λ with
respect to this grading has the form

H(V n
λ , x1, . . . , xn) = Sλ(x1, . . . , xn),

where Sλ(x1, . . . , xn) is the Schur polynomial corresponding to the partition λ . Consequently, any polynomial
GL(n) -module W has an Nn

0 -grading and a corresponding Hilbert series which is again expressed via Schur
polynomials.

Let W be any polynomial GL(n) -module. We take the decomposition of the symmetric algebra S(W )

into irreducible GL(n) -modules

S(W ) =
⊕
l≥0

SlW =
⊕
l≥0

⊕
λ

ml(λ)V
n
λ ,

where the second sum runs over all partitions λ ∈ Nn
0 . Thus S(W ) possesses a natural N0 -grading coming

from the decomposition into homogeneous components and a natural Nn
0 -grading coming from the weight space

decomposition of each V n
λ . As in [1], we consider the following Hilbert series of S(W ) , which takes into account

both gradings

H(S(W );x1, . . . , xn, t) =
∑
l≥0

H(SlW,x1, . . . , xn)t
l =

∑
l≥0

(∑
λ

ml(λ)Sλ(x1, . . . , xn)

)
tl.
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Clearly, H(S(W );x1, . . . , xn, t) ∈ Z[[x1, . . . , xn]][[t]] . Furthermore, as in [1] again, we introduce the following
two multiplicity series of H(S(W );x1, . . . , xn, t) :

M(H(S(W ));x1, . . . , xn, t) =
∑
l≥0

(∑
λ

ml(λ)x
λ1
1 · · ·xλn

n

)
tl,

M ′(H(S(W )); v1, . . . , vn, t) =
∑
l≥0

(∑
λ

ml(λ)v
λ1−λ2
1 vλ2−λ3

2 · · · vλn−1−λn

n−1 vλn
n

)
tl.

The second multiplicity series is obtained from the first one using the change of variables

v1 = x1, v2 = x1x2, . . . , vn = x1 · · ·xn.

The following theorem is the main tool to calculate the Hilbert series of the algebras of invariants S(W )G for
G = Sp(2k),O(n),SO(n) , which is done in the next sections:

Theorem 4.1 Let W be as above.
(i) The Hilbert series of the algebra of invariants S(W )Sp(2k) (where n = 2k ) is given by

H(S(W )Sp(2k), t) = M ′(H(S(W )); 0, 1, 0, 1, . . . , 0, 1, t).

(ii) The Hilbert series of the algebra of invariants S(W )O(n) is

H(S(W )O(n), t) = Mn(t),

where Mn is defined iteratively in the following way:

M1(x2, . . . , xn, t) =
1

2
(M(H(S(W ));−1, x2, . . . , xn, t) +M(H(S(W )); 1, x2, . . . , xn, t)) ,

M2(x3, . . . , xn, t) =
1

2
(M1(−1, x3, . . . , xn, t) +M1(1, x3, . . . , xn, t))

· · · · · · · · ·

Mn(t) =
1

2
(Mn−1(−1, t) +Mn−1(1, t)).

(iii) The Hilbert series of the algebra of invariants S(W )SO(n) is

H(S(W )SO(n), t) = M ′
n(t),

where

M ′
1(v2, . . . , vn, t) =

1

2
(M ′(H(S(W ));−1, v2, . . . , vn, t) +M ′(H(S(W )); 1, v2, . . . , vn, t)),

M ′
2(v3, . . . , vn, t) =

1

2
(M ′

1(−1, v3, . . . , vn, t) +M ′
1(1, v3, . . . , vn, t))

· · · · · · · · ·

M ′
n−1(vn, t) =

1

2
(M ′

n−2(−1, vn, t) +M ′
1(1, vn, t)),

M ′
n(t) = M ′

n−1(1, t).
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Proof (i) We take again the decomposition of S(W ) into irreducible GL(n) -modules:

S(W ) =
⊕
l≥0

SlW =
⊕
l≥0

⊕
λ

ml(λ)V
n
λ , (4.1)

where the second sum runs over all partitions λ ∈ Nn
0 . Therefore,

S(W )Sp(2k) =
⊕
l≥0

⊕
λ

ml(λ)(V
n
λ )Sp(2k).

The definition of Hilbert series gives

H(S(W )Sp(2k), t) =
∑
l≥0

(∑
λ

ml(λ) dim(V n
λ )Sp(2k)

)
tl.

Hence, Corollary 2.3 implies that

H(S(W )Sp(2k), t) =
∑
l≥0

 ∑
λ1=λ2,...,λ2k−1=λ2k

ml(λ)

 tl.

Moreover, if we evaluate the multiplicity series M ′(H(S(W )); v1, . . . , v2k, t) at the point (v1, v2 . . . , v2k−1, v2k) =

(0, 1, . . . , 0, 1) we obtain

M ′(H(S(W )); 0, 1, . . . , 0, 1, t) =
∑
l≥0

 ∑
λ1=λ2,...,λ2k−1=λ2k

ml(λ)

 tl =

H(S(W )Sp(2k), t).

(ii) Similarly, for H(S(W )O(n), t) we obtain

H(S(W )O(n), t) =
∑
l≥0

(∑
λ

ml(λ) dim(V n
λ )O(n)

)
tl.

Thus, Corollary 3.3 implies

H(S(W )O(n), t) =
∑
l≥0

 ∑
λ−an even
partition

ml(λ)

 tl = Mn(t),

where Mn is defined as in the statement of Theorem 4.1 (ii).

(iii) For S(W )SO(n) we obtain, using Corollary 3.5

H(S(W )SO(n), t) =
∑
l≥0

 ∑
λ−an even or an odd

partition

ml(λ)

 tl = M ′
n(t),

where M ′
n is defined as in the statement of Theorem 4.1 (iii). 2
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5. Examples and applications for general n

In this and in the next sections we use our results from Section 4 to compute the Hilbert series H(S(W )Sp(2k), t) ,
H(S(W )O(n), t) , and H(S(W )SO(n), t) for explicit GL(n) -modules W . As an application, we address the
question of regularity of the algebras of invariants S(W )O(n) for general n in this section and for n = 2, 3 in
the next section.

In the three examples below, we know in advance the decomposition of S(W ) into irreducible GL(n) -
modules, described in (4.1). Hence, we can easily determine the multiplicity series M and M ′ and then apply
Theorem 4.1 to compute the respective Hilbert series. In all three cases the algebra of invariants S(W )G , for
G = SO(n) or Sp(2k) , is known to be regular and the degrees of its generators are given in [10] for irreducible
W and in [15] for reducible W . We conclude that S(W )O(n) is also a polynomial algebra in these three cases
and the expressions for the respective Hilbert series which we find below are enough to describe the relations
between the algebras S(W )O(n) and S(W )SO(n) . In particular, we describe the degrees of all generators in a
minimal set of generators of S(W )O(n) (see Corollaries 5.2, 5.5, 5.7, and 5.8).

Example 5.1 Let V = Cn denote the standard GL(n)-module and let W = S2V be the second symmetric
power of V . In other words, W = V n

λ with λ = (2, 0, . . . , 0) . The decomposition (4.1) is known in this case
(see, e.g., [7]) and is given by

S(S2V ) =
⊕
l≥0

⊕
|λ|=2l
λ−even

V n
λ .

Thus the multiplicity series M(H(S(S2V ));x1, . . . , xn, t) and M ′(H(S(S2V )); v1, . . . , vn, t) are, respectively,
equal to (see also [1]):

M(H(S(S2V ));x1, . . . , xn, t) =

n∏
i=1

1

1− (x1 · · ·xi)2ti
,

M ′(H(S(S2V )); v1, . . . , vn, t) =

n∏
i=1

1

1− v2i t
i
.

Using Theorem 4.1, we obtain

H(S(S2V )Sp(2k), t) =

k∏
i=1

1

1− t2i
, where n = 2k,

H(S(S2V )O(n), t) = H(S(S2V )SO(n), t) =

n∏
i=1

1

1− ti
. (5.1)

In [10] it is shown that the algebra of invariants S(S2V )Sp(2k) is a polynomial algebra with k generators
in degrees respectively 2, 4, . . . , 2k .

For S(S2V )SO(n) we use, in the notations of Section 3, that

S2V ↓ SO(n) ∼= V n
[(2,0,...,0)] ⊕ V n

[(0,0,...,0)].
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Hence, it follows from [10] that S(S2V )SO(n) is a polynomial algebra too with n generators in degrees respectively
1, 2, . . . , n .

Formula (5.1) implies the following immediate corollary.

Corollary 5.2 For all n we have
S(S2V )O(n) = S(S2V )SO(n).

Proof This follows from the fact that for each l ≥ 0 we have Sl(S2V )O(n) ⊆ Sl(S2V )SO(n) and at the same
time dimSl(S2V )O(n) = dimSl(S2V )SO(n).

2

Example 5.3 Next, let us take W = Λ2V , the second exterior power of V . Then W = V n
λ with λ =

(1, 1, 0, . . . , 0) and it is known that

S(Λ2V ) =
⊕
l≥0

⊕
λ

V n
λ ,

where the second sum runs over all partitions λ with |λ| = 2l and such that λ2i−1 = λ2i for i = 1, . . . , ⌊n/2⌋ .
When n is odd we also have λn = 0 (see, e.g., [7]). Then for the multiplicity series M and M ′ one obtains
(see also [1])

M(H(S(Λ2V ));x1, . . . , xn, t) =

⌊n
2 ⌋∏

i=1

1

1− (x1 · · ·x2i)ti
,

M ′(H(S(Λ2V )); v1, . . . , vn, t) =

⌊n
2 ⌋∏

i=1

1

1− v2iti
.

Thus,

H(S(Λ2V )Sp(2k), t) =

k∏
i=1

1

1− ti
,

H(S(Λ2V )O(n), t) =

⌊n
2 ⌋∏

i=1

1

1− t2i
,

H(S(Λ2V )SO(n), t) =


1

1− tk

k−1∏
i=1

1

1− t2i
, if n = 2k,

k∏
i=1

1

1− t2i
, if n = 2k + 1.

It is known (see, e.g., [10]) that the algebra of invariants S(Λ2V )G for G = SO(n) is a polynomial
algebra with the following generators: if n = 2k + 1 there are k generators in degrees respectively 2, 4, . . . , 2k ;
if n = 2k there are k − 1 generators in degrees respectively 2, 4, . . . , 2(k − 1) and one generator in degree k .

For S(Λ2V )Sp(2k) we use, in the notations of Section 2 that

Λ2V ↓ Sp(2k) ∼= V n
⟨(1,1,0,...,0)⟩ ⊕ V n

⟨(0,0,...,0)⟩.
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Therefore, it follows from [10] that S(Λ2V )Sp(2k) is also a polynomial algebra with k generators in degrees
respectively 1, 2, . . . , k .

Having in mind that O(2k + 1) = SO(2k + 1) × {−Id, Id} , where Id denotes the identity matrix of the
respective dimension, it is clear that S(Λ2V )O(2k+1) = S(Λ2V )SO(2k+1) .

We now will determine the structure of S(Λ2V )O(2k) . For all n , we have that O(n) is the semidirect
product of SO(n) and the cyclic group {R, Id} , where R is a reflection of Cn which keeps the origin fixed. We
first prove the following easy lemma.

Lemma 5.4 If dimSl(W )SO(n) = 1 and if f is a generator of Sl(W )SO(n) then f or f2 is an O(n)-invariant.

Proof We fix a reflection R of Cn so that O(n) is the semidirect product of SO(n) and {R, Id} . Let A be
an element of SO(n) . Then, ARf = RA1f , for some other element A1 ∈ SO(n) . Hence, ARf = Rf , that
is Rf ∈ Sl(W )SO(n) . Since Sl(W )SO(n) is one dimensional and R is a reflection, it follows that Rf = f or
Rf = −f . This proves the statement. 2

Corollary 5.5 There exists a generating set {f2i}k−1
i=1 ∪{g} of S(Λ2V )SO(2k) (where deg fj = j and deg g = k )

such that {f2i}k−1
i=1 ∪ {g2} is a generating set for S(Λ2V )O(2k) . In particular, S(Λ2V )O(2k) is a polynomial

algebra.

Proof Let {f2i}k−1
i=1 ∪ {g} be a generating set for S(Λ2V )SO(2k) .

Assume first that k is odd. Then, Example 5.3 implies that dimS2i(Λ2V )O(2k) = dimS2i(Λ2V )SO(2k)

for all 0 ≤ i ≤ k − 1 and that dimSk(Λ2V )SO(2k) = 1 . Therefore, S2i(Λ2V )O(2k) = S2i(Λ2V )SO(2k) for all
0 ≤ i ≤ k− 1 . Furthermore, by Lemma 5.4 and by the fact that dimSk(Λ2V )O(2k) = 0 it follows that g is not
O(2k) -invariant but g2 is an O(2k) -invariant. Thus, {f2i}k−1

i=1 ∪ {g2} is a generating set for S(Λ2V )O(2k) .

Next, we consider the case when k = 2j0 for some j0 . Then, dimS2i(Λ2V )O(2k) = dimS2i(Λ2V )SO(2k)

for all 0 ≤ i < j0 , hence S2i(Λ2V )O(2k) = S2i(Λ2V )SO(2k) for i < j0 . In Sk(Λ2V )SO(2k) we have a two
dimensional O(2k) -invariant subspace U = span{fk, g} . Since R2 = Id , it follows that R has two eigenvalues
as a linear operator on U , namely 1 and −1 . Therefore, R has eigenvectors f̃k and g̃ in U , such that Rf̃k = f̃k

and Rg̃ = −g̃ . Thus we create a new generating set for S(Λ2V )SO(2k) , by replacing fk with f̃k and g with
g̃ . Similarly, for i > j0 , there is a two dimensional O(2k) -invariant subspace of S2i(Λ2V )SO(2k) spanned
by {f2i, f2(i−j0) · g̃} . Thus, there is an O(2k) -invariant vector in S2i(Λ2V )SO(2k) , which we denote by f̃2i .

Therefore, {f2i}j0−1
i=1 ∪{f̃2i}k−1

i=j0
∪{g̃} is a generating set for S(Λ2V )SO(2k) such that {f2i}j0−1

i=1 ∪{f̃2i}k−1
i=j0

∪{g̃2}

is a generating set for S(Λ2V )O(2k) . 2

Example 5.6 Let W = V ⊕ Λ2V . The decomposition (4.1) of S(W ) can be found in the following way (see
also [1] and, in the language of symmetric functions, [12, the second edition, page 76, Example 4])

S(V ⊕ Λ2V ) = S(V )⊗ S(Λ2V ) =
⊕
λ

V n
λ , (5.2)
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where the last sum is over all partitions λ ∈ Nn
0 . Hence, for the multiplicity series we obtain (see also [1])

M ′(H(S(W )); v1, . . . , vn, t) =
∏
2i≤n

1

(1− v2i−1ti)(1− v2iti)
, for n = 2k,

M ′(H(S(W )); v1, . . . , vn, t) =
1

1− vnt(n+1)/2

∏
2i<n

1

(1− v2i−1ti)(1− v2iti)
, for n = 2k + 1.

Therefore, when n = 2k we obtain

H(S(W )Sp(2k), t) =
∏
i≤k

1

1− ti
,

H(S(W )O(2k), t) =
∏
i≤k

1

(1− t2i)2
,

H(S(W )SO(2k), t) =
1

(1− t2k)(1− tk)

∏
i≤k−1

1

(1− t2i)2
.

For n = 2k + 1 we have

H(S(W )O(2k+1), t) =
1

1− tn+1

∏
i≤k

1

(1− t2i)2
,

H(S(W )SO(2k+1), t) =
1

1− tk+1

∏
i≤k

1

(1− t2i)2
.

It is shown in [15] that S(W )SO(2k) and S(W )SO(2k+1) are polynomial algebras and, moreover, that up to
adding trivial summands W is a maximal representation with this property. (Schwarz calls such representations
maximally coregular). The algebra S(W )SO(2k) is generated by 2k elements, two in each of the degrees
2, 4, . . . , 2(k − 1) and two more elements – one in degree k and one in degree 2k . The algebra S(W )SO(2k+1)

is generated by 2k+ 1 elements – two in each of the degrees 2, 4, . . . , 2k and one generator in degree k+ 1 . In
more detail, if we use the fact that S(V ⊕Λ2V ) = S(V )⊗S(Λ2V ) , the degrees of the generators are as follows:
(see [15])

For S(W )SO(2k) we have

(0, 2), (0, 4), . . . , (0, 2k − 2); (2, 0), (2, 2), (2, 4), . . . , (2, 2k − 2); (0, k).

For S(W )SO(2k+1) we have

(0, 2), (0, 4), . . . , (0, 2k); (2, 0), (2, 2), (2, 4), . . . , (2, 2k − 2); (1, k).

For the polynomiality of S(W )Sp(2k) we may use [15] again, or we may show it directly as follows.
Corollary 2.3 and Equation (5.2) imply that S(W )Sp(2k) = S(Λ2V )Sp(2k) . Therefore, S(W )Sp(2k) is a polynomial
algebra with k generators in degrees 1, 2, . . . , k .

Example 5.6 leads to the following corollaries.
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Corollary 5.7 Let n = 2k + 1 . Let {f2i, g2i}ki=1 ∪ {h} be a generating set for S(V ⊕ Λ2V )SO(2k+1) (where
deg fj = (0, j) , deg gj = (2, j − 2) , deg h = (1, k)). Then {f2i, g2i}ki=1 ∪ {h2} is a generating set for
S(V ⊕ Λ2V )O(2k+1) .

Proof We will use again that O(2k + 1) = SO(2k + 1) × {−Id, Id} . −Id acts on each generator of
S(V ⊕ Λ2V )SO(2k+1) by multiplication with 1 or −1 . Since f2i and g2i for all i ≤ k are homogeneous
polynomials of even degree, it follows that −Id fixes them. The expressions for the Hilbert series from Example
5.6 show that −Id cannot fix h , hence −Id(h) = −h , and the statement follows. 2

Corollary 5.8 Let n = 2k . There exists a generating set {f2i}k−1
i=1 ∪ {g2i}ki=1 ∪ {h} of S(V ⊕ Λ2V )SO(2k)

(where deg fj = (0, j) , deg gj = (2, j − 2) , deg h = (0, k)) such that {f2i}k−1
i=1 ∪ {g2i}ki=1 ∪ {h2} is a generating

set for S(V ⊕ Λ2V )O(2k) .

Proof Let {f2i}k−1
i=1 ∪ {g2i}ki=1 ∪ {h} be a generating set for S(V ⊕ Λ2V )SO(2k) . The case when k is odd is

the same as in the proof of Corollary 5.5 and we skip it.
Let k = 2j0 for some j0 . We will use again that O(2k) is the semidirect product of SO(2k) and {R, Id} ,

where R is a reflection in C2k . As in the proof of Corollary 5.5, for i < j0 we have S2i(V ⊕ Λ2V )O(2k) =

S2i(V ⊕ Λ2V )SO(2k) . We take then

Sk(V ⊕ Λ2V )SO(2k) =
⊕

s+t=j0

(S2s(V )⊗ S2t(Λ2V ))SO(2k).

In (S2(V ) ⊗ Sk−2(Λ2V ))SO(2k) there is a one dimensional O(2k) -invariant subspace spanned by gk ,
hence gk is O(2k) -invariant. In (C ⊗ Sk(Λ2V ))SO(2k) there is a two dimensional O(2k) -invariant subspace
U = span{fk, h} . Therefore, there exist vectors f̃k and h̃ , such that Rf̃k = f̃k and Rh̃ = −h̃ . Similarly, for
i > j0 we have

S2i(V ⊕ Λ2V )SO(2k) =
⊕
s+t=i

(S2s(V )⊗ S2t(Λ2V ))SO(2k).

In (S2(V )⊗S2i−2(Λ2V ))SO(2k) there is a two dimensional O(2k) -invariant subspace spanned by {g2i, h̃·g2i−2j0}

and therefore there is an O(2k) -invariant vector which we denote by g̃2i . In (C⊗S2i(Λ2V ))SO(2k) there is also
a two dimensional O(2k) -invariant subspace spanned by {f2i, h̃ · f2i−2j0} and hence an O(2k) -invariant vector
which we denote by f̃2i .

Thus, as in the proof of Corollary 5.5, we build a new generating set for S(V ⊕ Λ2V )SO(2k) of the form

{f2i}j0−1
i=1 ∪ {f̃2i}k−1

i=j0
∪ {g2i}j0i=1 ∪ {g̃2i}ki=j0+1 ∪ {h̃}

such that
{f2i}j0−1

i=1 ∪ {f̃2i}k−1
i=j0

∪ {g2i}j0i=1 ∪ {g̃2i}ki=j0+1 ∪ {h̃2}

is a generating set for S(V ⊕ Λ2V )O(2k) .
2
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6. Examples and applications for n = 2 and n = 3

Even if the decomposition (4.1) is not known, for fixed and not very big values of n we can still determine the
Hilbert series of S(W )G using an algorithm developed in [1]. The input data is the decomposition (1.1) of the
GL(n) -module W into a sum of irreducible submodules. Then the Hilbert series of W is

H(W,x1, . . . , xn) =
∑
λ

k(λ)Sλ(x1, . . . , xn) =
∑

µ=(µ1,...,µn)∈Nn
0

aµx
µ1

1 · · ·xµn
n

and the Hilbert series of S(W ) as a multigraded algebra is

H(S(W ), x1, . . . , xn, t) =
∏

µ=(µ1,...,µn)∈Nn
0

1

(1− xµ1

1 · · ·xµn
n t)aµ

. (6.1)

The algorithm from [1] describes how from the Hilbert series (6.1) to obtain the multiplicity series
M(H(S(W )), x1, . . . , xn, t) and M ′(H(S(W )), v1, . . . , vn, t) . We start this section by giving a short description
of the algorithm. It is based on three facts. The first one is the following easy lemma of Berele [2].

Lemma 6.1 Let
u(x1, . . . , xn) =

∑
λ

m(λ)Sλ(x1, . . . , xn)

be a symmetric function and let

v(x1, . . . , xn) = u(x1, . . . , xn)
∏

1≤i<j≤n

(xi − xj) =
∑
ri≥0

a(r1, . . . , rn)x
r1
1 · · ·xrn

n ,

a(r1, . . . , rn) ∈ C . Then the multiplicity series

M(u;x1, . . . , xn) =
∑
λ

m(λ)xλ1
1 · · ·xλn

n

of u(x1, . . . , xn) is given by

M(u;x1, . . . , xn) =
1

xn−1
1 xn−2

2 · · ·x2
n−2xn−1

∑
ri>ri+1

a(r1, . . . , rn)x
r1
1 · · ·xrn

n ,

where the summation is over all r = (r1, . . . , rn) such that r1 > r2 > · · · > rn .

Hence to compute the multiplicity series of u(x1, . . . , xn) it is sufficient to solve the following problem.
Given a power series

v(x1, . . . , xn) =
∑
ri≥0

a(r1, . . . , rn)x
r1
1 · · ·xrn

n

compute the part of it

v(x1, . . . , xn) =
∑

ri≥ri+1

a(r1, . . . , rn)x
r1
1 · · ·xrn

n .
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Elliott [5] suggested a simple idea. We shall illustrate it for n = 2 only. Let

u(x1, x2) =
∑

r1,r2≥0

a(r1, r2)x
r1
1 xr2

2 .

We introduce a new variable z and consider the Laurent series in z

u(x1z,
x2

z
) =

∑
r1,r2≥0

a(r1, r2)x
r1
1 xr2

2 zr1−r2 =

∞∑
m=−∞

gm(x1, x2)z
m,

gm(x1, x2) ∈ C[[x1, x2]] . If we are able to compute the part of the Laurent series

w(x1, x2, z) =
∑
m≥0

gm(x1, x2)z
m,

then
v(x1, x2) = u≥(x1, x2) =

∑
r1≥r2

a(r1, r2)x
r1
1 xr2

2 = w(x1, x2, 1).

The symmetric functions in our paper are linear combination of rational functions with denominators which are
products of binomials 1−xa1

1 · · ·xan
n t . Berele [2] called them nice rational functions. In this special case Elliott

[5] applied the equality

1

(1−Aza)(1−B/zb)
=

1

1−ABza−b

(
1

1−Aza
+

1

1−B/zb
− 1

)
(6.2)

to one of the expressions 1/(1 − xr1
1 xr2

2 zr1−r1)(1 − x
r′1
1 x

r′2
2 /zr

′
1−r′2) and presented

∏
1/(1 − xr1

1 xr2
2 zr1−r2) as

a sum of three expressions which are simpler than the original one. Continuing in this way, one presents∏
1/(1− xr1

1 xr2
2 zr1−r2) as a sum of products of two types:

∏
r1≥r2

1

1− xr1
1 xr2

2 zr1−r2
and

∏
r1=r2

1

1− xr1
1 xr2

2

∏
s1<s2

1

1− xs1
1 xs2

2 /zs2−s1
.

The products with r1 ≥ r2 give the contribution to u≥(x1, x2) . The further improvement of the algorithm was
suggested by Xin [16]. Instead of applying (6.2) Xin suggested to use partial fractions. Both the algorithm in
[1] and its further development in our paper are based on the ideas of Xin [16] and have been realized on a
usual personal computer (in our case with standard functions of Maple 2020 software).

6.1. Regularity of algebras of O(2)-invariants

In this subsection we set n = 2 . For convenience, in what follows we write Vλ instead of V n
λ . We start by

determining the Hilbert series of S(W )Sp(2) , S(W )O(2) , and S(W )SO(2) for several explicit examples of W ,
using the algorithm described above. More examples can be found in Tables 1–4. In the end of the subsection,
we address the question of coregularity of O(2) -representations. The main result in this direction is Theorem
6.7.
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Table 1. Hilbert series for algebras of Sp(2) -invariants.

W H(S(W )Sp(2), t)

V = C2 1
S2V 1

1−t2

S3V 1
1−t4

S4V 1
(1−t2)(1−t3)

S5V 1+t18

(1−t12)(1−t8)(1−t4)

S6V 1−t2−t3+t6+t7−t9

(1−t5)(1−t4)(1−t3)(1−t2)2

Λ2V 1
1−t

V(3,1)
1

(1−t2)

V(5,1)
1

(1−t2)(1−t3)

Table 2. Hilbert series for algebras of O(2) - and SO(2) -invariants.

W H(S(W )O(2), t) H(S(W )SO(2), t)

V = C2 1
1−t2

1
1−t2

S2V 1
(1−t)(1−t2)

1
(1−t)(1−t2)

S3V 1
(1−t2)2(1−t4)

1+t4

(1−t2)2(1−t4)

S4V 1
(1−t)(1−t2)2(1−t3)

1+t3

(1−t)(1−t2)2(1−t3)

S5V 1+t2+3t4+4t6+5t8+4t10+3t12+t14+t16

(1−t8)(1−t6)(1−t4)(1−t2)2
1+t2+6t4+9t6+12t8+9t10+6t12+t14+t16

(1−t8)(1−t6)(1−t4)(1−t2)2

S6V 1+t2+t3+2t4+t5+2t6+t7+t8+t10

(1−t)(1−t2)2(1−t3)(1−t4)(1−t5)
1+t2+3t3+4t4+4t5+4t6+3t7+t8+t10

(1−t)(1−t2)2(1−t3)(1−t4)(1−t5)

Λ2V 1
1−t2

1
1−t

V(3,1)
1

(1−t2)2
1

(1−t)(1−t2)

V(5,1)
1+t4

(1−t2)3(1−t3)
1+t3

(1−t)(1−t2)2(1−t3)

By Hochster–Roberts theorem, the Hilbert series of S(W )O(n) for any finite-dimensional O(n) -representation
W has the form

H(S(W )O(n), t) =
p(t)∏

i(1− thi)
,

where p(t) =
∑

j t
lj . Furthermore, if p(t) ̸= 1 then S(W )O(n) is not polynomial, hence W is not coregular.

Thus, the Hilbert series gives partial information on the question of coregularity of W and we use this property
below.

Example 6.2 In this example we take W = S3V . Then by the above algorithm (see also [1])

M(H(S(S3V ));x1, x2, t) =
1− x2

1x2t+ x4
1x

2
2t

2

(1− x3
1t)(1− x2

1x2t)(1− x6
1x

6
2t

4)
,

M ′(H(S(S3V )); v1, v2, t) =
1− v1v2t+ v21v

2
2t

2

(1− v31t)(1− v1v2t)(1− v62t
4)
.
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Table 3. Hilbert series for algebras of Sp(2) -invariants.

W H(S(W )Sp(2), t)

V ⊕ V 1
1−t2

V ⊕ S2V 1
(1−t2)(1−t3)

S2V ⊕ S2V 1
(1−t2)3

V ⊕ Λ2V 1
1−t

S2V ⊕ Λ2V 1
(1−t)(1−t2)

Λ2V ⊕ Λ2V 1
(1−t)2

V ⊕ V ⊕ V 1
(1−t2)3

V ⊕ V ⊕ S2V 1+t3

(1−t2)2(1−t3)2

V ⊕ S3V 1+t6

(1−t4)3

V ⊕ S4V 1+t9

(1−t6)(1−t5)(1−t3)(1−t2)

V ⊕ V(3,1)
1

(1−t3)(1−t2)

V ⊕ V ⊕ Λ2V 1
(1−t2)(1−t)

S2V ⊕ S3V t7+1
(1−t5)(1−t4)(1−t3)(1−t2)

S2V ⊕ S4V 1+t6

(1−t4)(1−t3)2(1−t2)2

S2V ⊕ V(3,1)
1

(1−t2)3

S3V ⊕ Λ2V 1
(1−t4)(1−t)

S4V ⊕ Λ2V 1
(1−t3)(1−t2)(1−t)

Λ2V ⊕ V(3,1)
1

(1−t2)(1−t)

V(3,1) ⊕ V(3,1)
1

(1−t2)3

V ⊕ S2V ⊕ S2V t4+1
(1−t3)2(1−t2)3

V ⊕ S2V ⊕ Λ2V 1
(1−t3)(1−t2)(1−t)

S2V ⊕ S2V ⊕ S2V t3+1
(1−t2)6

S2V ⊕ S2V ⊕ Λ2V 1
(1−t2)3(1−t)

Therefore, using Theorem 4.1 we obtain

H(S(S3V )Sp(2), t) =
1

1− t4
,

H(S(S3V )O(2), t) =
1

(1− t2)2(1− t4)
,

H(S(S3V )SO(2), t) =
1 + t4

(1− t2)2(1− t4)
.

The last expression shows that S(S3V )SO(2) is not a polynomial algebra.

Since Sp(2) = SL(2) , it is of course well-known that the algebra S(S3V )Sp(2) is a polynomial algebra in
one variable generated by the discriminant of cubic polynomials, i.e. there is a natural choice of the generator
in this case.
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Table 4. Hilbert series for algebras of O(2) - and SO(2) -invariants.

W H(S(W )O(2), t) H(S(W )SO(2), t)

V ⊕ V 1
(1−t2)3

1+t2

(1−t2)3

V ⊕ S2V 1
(1−t)(1−t2)2(1−t3)

1+t3

(1−t)(1−t2)2(1−t3)

S2V ⊕ S2V 1
(1−t)2(1−t2)3

1+t2

(1−t)2(1−t2)3

V ⊕ Λ2V 1
(1−t2)2

1
(1−t)(1−t2)

S2V ⊕ Λ2V 1
(1−t)(1−t2)2

1
(1−t)2(1−t2)

Λ2V ⊕ Λ2V 1+t2

(1−t2)2
1

(1−t)2

V ⊕ V ⊕ V 1+t2+t4

(1−t2)5
1+4t2+t4

(1−t2)5

V ⊕ V ⊕ S2V (1+t+t2+t3+t4)(1+t3)
(1−t2)4(1−t3)2

1+2t2+4t3+2t4+t6

(1−t)(1−t2)3(1−t3)2

V ⊕ S3V 1+t2+3t4+t6+t8

(1−t2)3(1−t4)2
1+2t2+8t4+2t6+t8

(1−t2)3(1−t4)2

V ⊕ S4V (1+t4)(1+t+t2+t3+t4+t5+t6)
(1−t2)3(1−t3)2(1−t5)

1+t2+4t4+t5+t7

(1−t2)3(1−t3)(1−t5)(1−t6)

V ⊕ V(3,1)
1+t4

(1−t3)(1−t2)3
1+t3

(1−t3)(1−t2)2(1−t)

V ⊕ V ⊕ Λ2V 1+t3

(1−t2)4
1+t2

(1−t2)3(1−t)

S2V ⊕ S3V t10+t8+t7+2t6+t5+2t4+t3+t2+1
(1−t5)(1−t4)(1−t3)(1−t2)2(1−t)

t10+t8+3t7+4t6+4t5+4t4+3t3+t2+1
(1−t5)(1−t4)(1−t3)(1−t2)2(1−t)

S2V ⊕ S4V (t4+t3+t2+t+1)(t3+1)
(1−t3)2(1−t2)4(1−t)

t6+2t4+4t3+2t2+1
(1−t3)2(1−t2)3(1−t)2

S2V ⊕ V(3,1)
t3+1

(1−t2)4(1−t)
t2+1

(1−t2)3(1−t)2

S3V ⊕ Λ2V t5+1
(1−t4)(1−t2)3

t4+1
(1−t4)(1−t2)2(1−t)

S4V ⊕ Λ2V t4+1
(1−t3)(1−t2)3(1−t)

t3+1
(1−t3)(1−t2)2(1−t)2

Λ2V ⊕ V(3,1)
t2+1

(1−t2)3
1

(1−t2)(1−t)2

V(3,1) ⊕ V(3,1)
2t3+t2+1
(1−t2)5

t2+1
(1−t2)3(1−t)2

V ⊕ S2V ⊕ S2V (t4+1)(t2+1)
(1−t3)2(1−t2)3(1−t)2

t6+2t4+2t3+2t2+1
(1−t3)2(1−t2)3(1−t)2

V ⊕ S2V ⊕ Λ2V t4+1
(1−t3)(1−t2)3(1−t)

t3+1
(1−t3)(1−t2)2(1−t)2

S2V ⊕ S2V ⊕ S2V (t3+1)(t2+t+1)
(1−t2)6(1−t)2

t4+4t2+1
(1−t2)5(1−t)3

S2V ⊕ S2V ⊕ Λ2V t3+1
(1−t2)4(1−t)2

t2+1
(1−t2)3(1−t)3

Example 6.3 Let W = S4V . Then (see also [1])

M(H(S(S4V )), x1, x2, t) =
1− x3

1x2t+ x6
1x

2
2t

2

(1− x4
1t)(1− x3

1x2t)(1− x4
1x

4
2t

2)(1− x6
1x

6
2t

3)
,

M ′(H(S(S4V )), v1, v2, t) =
1− v21v2t+ v41v

2
2t

2

(1− v41)(1− v12v2t)(1− v42t
2)(1− v62t

3)
.

Therefore,

H(S(S4V )Sp(2), t) =
1

(1− t2)(1− t3)
,

H(S(S4V )O(2), t) =
1

(1− t)(1− t2)2(1− t3)
,
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H(S(S4V )SO(2), t) =
1 + t3

(1− t)(1− t2)2(1− t3)
.

As in the previous example, the last expression shows that S(S4V )SO(2) is not a polynomial algebra.

It follows from [10], by using again the isomorphism Sp(2) = SL(2) , that S(S4V )Sp(2) is a polynomial
algebra generated by two generators in degrees 2 and 3 , respectively.

Example 6.4 Let W = V(3,1) , i.e. W is equal to the irreducible GL(2)-module corresponding to the partition
(3, 1) . Then

M(H(S(W )), x1, x2, t) =
1

(1− x3
1x2t)(1− x2

1x
2
2t)(1 + x2

1x
2
2t)

;

M ′(H(S(W )), v1, v2, t) =
1

(1− v21v2t)(1− v22t)(1 + v22t)
.

Therefore,

H(S(W )Sp(2), t) =
1

(1− t2)
;

H(S(W )O(2), t) =
1

(1− t2)2
;

H(S(W )SO(2), t) =
1

(1− t)(1− t2)
.

Example 6.5 Let W = S2V ⊕ S2V . Then (see also [1])

M(H(S(W )), x1, x2, t) =
1 + x3

1x2t
2

(1− x2
1t)

2(1− x2
1x

2
2t

2)3
;

M ′(H(S(W )), v1, v2, t) =
1 + v21v2t

2

(1− v21t)
2(1− v22t

2)3
.

Therefore,

H(S(W )Sp(2), t) =
1

(1− t2)3
;

H(S(W )O(2), t) =
1

(1− t)2(1− t2)3
;

H(S(W )SO(2), t) =
1 + t2

(1− t)2(1− t2)3
.

Example 6.6 Let W = S2V ⊕ S3V . Then,

H(S(W )Sp(2), t) =
1 + t7

(1− t2)(1− t3)(1− t4)(1− t5)
;

H(S(W )O(2), t) =
t10 + t8 + t7 + 2t6 + t5 + 2t4 + t3 + t2 + 1

(1− t5)(1− t4)(1− t3)(1− t2)2(1− t)
;

H(S(W )SO(2), t) =
1 + t2 + 3t3 + 4t4 + 4t5 + 4t6 + 3t7 + t8 + t10

(1− t)(1− t2)2(1− t3)(1− t4)(1− t5)
.
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The information in Tables 2 and 4 leads to the following theorem. It gives a list of candidates of GL(2) -
modules W such that the algebra S(W )O(2) is polynomial. It is interesting to know in which of these cases the
algebra is really polynomial.

Theorem 6.7 Let W be a polynomial GL(2)-module. If the algebra S(W )O(2) is polynomial, then up to an
O(2)-isomorphism (and up to adding trivial summands) W is one of the following:

(1) V , S2V , S3V , S4V , Λ2V , V(3,1) ;

(2) V ⊕ V , V ⊕ S2V , S2V ⊕ S2V , V ⊕ Λ2V , S2V ⊕ Λ2V .

Proof The main idea of the proof is to reduce the list of possible candidates for coregular O(2) -representations
to a finite one and then use the information which is contained in Tables 2 and 4 to further restrict the candidates
for coregular representations.

First, we use the observation that every subrepresentation of a coregular representation must be coregular.
Hence we can build new coregular representations only from coregular pieces. Next, consider the irreducible
GL(2) -module V(k,l) . Using the formula for the character of V(k,l) it is easy to show that

(i) If at least one of k and l is even, then V(k,l)
∼= Sk−lV as O(2) -modules;

(ii) If both k and l are odd, then V(k,l)
∼= V(k−l+1,1) as O(2) -modules.

Thus, it is enough to consider modules of the type S2rV , S2r+1V , and V(2r+1,1) , where r is an arbitrary
integer. If we decompose the GL(2) -modules S2rV and S2r+1V over O(2) we obtain the following:

S2rV ∼=↓O(2)

r⊕
i=0

V[(2i,0)]
∼=O(2) V[(2r,0)] ⊕ S2r−2V

S2r+1V ∼=↓O(2)

r⊕
i=0

V[(2i+1,0)]
∼=O(2) V[(2r+1,0)] ⊕ S2r−1V

By Table 2, the module S5V is not a coregular O(2) -module and hence for r ≥ 2 the module S2r+1V is
not coregular for O(2) . Similarly, by Table 2, the module S6V is not a coregular O(2) -module and hence for
r ≥ 3 the module S2rV is not coregular for O(2) .

We proceed in the same way with V(2r+1,1) . We decompose it over O(2) and obtain for r ≥ 1

V(2r+1,1)
∼=↓O(2) (

r⊕
i=1

V[2i,0])⊕ V[1,1]
∼=O(2) V[2r,0] ⊕ V(2r−1,1).

By Table 2, the module V(5,1) is not coregular over O(2) and hence no module V(2r+1,1) for r ≥ 2 is coregular
over O(2) . The above considerations and the information in Table 2 show that the candidates for irreducible
coregular O(2) -modules W are V , S2V , S3V , S4V , Λ2V , and V(3,1) .

Finally, the information in Table 4 implies that the candidates for reducible coregular O(2) -modules are
V ⊕V , V ⊕S2V , S2V ⊕S2V , V ⊕Λ2V , and S2V ⊕Λ2V . Any other reducible polynomial GL(2) -module W

contains a direct summand that is not a coregular O(2) -module.
2
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6.2. Regularity of algebras of O(3)-invariants

In this subsection we set n = 3 . First, we compute several explicit examples using the algorithm described
in the beginning of Section 6. More examples can be found in Tables 5–8. Then, using the information from
Tables 5–8, we prove Theorem 6.11.

Table 5. Hilbert series for algebras of O(3) -invariants.

W H(S(W )O(3), t)

V = C3 1
1−t2

S2V 1
(1−t)(1−t2)(1−t3)

S3V (1+t4)(1+t6)(1+t2+t4+3t6+5t8+3t10+t12+t14+t16)
(1−t2)(1−t4)3(1−t6)2(1−t10)

S4V See Example (6.9)
Λ2V 1

1−t2

Λ3V 1
1−t2

V(2,1,0)
(1+t6)2

(1−t6)2(1−t4)(1−t2)2

V(3,1,0) See Example (6.10)
V(3,1,1)

1+t4

(1−t6)(1−t2)2

V(3,2,1)
t6+1

(1−t4)(1−t3)2(1−t2)2

V(4,1,1)
t14+t13−2t11+t9+5t8+5t7+5t6+t5−2t3+t+1

(1−t3)2(1−t5)(1−t2)2(1−t4)2(1+t)

Table 6. Hilbert series for algebras of SO(3) -invariants.

W H(S(W )SO(3), t)

V = C3 1
1−t2

S2V 1
(1−t)(1−t2)(1−t3)

S3V t14+t13−2t11+t9+5t8+5t7+5t6+t5−2t3+t+1
(1−t3)2(1−t5)(1−t2)2(1−t4)2(1+t)

S4V See Example (6.9)
Λ2V 1

1−t2

Λ3V 1
1−t

V(2,1,0)
1+t6

(1−t4)(1−t3)2(1−t2)2

V(3,1,0) See Example (6.10)
V(3,1,1)

1
(1−t)(1−t2)(1−t3)

V(3,2,1)
t6+1

(1−t4)(1−t3)2(1−t2)2

V(4,1,1)
t14+t13−2t11+t9+5t8+5t7+5t6+t5−2t3+t+1

(1−t3)2(1−t5)(1−t2)2(1−t4)2(1+t)

Example 6.8 Let W = S3V . Then we obtain that

H(S(S3V )O(3), t) =
(1 + t4)(1 + t6)(1 + t2 + t4 + 3t6 + 5t8 + 3t10 + t12 + t14 + t16)

(1− t2)(1− t4)3(1− t6)2(1− t10)
.

1779



DRENSKY and HRISTOVA/Turk J Math

Table 7. Hilbert series for algebras of O(3) - and SO(3) -invariants.

W H(S(W )O(3), t) H(S(W )SO(3), t)

V ⊕ V 1
(1−t2)3

1
(1−t2)3

V ⊕ S2V 1
(1−t4)(1−t3)2(1−t2)2(1−t)

t6+1
(1−t4)(1−t3)2(1−t2)2(1−t)

V ⊕ Λ2V 1
(1−t4)(1−t2)2

1
(1−t2)3

V ⊕ Λ3V 1
(1−t2)2

1
(1−t2)(1−t)

S2V ⊕ S2V (t3+1)(t5+1)
(1−t4)(1−t3)3(1−t2)3(1−t)2

(t3+1)(t5+1)
(1−t4)(1−t3)3(1−t2)3(1−t)2

S2V ⊕ Λ2V t6+1
(1−t4)(1−t3)2(1−t2)2(1−t)

t6+1
(1−t4)(1−t3)2(1−t2)2(1−t)

S2V ⊕ Λ3V 1
(1−t3)(1−t2)2(1−t)

1
(1−t3)(1−t2)(1−t)2

Λ2V ⊕ Λ2V 1
(1−t2)3

1
(1−t2)3

Λ2V ⊕ Λ3V 1
(1−t2)2

1
(1−t2)(1−t)

Λ3V ⊕ Λ3V t2+1
(1−t2)2

1
(1−t)2

Table 8. Hilbert series for algebras of O(3) - and SO(3) -invariants.

W H(S(W )O(3), t) H(S(W )SO(3), t)

V ⊕ V ⊕ V 1
(1−t2)6

t3+1
(1−t2)6

V ⊕ V ⊕ S2V (t3+1)(t6+t5+t4+t3+t2+t+1)(t4+1)
(1−t4)2(1−t3)3(1−t2)4

t10+t7+4t6+2t5+4t4+t3+1
(1−t4)(1−t3)3(1−t2)4(1−t)

V ⊕ V ⊕ Λ2V (t4+1)(t3+1)
(1−t4)2(1−t2)4

t3+1
(1−t2)6

V ⊕ V ⊕ Λ3V 1
(1−t2)4

1
(1−t2)3(1−t)

V ⊕ S2V ⊕ Λ3V t7+1
(1−t4)(1−t3)2(1−t2)3(1−t)

t6+1
(1−t4)(1−t3)2(1−t2)2(1−t)2

V ⊕ Λ2V ⊕ Λ2V 2t5+t4+1
(1−t4)2(1−t2)4

t3+1
(1−t2)6

V ⊕ Λ2V ⊕ Λ3V t3+1
(1−t4)(1−t2)3

1
(1−t2)3(1−t)

Λ2V ⊕ Λ2V ⊕ Λ2V t3+1
(1−t2)6

t3+1
(1−t2)6

Λ2V ⊕ Λ2V ⊕ Λ3V 1
(1−t2)4

1
(1−t2)3(1−t)

V ⊕ V ⊕ V ⊕ V (t2+1)(t4+1)
(1−t2)9

1+t2+4t3+t4+t6

(1−t2)9

V ⊕ V ⊕ V ⊕ Λ3V t4+1
(1−t2)7

t3+1
(1−t2)6(1−t)

H(S(S3V )SO(3), t) =
t14 + t13 − 2t11 + t9 + 5t8 + 5t7 + 5t6 + t5 − 2t3 + t+ 1

(1− t3)2(1− t5)(1− t2)2(1− t4)2(1 + t)
.

Example 6.9 Let W = S4V . Then,

H(S(W )O(3), t) = H(S(W )SO(3), t) =
A(t)

(1− t7)(1− t5)2(1− t4)2(1− t3)4(1− t2)3
,

where

A(t) =t28 + t27 + 3t24 + 9t23 + 17t22 + 22t21 + 28t20 + 41t19 + 63t18 + 85t17+

+ 107t16 + 118t15 + 121t14 + 118t13 + 107t12 + 85t11 + 63t10 + 41t9+

+ 28t8 + 22t7 + 17t6 + 9t5 + 3t4 + t+ 1.
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Example 6.10 Let W = V(3,1,0) . Then,

H(S(W )O(3), t) = H(S(W )SO(3), t) =
A(t)

(1− t5)2(1− t4)3(1− t3)4(1− t2)3(1 + t)
,

where

A(t) =t26 + t25 + 9t22 + 22t21 + 50t20 + 79t19 + 120t18 + 160t17 + 221t16+

+ 269t15 + 325t14 + 339t13 + 325t12 + 269t11 + 221t10 + 160t9 + 120t8+

+ 79t7 + 50t6 + 22t5 + 9t4 + t+ 1.

The information in Tables 5–8 leads to the following theorem. Again, as in Theorem 6.7 we do not know
in which of the cases the algebra S(W )O(3) is polynomial.

Theorem 6.11 Let W be a polynomial GL(3)-module. If the algebra S(W )O(3) is polynomial, then up to an
O(3)-isomorphism (and up to adding trivial summands) W is one of the following:

(1) V , S2V , Λ2V , Λ3V ;

(2) V ⊕ V , V ⊕ S2V , V ⊕ Λ2V , V ⊕ Λ3V , S2V ⊕ Λ3V , Λ2V ⊕ Λ2V , Λ2V ⊕ Λ3V ;

(3) V ⊕ V ⊕ V , V ⊕ V ⊕ Λ3V , Λ2V ⊕ Λ2V ⊕ Λ3V .

Proof We proceed in the same way as in the proof of Theorem 6.7. We reduce the list of possible candidates
for coregular O(3) -representations to a finite one and then use Tables 5–8.

First we consider the irreducible GL(3) -module V(k,l,m) corresponding to the partition (k, l,m) . For the
character of V(k,l,m) we have

χV(k,l,m)
(x1, x2, x3) = S(k,l,m)(x1, x2, x3) =

1

∆
det

xk+2
1 xk+2

2 xk+2
3

xl+1
1 xl+1

2 xl+1
3

xm
1 xm

2 xm
3

 ,

where ∆ is the determinant of the 3× 3 Vandermonde matrix in the variables x1 , x2 , and x3 . Hence,

χV(k,l,m)
(x1, x2, x3) =

xm
1 xm

2 xm
3

∆
det

xk−m+2
1 xk−m+2

2 xk−m+2
3

xl−m+1
1 xl−m+1

2 xl−m+1
3

1 1 1

 .

Therefore,

χV(k,l,m)
(x1, x2, x3) = xm

1 xm
2 xm

3 χV(k−m,l−m,0)
(x1, x2, x3); (6.3)

and similarly,

χV(k,l,m)
(x1, x2, x3) = xm−1

1 xm−1
2 xm−1

3 χV(k−m+1,l−m+1,1)
(x1, x2, x3). (6.4)
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Equation (6.3) implies that for even m we have V(k,l,m)
∼=O(3) V(k−m,l−m,0) . Similarly, for odd m ,

Equation (6.4) implies that V(k,l,m)
∼=O(3) V(k−m+1,l−m+1,1) . Thus it is enough to consider GL(3) -modules

corresponding to partitions of the types (p, q, 0) and (p, q, 1) , for some integers p ≥ q .
When we decompose the GL(3) -module V(p,q,0) over O(3) we obtain the following:

• If p is odd and q is even, then V(p,q,0) as an O(3) -module contains as a direct summand SpV ;

• If p is even and q is odd, then V(p,q,0) as an O(3) -module contains as a direct summand Sp−1V ;

• If both p and q are even, V(p,q,0) as an O(3) -module contains as a direct summand SpV ;

• If p and q are odd and p ≥ 3 , then V(p,q,0) as an O(3) -module contains as a direct summand V(3,1,0) .

When we decompose the module SpV over O(3) , we obtain SpV ∼=O(3) V[p,0,0] ⊕ Sp−2V . Therefore, the
results from Table 5 show that SpV is not coregular for p > 2 . Furthermore, V(3,1,0) is not coregular either.

Similarly, when we decompose the GL(3) -module V(p,q,1) over O(3) we obtain the following:

• If both p and q are even, V(p,q,1) as an O(3) -module contains as a direct summand Sp−1V ;

• If p and q are odd and p ≥ 3 , then V(p,q,1) as an O(3) -module contains as a direct summand V(3,1,1) ;

For the remaining cases we use the following observation. If p+ q + 1 is even, then

S(V(p,q,1))
O(3) = S(V(p,q,1))

SO(3) = S(V(p−1,q−1,0))
SO(3). (6.5)

The last equality follows from the fact that V(p,q,1)
∼=SO(3) V(p−1,q−1,0) . Equation (6.5) and Table 6

lead to the following conclusions. If p is even and q is odd, then for p ≥ 4 , V(p,q,1) is not coregular as an
O(3) -module. Similarly, if p is odd and q is even, then for p ≥ 5 , V(p,q,1) is not coregular as an O(3) -module.

Furthermore, we have the following isomorphisms of O(3) -modules:

V(2,2,0)
∼=O(3) (S

2V )∗ ∼=O(3) S
2V

V(2,1,1)
∼=O(3) (Λ

2V )∗ ∼=O(3) Λ
2V

V(2,2,1)
∼=O(3) V

∗ ∼=O(3) V

Therefore, the irreducible GL(3) -modules which are candidates for coregular O(3) -modules are V , S2V ,
Λ2V , and Λ3V .

For the reducible GL(3) -modules we use Tables 7 and 8 and conclude that the candidates for coregular
O(3) -modules are V ⊕V , V ⊕S2V , V ⊕Λ2V , V ⊕Λ3V , S2V ⊕Λ3V , Λ2V ⊕Λ2V , Λ2V ⊕Λ3V and V ⊕V ⊕V ,
V ⊕ V ⊕ Λ3V , Λ2V ⊕ Λ2V ⊕ Λ3V . 2

7. The algebra of invariants Λ(S2V )G for G = O(n),SO(n),Sp(2k)

As a further application of our results and methods developed in Sections 2–4, in this and the next section
we determine the Hilbert series H(Λ(S2V )G, t) and H(Λ(Λ2V )G, t) for G = O(n) , SO(n) , or Sp(2k) . Here
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again V = Cn denotes the standard representation of GL(n) . Since the modules Λ(S2V ) and Λ(Λ2V ) are
finite dimensional, the Hilbert series of the respective algebras of invariants are polynomials. We recall that
the algebras Λ(S2V )Sp(2k) and Λ(Λ2V )SO(n) are classically known to be exterior algebras and the degrees of
their generators are known. Furthermore, in [9] the algebra Λ(Λ2V )O(n) is described independently in terms of
generators and relations and is shown that it is also isomorphic to an exterior algebra. In our paper, we offer
another approach to computing the Hilbert series of Λ(S2V )G and Λ(Λ2V )G which works both for the known
and for the unknown cases.

For convenience, for the rest of the section we denote W = Λ(S2V ) . The decomposition of W into
irreducible GL(n) -modules can be derived using, e.g., the formulas in [12, the second edition, page 79, Example
9 (b)]. We obtain

W =
⊕
λ

V n
λ ,

where the sum runs over all partitions λ = (α1 + 1, . . . , αp + 1|α1, . . . , αp) in the Frobenius notation with
α1 ≤ n − 1 . If we take into account also the N0 -grading of W , given by the decomposition into irreducible
components, we obtain

W =

n(n+1)/2⊕
i=0

Λi(S2V ) =

n(n+1)/2⊕
i=0

⊕
|λ|=2i

V n
λ ,

where again the sum is over all partitions λ = (α1 + 1, . . . , αp + 1|α1, . . . , αp) in the Frobenius notation with
α1 ≤ n− 1 . Notice that the condition α1 ≤ n− 1 implies i ≤ n(n+ 1)/2 .

Using our results from Sections 2–4, we obtain the following expressions.

H(WO(n), t) =
∑
i≥0


∑

λ=(α1+1,...,αp+1|α1,...,αp)
α1≤n−1, |λ|=2i

λ−an even partition

1

 ti; (7.1)

H(W SO(n), t) =
∑
i≥0


∑

λ=(α1+1,...,αp+1|α1,...,αp)
α1≤n−1, |λ|=2i

λ−an even or an odd partition

1

 ti; (7.2)

H(W Sp(2k), t) =
∑
i≥0


∑

λ=(α1+1,...,αp+1|α1,...,αp)
α1≤n−1, |λ|=2i

λ′−an even partition

1

 ti, (7.3)

where λ′ denotes the transpose partition to λ .
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We recall that if we have a partition λ of the form λ = (α1 + 1, . . . , αp + 1|α1, . . . , αp) then necessarily
α1 > α2 > · · · > αp ≥ 0 . Therefore partitions of the type λ = (α1 + 1, . . . , αp + 1|α1, . . . , αp) are in one-to-one
correspondence with partitions of the form α = (α1, . . . , αp) with p distinct parts. Moreover, |λ| = 2|α|+ 2p .

To determine the above three Hilbert series we fix one p , set X = {x1, . . . , xp} and define the polynomial

Hp(X, t) =
∑
i≥0

 ∑
α=(α1>···>αp)

α1≤n−1, |α|=i−p

x
α1−(p−1)
1 x

α2−(p−2)
2 · · ·xαp

p

 ti.

The polynomial Hp(X, t) is in some sence an analogue of the multiplicity series from Section 4. Notice that
since α is a partition with distinct parts, all exponents in the definition of Hp(X, t) are nonnegative integers.

We rewrite the above polynomial in the form

Hp(X, t) =
∑
i≥0

x
−(p−1)
1 x

−(p−2)
2 · · ·x−1

p−1t
p

 ∑
α=(α1>···>αp)

α1≤n−1, |α|=i−p

xα1
1 xα2

2 · · ·xαp
p

 ti−p.

Then we set u1 = x1t , u2 = x1x2t
2 , …, up = x1 · · ·xpt

p and obtain

Hp(X, t) =
tp(p+1)/2

u1 · · ·up−1

∑
i≥0

∑
α=(α1>···>αp)

α1≤n−1, |α|=i−p

uα1−α2
1 uα2−α3

2 · · ·uαp−1−αp

p−1 uαp
p .

Now we notice that the polynomial Hp(X, t) is the (n− p) -th partial sum of the power series

H inf
p (X, t) =

tp(p+1)/2

u1 · · ·up−1

∑
i≥0

∑
α=(α1>···>αp)

|α|=i−p

uα1−α2
1 uα2−α3

2 · · ·uαp−1−αp

p−1 uαp
p .

For H inf
p (X, t) we obtain after some computations

H inf
p (X, t) = t

p(p+1)
2

p∏
k=1

1

1− uk
.

Using the change of variables v1 = x1 , v2 = x1x2 , …, vp = x1 · · ·xp we have

Hp(X, t) = H ′
p(V, t) =

∑
i≥0

 ∑
α=(α1>···>αp)

α1≤n−1, |α|=i−p

vα1−α2−1
1 vα2−α3−1

2 · · · vαp−1−αp−1
p−1 vαp

p

 ti

and

H inf
p (X, t) = (H ′

p)
inf(V, t) =

∑
i≥0

 ∑
α=(α1>···>αp)

|α|=i−p

vα1−α2−1
1 vα2−α3−1

2 · · · vαp−1−αp−1
p−1 vαp

p

 ti.
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Hence,

(Hp)
′inf(V, t) = t

p(p+1)
2

p∏
k=1

1

1− vktk
. (7.4)

As we mentioned above, the polynomial Hp(X, t) consists of all terms from H inf
p (X, t) of the form

t
p(p+1)

2 ua1
1 · · ·uap

p such that a1+ · · ·+ap ≤ n−p . Therefore, using (7.4), we obtain that the polynomial H ′
p(V, t)

consists of all terms from (H ′
p)

inf(V, t) of the form t
p(p+1)

2 va1
1 · · · vap

p ta1+2a2+···+pap with a1 + · · ·+ ap ≤ n− p .
In other words,

H ′(
p V, t) =

∑
a1+···+ap≤n−p

va1
1 · · · vap

p t
p(p+1)

2 +a1+2a2+···+pap . (7.5)

Next, we come back to determining the Hilbert series H(WO(n), t) . We have the following proposition.

Proposition 7.1

H(WO(n), t) = 1 + t+

n∑
p=2

p−even

t
p(p+1)

2


∑

a1+···+a p
2
≤n−p

a1,...,a p−2
2

−even, a p
2
−odd

t
2a1+4a2+···+pa p

2



+

n∑
p=3

p−odd

t
p(p+1)

2

 ∑
a1+···+a p−1

2
≤n−p

ai−even

t
2a1+4a2+···+(p−1)a p−1

2

 .

Proof A partition λ = (α1+1, . . . , αp+1|α1, . . . , αp) is even if and only if either the following three conditions
hold

• p is even;

• α1, α3, . . . , αp−1 are even;

• α1 − α2 = 1, α3 − α4 = 1, . . . , αp−1 − αp = 1 .

or

• p is odd;

• α1, α3, . . . , αp−1 are even and αp = 0 ;

• α1 − α2 = 1, α3 − α4 = 1, . . . , αp−2 − αp−1 = 1 .

Therefore (7.1) implies

H(WO(n), t) =
∑
i≥0


n∑

p=0

∑
λ=(α1+1,...,αp+1|α1,...,αp)

α1≤n−1, |λ|=2i
λis an even partition

1

 ti =
∑
i≥0

 n∑
p=0

∑
α1≤n−1, |α|=i−p

1

 ti,
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where the last sum runs over partitions α = (α1, . . . , αp) with distinct parts and such that the above conditions
hold.

We rewrite the above as

∑
i≥0

 n∑
p=0

∑
|α|=i−p
α1≤n−1

1

 ti =

n∑
p=0

∑
i≥0

∑
|α|=i−p
α1≤n−1

ti.

Next, we fix one even and nonzero p and consider the polynomial H ′
p(V, t) . We notice that the monomial

vα1−α2−1
1 vα2−α3−1

2 · · · vαp−1−αp−1
p−1 v

αp
p evaluated at the point (0, v2, 0, v4, . . . , 0, vp) is nonzero if and only if

α1 − α2 = 1 , α3 − α4 = 1 , . . . , αp−1 − αp = 1 . Therefore we set

Mp(v2, v4, . . . , vp, t) = H ′
p(0, v2, 0, v4, . . . , 0, vp, t)

=
∑
i≥0


∑

α=(α1>···>αp)
α1≤n−1, |α|=i−p

α1−α2=1,α3−α4=1,...,αp−1−αp=1

vα1−α3−2
2 vα3−α5−2

4 · · · vαp−3−αp−1−2
p−2 vαp−1−1

p

 ti.

Next, α1 , α3 , . . . , αp−1 are even numbers if and only if all exponents in the above expression except the last
one are even numbers and αp−1 − 1 is odd. Therefore we can define iteratively

M (1)
p (v4, . . . , vp, t) =

1

2
(Mp(1, v4, . . . , vp, t) +Mp(−1, v4, . . . , vp, t))

. . . . . .

M (p/2−1)
p (vp, t) =

1

2
(M (p/2−2)

p (1, vp, t) +M (p/2−2)
p (−1, vp, t)).

Finally, we define

M (p/2)
p (t) =

1

2
(M (p/2−1)

p (1, t)−M (p/2−1)
p (−1, t)).

The next step is to consider the case when p is an odd number and p > 1 . Then the monomial
vα1−α2−1
1 vα2−α3−1

2 · · · vαp−1−αp−1
p−1 v

αp
p evaluated at the point (0, v2, 0, v4, . . . , 0, vp−1, 0) is nonzero if and only if

α1 − α2 = 1 , α3 − α4 = 1 , . . . , αp−2 − αp−1 = 1 and αp = 0 . Therefore we set

Np(v2, v4, . . . , vp−1, t) = H ′
p(0, v2, 0, v4, . . . , 0, vp−1, 0, t)

=
∑
i≥0


∑

α=(α1>···>αp)
α1≤n−1, |α|=i−p

α1−α2=1,α3−α4=1,...,αp−2−αp−1=1,αp=0

vα1−α3−2
2 vα3−α5−2

4 · · · vαp−2−αp−2
p−1

 ti.

We notice again that α1 , α3 , . . . , αp are even numbers if and only if all exponents in the above expression are
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even numbers. Hence, similarly to the previous case we can define iteratively

N (1)
p (v4, . . . , vp−1, t) =

1

2
(Np(1, v4, . . . , vp−1, t) +Np(−1, v4, . . . , vp−1, t))

. . . . . .

N
( p−1

2 )
p (t) =

1

2
(N

( p−1
2 −1)

p (1, t) +N
( p−1

2 −1)
p (−1, t)).

Finally, we consider the cases p = 0 and p = 1 . For p = 0 we set H ′
0(V, t) = 1 . For p = 1 we have

H ′
1(v1, t) =

n−1∑
α1=0

vα1
1 tα1+1.

Since the partition λ = (α1 + 1|α1) is even if and only if α1 = 0 , we evaluate H ′
1(v1, t) at the point (0, t) and

obtain H ′
1(0, t) = t .

The statement of the proposition follows now from (7.5) and the observation that

H(WO(n), t) = H ′
0(V, t) +H ′

1(0, t) +

n∑
p=2

p−even

M (p/2)
p (t) +

n∑
p=3

p−odd

N
( p−1

2 )
p (t).

2

We determine the Hilbert series H(W Sp(2k), t) and H(W SO(n), t) in a similar way by using respectively
(7.3) and (7.2). To determine H(W Sp(2k), t) we notice that for a partition λ = (α1 + 1, . . . , αp + 1|α1, . . . , αp)

the transpose λ′ is even if and only if

• p is even;

• α1, α3, . . . , αp−1 are odd numbers;

• α1 − α2 = 1, α3 − α4 = 1, . . . , αp−1 − αp = 1 .

Therefore, by fixing p even and evaluating the series H ′
p(V, t) at well-chosen points we obtain:

Proposition 7.2 Let n = 2k . Then

H(W Sp(2k), t) = 1 +

n∑
p=2

p−even

t
p(p+1)

2

 ∑
a1+···+a p

2
≤n−p

ai−even

t
2a1+4a2+···+pa p

2

 .

It remains to determine the Hilbert series H(W SO(n), t) . First we notice that a partition λ = (α1 +

1, . . . , αp + 1|α1, . . . , αp) is odd if and only if either the following four conditions hold

• n is even;

• p is odd;
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• α1, α3, . . . , αp−2, αp are odd numbers and α1 = n− 1 ;

• α2 − α3 = 1, α4 − α5 = 1, . . . , αp−1 − αp = 1 .

or

• n is even;

• p is even;

• α1, α3, . . . , αp−1 are odd numbers and α1 = n− 1 ;

• α2 − α3 = 1, α4 − α5 = 1, . . . , αp−2 − αp−1 = 1 and αp = 0 .

Then, we fix p and evaluate the series H ′
p(V, t) from (7.5) at well-chosen points to obtain:

Proposition 7.3 (i) Let n = 2k + 1 . Then

H(W SO(n), t) = H(WO(n), t).

(ii) Let n = 2k . Then

H(W SO(n), t) = 1 + t+

n∑
p=2

p−even

t
p(p+1)

2


∑

a1+···+a p
2
≤n−p

a1,...,a p−2
2

−even, a p
2
−odd

t
2a1+4a2+···+pa p

2



+

n∑
p=3

p−odd

t
p(p+1)

2

 ∑
a1+···+a p−1

2
≤n−p

ai−even

t
2a1+4a2+···+(p−1)a p−1

2



+

n∑
p=1

p−odd

t
p(p+1)

2


∑

a1+···+a p+1
2

=n−p

a1,...,a p−1
2

−even, a p+1
2

−odd

t
a1+3a2+···+pa p+1

2



+

n∑
p=2

p−even

t
p(p+1)

2

 ∑
a1+···+a p

2
=n−p

ai−even

t
a1+3a2+···+(p−1)a p

2

 .

8. The algebra of invariants Λ(Λ2V )G for G = O(n),SO(n),Sp(2k)

In this section we set W = Λ(Λ2V ) . The approach for computing the Hilbert series H(Λ(Λ2V )G, t) is very
similar to the one in the previous section and we shall only sketch the proofs.
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The decomposition of W into irreducible GL(n) -modules can again be determined using, e.g., the
formulas from [12, pages 78-79, Example 9 (a)]. The exact formula is

W =
⊕
λ

V n
λ =

n(n−1)/2⊕
i=0

⊕
|λ|=2i

V n
λ ,

where the sum runs over all partitions λ = (α1 − 1, . . . , αp − 1|α1, . . . , αp) in the Frobenius notation and
α1 ≤ n − 1 . Then for the Hilbert series of the respective algebras of invariants we obtain the following
expressions:

H(WO(n), t) =
∑
i≥0


∑

λ=(α1−1,...,αp−1|α1,...,αp)
α1≤n−1, |λ|=2i

λ−an even partition

1

 ti;

H(W SO(n), t) =
∑
i≥0


∑

λ=(α1−1,...,αp−1|α1,...,αp)
α1≤n−1, |λ|=2i

λ−an even or an odd partition

1

 ti;

H(W Sp(2k), t) =
∑
i≥0


∑

λ=(α1−1,...,αp−1|α1,...,αp)
α1≤n−1, |λ|=2i

λ′−an even partition

1

 ti,

where λ′ denotes the transpose partition to λ .
We notice that partitions of the type λ = (α1−1, . . . , αp−1|α1, . . . , αp) are in one-to-one correspondence

with partitions of the form α = (α1, . . . , αp) with p distinct positive parts. Moreover |λ| = 2|α| .
As in the previous section we fix p , set X = {x1, . . . , xp} and define the following analogue of the

multiplicity series

Hp(X, t) =
∑
i≥0

 ∑
α=(α1>···>αp>0)
α1≤n−1, |α|=i

xα1−p
1 x

α2−(p−1)
2 · · ·xαp−1

p

 ti.

We make the same transformations as in the previous section.

Hp(X, t) =
∑
i≥0

x−p
1 x

−(p−1)
2 · · ·x−1

p

 ∑
α=(α1>···>αp>0)
α1≤n−1, |α|=i

xα1
1 xα2

2 · · ·xαp
p

 ti.
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Then we set again u1 = x1t , u2 = x1x2t
2 , …, up = x1 · · ·xpt

p and obtain

Hp(X, t) =
tp(p+1)/2

u1 · · ·up

∑
i≥0

∑
α=(α1>···>αp>0)
α1≤n−1, |α|=i

uα1−α2
1 uα2−α3

2 · · ·uαp−1−αp

p−1 uαp
p .

Now we notice that the polynomial Hp(X, t) is the (n− p− 1)-st partial sum of the power series

H inf
p (X, t) =

tp(p+1)/2

u1 · · ·up

∑
i≥0

∑
α=(α1>···>αp>0)

|α|=i

uα1−α2
1 uα2−α3

2 · · ·uαp−1−αp

p−1 uαp
p .

We derive after some computations that

H inf
p (X, t) = t

p(p+1)
2

p∏
k=1

1

1− uk
.

Using the change of variables v1 = x1 , v2 = x1x2 , …, vp = x1 · · ·xp we obtain

Hp(X, t) = H ′
p(V, t) =

∑
i≥0

 ∑
α=(α1>···>αp>0)
α1≤n−1, |α|=i

vα1−α2−1
1 vα2−α3−1

2 · · · vαp−1−αp−1
p−1 vαp−1

p

 ti

and

H inf
p (X, t) = (H ′

p)
inf(V, t) =

∑
i≥0

 ∑
α=(α1>···>αp>0)

|α|=i

vα1−α2−1
1 vα2−α3−1

2 · · · vαp−1−αp−1
p−1 vαp−1

p

 ti.

Therefore,

(H ′
p)

inf(V, t) = t
p(p+1)

2

p∏
k=1

1

1− vktk
.

The polynomial Hp(X, t) consists of all terms from H inf
p (X, t) of the form t

p(p+1)
2 ua1

1 · · ·uap
p such that

a1 + · · · + ap ≤ n − p − 1 . Therefore, the polynomial H ′
p(V, t) consists of all terms from (H ′

p)
inf(V, t) of the

form t
p(p+1)

2 va1
1 · · · vap

p ta1+2a2+···+pap with a1 + · · ·+ ap ≤ n− p− 1 . In other words,

H ′
p(V, t) =

∑
a1+···+ap≤n−p−1

va1
1 · · · vap

p t
p(p+1)

2 +a1+2a2+···+pap . (8.1)

The following propositions now hold.

Proposition 8.1

H(WO(n), t) = 1+

n−1∑
p=2

p−even

t
p(p+1)

2


∑

a1+···+a p
2
≤n−p−1

a1,...,a p
2
−even

t
2a1+4a2+...+pa p

2

 .
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Proof A partition λ = (α1 − 1, . . . , αp − 1|α1, . . . , αp) is even if and only if

• p is even;

• α1, α3, . . . , αp−1 are even;

• α1 − α2 = 1, α3 − α4 = 1, . . . , αp−1 − αp = 1 .

Therefore, fixing p even and evaluating the polynomial H ′
p(V, t) in (8.1) at well-chosen points we obtain

the desired result. 2

Next, we notice that Proposition 7.2 and Proposition 8.1 imply the following corollary.

Corollary 8.2
H(Λ(S2V )Sp(2k), t) = H(Λ(Λ2V )O(2k+1), t).

It remains to consider the algebras Λ(Λ2V )Sp(2k) and Λ(Λ2V )SO(n) .

Proposition 8.3 Let n = 2k . Then

H(W Sp(2k), t) = 1 + t+

n−1∑
p=2

p−even

t
p(p+1)

2


∑

a1+···+a p
2
≤n−p−1

a1,...,a p−2
2

−even, a p
2
−odd

t
2a1+4a2+···+pa p

2

+

n−1∑
p=3

p−odd

t
p(p+1)

2


∑

a1+···+a p−1
2

≤n−p−1

a1,...,a p−1
2

−even

t
2a1+4a2+···+(p−1)a p−1

2

 .

Proof For a partition λ = (α1 − 1, . . . , αp − 1|α1, . . . , αp) the transpose λ′ is even if and only if either the
following three conditions hold

• p is even;

• α1, α3, . . . , αp−1 are odd numbers;

• α1 − α2 = 1, α3 − α4 = 1, . . . , αp−1 − αp = 1 ;

or

• p is odd;

• α1, α3, . . . , αp are odd numbers and αp = 1 ;

• α1 − α2 = 1, α3 − α4 = 1, . . . , αp−2 − αp−1 = 1 .

Therefore, by fixing p and evaluating the series H ′
p(V, t) from (8.1) at well-chosen points we obtain the statement

of the proposition. 2
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Corollary 8.4
H(Λ(Λ2V )Sp(2k), t) = H(Λ(S2V )O(2k−1), t) = H(Λ(S2V )SO(2k−1), t).

Proposition 8.5 (i) Let n = 2k + 1 . Then

H(W SO(n), t) = H(WO(n), t) = 1+

n−1∑
p=2

p−even

t
p(p+1)

2


∑

a1+···+a p
2
≤n−p−1

a1,...,a p
2
−even

t
2a1+4a2+···+pa p

2

 .

(ii) Let n = 2k . Then

H(W SO(n), t) = 1+

n−1∑
p=2

p−even

t
p(p+1)

2


∑

a1+···+a p
2
≤n−p−1

a1,...,a p
2
−even

t
2a1+4a2+···+pa p

2



+

n−1∑
p=1

p−odd

t
p(p+1)

2

 ∑
a1+···+a p+1

2
=n−p−1

ai−even

t
a1+3a2+···+pa p+1

2

 .

Proof A partition λ = (α1 − 1, . . . , αp − 1|α1, . . . , αp) is odd if and only if the following conditions hold

• n is even;

• p is odd;

• α1, α3, . . . , αp−2, αp are odd numbers and α1 = n− 1 ;

• α2 − α3 = 1, α4 − α5 = 1, . . . , αp−1 − αp = 1 .

Then, we fix p odd and evaluate the series H ′
p(V, t) from (8.1) at well-chosen points to obtain the result.

2

9. Conclusion
For a finite dimensional polynomial GL(n,C) -module W we consider the action of one of the classical complex
subgroups G = O(n) , SO(n) , and Sp(2k) (in the case n = 2k ) on the symmetric algebra S(W ) . We have
developed a method for determining the Hilbert series H(S(W )G, t) of the algebra of invariants S(W )G . Our
method is based on simple algebraic computations and can be easily realized on a usual personal computer using
popular software packages. We compute explicitly many Hilbert series and apply the method to the question
of regularity of the algebra S(W )O(n) .
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