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Abstract: The well-known Lvov–Kaplansky conjecture states that the image of a multilinear polynomial f evaluated
on n× n matrices is a vector space. A weaker version of this conjecture, known as the Mesyan conjecture, states that if
m = deg f and n ≥ m − 1 then its image contains the set of trace zero matrices. Such conjecture has been proved for
polynomials of degree m ≤ 4 . The proof of the case m = 4 contains an error in one of the lemmas. In this paper, we
correct the proof of such lemma and present some evidence which allows us to state the Mesyan conjecture for the new
bound n ≥ m+1

2
, which cannot be improved.

Key words: Images of polynomials, Lvov–Kaplansky conjecture, Mesyan conjecture, polynomial identities, central
polynomials

1. Introduction
Let K be a field and let Mn(K) denote the algebra of n × n matrices over K . A famous problem known as
Lvov–Kaplansky conjecture asserts: the image of a multilinear polynomial (in noncommutative variables) on
Mn(K) is a vector space. Such conjecture is equivalent to the following: the image of a multilinear polynomial
on Mn(K) is {0} , K (viewed as the set of scalar matrices), sln(K) (the set of traceless matrices) or Mn(K) .

Although proving that some subset is a vector space seems to be at first look a simple problem, a solution
to Lvov–Kaplansky conjecture is known only for n = 2 [11, 15]. The case n = 3 has interesting progress, but
not a solution [12]. This conjecture motivated other studies related to images of polynomials. For instance,
papers on images of polynomials on some subalgebras of Mn(K) , images of Lie, and Jordan polynomials on Lie
and Jordan algebras have been published since then (see [3, 7–9, 13, 16, 17]). For a nice compilation of results
on images of polynomials, we recommend the survey [14].

An analogue of the Lvov–Kaplansky conjecture for the infinite dimensional case, i.e., for the algebra
A = End(V ) , where V is a countably infinite-dimensional vector space over K , was studied in [21]. In that
paper, the author proved that if f is any nonzero multilinear polynomial, than the image of f is A .

A weakening of the Lvov–Kaplansky conjecture is the so called Mesyan conjecture [18, Conjecture 11]:
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Conjecture 1.1 Let K be a field, n ≥ 2 and m ≥ 1 be integers and f(x1, . . . , xm) a nonzero multilinear
polynomial in K〈x1, . . . , xm〉 . If n ≥ m− 1 , then the image of f on Mn(K) contains all trace zero matrices.

The above conjecture is based on the following result (see [18, Proposition 10]).

Proposition 1.2 Let K be a field, n ≥ 2 and m ≥ 1 be integers, and f(x1, . . . , xm) be a nonzero multilinear
polynomial in K〈x1, . . . , xm〉 . If n ≥ m − 1 , then the K -subspace of Mn(K) generated by the image of f

contains sln(K) .

In fact, once one assumes the Lvov–Kaplansky conjecture is true, the sentence “the image of f on Mn(K)

contains sln(K)” is equivalent to “f is not an identity nor a central polynomial of Mn(K)”. On the other
hand, it is well-known that Mn(K) has no identities or central polynomials of degree m ≤ n + 1 , and this
makes Conjecture 1.1 a particular case of the Lvov–Kaplansky conjecture. In particular, a counter-example to
Mesyan conjecture is a counter-example for the Lvov-Kaplanksy conjecture.

In this paper, we present a more general result than Proposition 1.2, and restate the conjecture for a
more general case (see Conjecture 3.3 below). We also discuss the relationship of Conjecture 3.3 to minimal
degrees of central polynomials and identities for Mn(K) .

Positive solutions to Conjecture 1.1 have been presented for the algebra M∞(K) , of finitary matrices
and for m ≤ 4 . In [20] the author proved an analogue of the Mesyan conjecture for algebra M∞(K) , namely,
if K is an infinite field and f is a nonzero multilinear polynomial, then the image of f on M∞(K) contains
sl∞(K) (the set of trace zero finitary matrices).

The case m = 2 is a direct consequence of results of Shoda [19] (for the characteristic zero case) and
Albert and Muckenhoupt [1] (for the positive characteristic case), where they prove that any trace zero matrix
is given by a commutator of two matrices, while the case m = 3 was proved by Mesyan himself in [18].

The case m = 4 was presented by Buzinsky and Winstanley in [5], but their proof contains a crucial
error in one of its lemmas, so the solution is not correct. In this paper, we present a correction for that lemma,
confirming the Mesyan conjecture for m = 4 .

2. Preliminaries
In this section we define the basic objects and present the basic results necessary to the paper. We start with
the definition of a multilinear polynomial. Throughout the paper, unless otherwise stated, K will denote an
arbitrary field and all algebras are considered over K .

Definition 2.1 Let m be a positive integer. By K〈x1, . . . , xm〉 we denote the free associative K -algebra, freely
generated by {x1, . . . , xm} . The elements of K〈x1, . . . , xm〉 will be called polynomials in the noncommutative
variables x1, . . . , xm . A polynomial f(x1, . . . , xm) is said to be multilinear if it can be written as

f(x1, . . . , xm) =
∑

σ∈Sm

ασxσ(1) · · ·xσ(m),

where Sm denotes the group of permutations of {1, . . . ,m} and ασ ∈ K , for σ ∈ Sm .
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For a given K -algebra A , a polynomial f(x1, . . . , xm) ∈ K〈x1, . . . , xm〉 defines a map (also denoted by
f )

f : Am −→ A
(a1, . . . , am) 7→ f(a1, . . . , am)

The image of such map f is called the image of the polynomial f on A , and will be denoted by f(A) .
Some well-known properties of the set f(A) are given below.

Proposition 2.2 Let A be an algebra and f(x1, . . . , xm) =
∑

σ∈Sn
ασxσ(1) · · ·xσ(m) be a multilinear polyno-

mial, where ασ ∈ K , for all σ ∈ Sn . Then

1. f(A) is closed under automorphisms of A . In particular, f(A) is closed under conjugation by invertible
elements.

2. f(A) is closed under scalar multiplication.

3. The linear span of f(A) is a Lie ideal of A .

4. If
∑

σ∈Sm
ασ 6= 0 then f(A) = A .

The theory of images of polynomials on algebras has strong connections with the theory of polynomial
identities (PI-theory). For instance, a polynomial identity for an algebra A is a polynomial whose image is {0} ,
and a central polynomial is a polynomial whose image lies in Z(A) , the center of the algebra A . The set of all
polynomial identities of an algebra A is an ideal of K〈x1, x2, . . . 〉 which is invariant under endomorphisms of
K〈x1, x2, . . . 〉 . It is denoted by T (A) .

Some techniques from PI-theory are useful in studying images of polynomials on algebras. For instance,
when A = Mn(K) , the m -generated algebra of generic matrices is known to be isomorphic to the quotient
algebra

Fm(Mn(K)) =
K〈x1, . . . , xm〉

T (Mn(K)) ∩K〈x1, . . . , xm〉
,

and working module T (Mn(K)) is equivalent to working in the algebra of generic matrices, see for instance [6,
Chapter 7].

Let us denote by Stk the standard polynomial of degre k :

Stk(x1, . . . , xk) =
∑
σ∈Sk

(−1)σxσ(1) · · ·xσ(k).

The following is a well-known fact about identities in matrices.

Theorem 2.3 (Amitsur–Levitzki) The algebra Mn(K) satisfies the polynomial identity St2n . Moreover,
Mn(K) does not satisfy any polynomial identity of degree less than 2n and any polynomial identity of degree
2n of Mn(K) is a scalar multiple of St2n .

Corollary 2.4 The algebra Mn(K) does not have central polynomials of degree less than 2n .
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Proof Assume f(x1, . . . , xm) is a multilinear central polynomial for Mn(K) . Then the commutator g =

[f(x1, . . . , xm), xm+1] is a polynomial identity for Mn(K) . As a consequence m + 1 ≥ 2n , which means
m ≥ 2n − 1 . If m = 2n − 1 then g is a polynomial identity of degree 2n , and it must be a scalar multiple of
St2n , but writing g as a sum of nonzero monomials gives us at most 2(2n− 1)! summands, while in St2n we
have (2n)! summands. A contradiction. Hence m ≥ 2n . 2

3. A new bound for the Mesyan conjecture

The main goal of this section is to present evidence which will allow us to state the Mesyan conjecture in a
stronger form.

Let us assume for a moment that the Lvov–Kaplansky conjecture is true. If f is a polynomial of degree
m ≤ 2n−1 then by Corollary 2.4, f is not a central polynomial nor an identity for Mn(K) . By our assumption
f(Mn(K)) is sln(K) or Mn(K) which, in both cases, contains sln(K) .

The above fact suggests that the Mesyan conjecture could be stated in a stronger form, namely for
n ≥ m+1

2 . Also, this bound cannot be improved since St2n is a polynomial identity of degree 2n for Mn(K) .
We now present more evidence that the conjecture should be stated in this form. We will prove a more

general version of Proposition 1.2:

Theorem 3.1 Let K be a field, n ≥ 2 and m ≥ 2 positive integers and let f(x1, · · · , xm) be a nonzero
multilinear polynomial in K〈x1, x2, . . . , xm〉 . If n ≥ m+1

2 , then the K -subspace span(f(Mn(K)) contains
sln(K) .

Recall that for polynomials of degree m = 2 , the Lvov-Kaplanksy conjecture is a consequence of
Proposition 2.2 (4) and results of Shoda [19] and Albert and Muckenhoupt [1]. Also, for m ≥ 3 we have
m+1
2 ≤ m− 1 , which shows that the above is a generalization of Proposition 1.2.

The following is a particular case of [10, Theorem 5]:

Theorem 3.2 If U is a Lie ideal of Mn(K) , then either U is contained in the center of Mn(K) , or else U

contains sln(K) , except in the case that n = 2 and K has characteristic 2.

We are now ready to present a proof of Theorem 3.1.

Proof (of Theorem 3.1) Let

f(x1, · · · , xm) =
∑

σ∈Sm

ασxσ(1) · · ·xσ(m).

We first recall that if m = 2 and f is a nonzero polynomial, the image of f is sln(K) or Mn(K) .
Therefore, we can assume m ≥ 3 .

Without loss of generality we may assume that α(1) 6= 0 . Let i, j ∈ {1, . . . , n} such that i 6= j . We will
consider two cases: when m is even and when m is odd.

Case 1: m is even.
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Let m = 2k , with k integer and k ≥ 2 , then n ≥ k + 1
2 . Since k and n are integers, then n ≥ k + 1 ,

therefore n−2 ≥ k−1 . So let l1, . . . , lk−1 be k−1 distinct elements in {1, . . . , n}−{i, j} . Then we have

f(eii, eij , ejl1 , el1l1 , el1l2 , el2l2 , . . . , elk−2lk−1
, elk−1j) = α(1)eij .

Since α(1) 6= 0 and eij with i, j distinct is a matrix whose diagonal contains only zeros, we have
span(f(Mn(K)) contains all matrices with zeros on the main diagonal.

Case 2: m is odd.
Let m = 2k − 1 , where k is an integer, such that k ≥ 2 . Since n ≥ m+1

2 then n− 2 ≥ k − 2 . Therefore,
we can find k − 2 distinct elements in {1, . . . , n} − {i, j} , which we will denote by l1, . . . , lk−2 . Hence,

f(eii, eij , ejl1 , el1l1 , el1l2 , el2l2 , . . . , elk−3lk−2
, elk−2lk−2

, elk−2j) = α(1)eij .

Therefore, we have proved that span(f(Mn(K))) contains all matrices with zero diagonals. Assuming
that n 6= 2 and char(K) 6= 2 , and by Proposition 2.2 (3), we can apply Theorem 3.2, which implies that
span(f(Mn(K))) ⊃ sln(K) .

Now we consider the case M2(K) , where K is a field of characteristic 2 . By hypothesis, we must have
m = 3 . Write

f(x1, x2, x3) = α1x1x2x3 + α2x1x3x2 + α3x2x1x3 + α4x2x3x1 + α5x3x1x2 + α6x3x2x1

for some α1, α2, α3, α4, α5, α6 ∈ K , with α1 6= 0 . Then,

f(e12, e22, e21) = α1e11 + α4e22 + α5e22

and
f(e21, e11, e12) = α1e22 + α4e11 + α5e11.

Subtracting the second equation from the first, gives (α1 − α4 − α5)(e11 − e22) ∈ span(f(M2(K))) . If
α1 − α4 − α5 6= 0 , then this shows that e11 − e22 ∈ span(f(M2(K))) . While if α1 − α4 − α5 = 0 , then

f(e12, e22, e21) = α1e11 + α4e22 + α5e22 = α1(e11 + e22) = α1(e11 − e22),

since char(K) = 2 , again showing that e11 − e22 ∈ span(f(M2(K))) .
Noting that

f(e11, e12, e22) = α1e12

and
f(e22, e21, e11) = α1e21,

from before, we conclude that span(f(M2(K))) ⊃ sl2(K) . 2

Now we restate Mesyan conjecture in light of Theorem 3.1 and of the discussion of the beginning of this
section.

Conjecture 3.3 (Mesyan conjecture restated) Let K be a field, n ≥ 2 and m ≥ 1 be integers, and let
f(x1, . . . , xm) be a nonzero multilinear polynomial in K〈x1, . . . , xm〉 . If m ≤ 2n−1 , then sln(K) ⊆ f(Mn(K)) .
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4. The Mesyan conjecture for polynomials of degree 4

In this last section our main goal is to discuss the following result given in [5] and also to give a correction of a
particular lemma used in its proof.

Theorem 4.1 Let n ≥ 3 and let K be an algebraically closed field of characteristic zero. Then the image of a
nonzero multilinear polynomial f(x1, x2, x3, x4) on the matrix algebra Mn(K) contains sln(K) .

For the sake of completeness we will present the proof of Theorem 4.1 in next. However some preliminary
lemmas will be required, and we will present them below without their proofs. The first one is given in [5,
Lemma 6].

Lemma 4.2 Let n ≥ 3 be an integer, let K be a field of characteristic zero and let ai,j ∈ K such
that

∑n
i=1 ai,i = 0 . Then there exist A,B,C ∈ Mn(K) such that [A, [[A,B], [A,C]]] =

∑n
i=1 ai,iei,i +∑n−1

i=1 ai,i+1ei,i+1 .

For the next two lemmas, see [2, Lemma 1.2, Proposition 1.8].

Lemma 4.3 Let K be any field and let A ∈ Mn(K) be a diagonal matrix with pairwise different entries in the
main diagonal. Then [A,Mn(K)] is the set of matrices whose diagonals entries are all 0 .

Lemma 4.4 Let D be a division ring, n ≥ 2 an integer, and A ∈ Mn(D) noncentral matrix. Then, A is
similar to a matrix in Mn(D) with at most one nonzero entry on the main diagonal. In particular, if A has
trace zero, then it is similar to a matrix in Mn(D) with only zeros on the main diagonal.

Proof [Proof of Theorem 4.1] The proof is the same as the one given in [5, Theorem 1]. We start the proof
by reducing the polynomial f to a proper one. This can be done by considering the degree three multilinear
polynomials obtained from f through the evaluation of some variable xi, i = 1, . . . , 4 , by 1 . In case one of
these four polynomials is nonzero then we are able to use Mesyan’s result (see [18, Theorem 13]) to obtain the
desired conclusion. Otherwise, since char(K) = 0 then we conclude that f is as a proper polynomial (see for
instance [6, Exercise 4.3.6]).

Hence we may write f as

f(x1, x2, x3, x4) = L(x1, x2, x3, x4) + α1[x1, x2][x3, x4] + α2[x1, x3][x2, x4]

+α3[x1, x4][x2, x3] + α4[x2, x3][x1, x4] + α5[x2, x4][x1, x3] + α6[x3, x4][x1, x2]

where α1, . . . , α6 ∈ K . Using a Hall basis for the multilinear Lie polynomials of degree four (see [4, subsection
2.3]), we may write the Lie polynomial L as

L(x1, x2, x3, x4) =β1[[[x2, x1], x3], x4] + β2[[[x3, x1], x2], x4] + β3[[[x4, x1], x2], x3]

+β4[[x4, x1], [x3, x2]] + β5[[x4, x2], [x3, x1]] + β6[[x4, x3], [x2, x1]]

for some scalars β1, . . . , β6 ∈ K . Since the three last terms of the Lie polynomial L can be written as a linear
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combination of products of two commutators we may write f as

f(x1, x2, x3, x4) =β1[[[x2, x1], x3], x4] + β2[[[x3, x1], x2], x4] + β3[[[x4, x1], x2], x3]

+α1[x1, x2][x3, x4] + α2[x1, x3][x2, x4] + α3[x1, x4][x2, x3]

+α4[x2, x3][x1, x4] + α5[x2, x4][x1, x3] + α6[x3, x4][x1, x2].

If some among the scalars β1, β2, β3 is nonzero, we claim that sln(K) ⊂ f(Mn(K)) . Indeed, say β1 6= 0

without loss of generality. Take x1 = x3 = x4 = D as a diagonal matrix with pairwise distinct diagonal entries.
Since any matrix in Mn(K) is the sum of a diagonal matrix and a matrix with zeros in the main diagonal,
Lemma 4.3 implies that f(D,x2, D,D) consists of all matrices with zeros in the main diagonal. On the other
hand, Lemma 4.4 states that traceless matrices are conjugate to those matrices with zero diagonal. Then by
Proposition 2.2 (1) the claim is proved. The cases where β2 6= 0 and β3 6= 0 can be handled similarly.

From now on we may assume β1 = β2 = β3 = 0 and then we consider the two following cases.

Case 1: α1 = α4 = α6 = α3 = −α2 = −α5 .

The above assumptions on the coefficients of f lead us to f = λSt4 where λ ∈ K \ {0} . Using the
identity [uv,w] = [u,w]v + u[v, w] we have

St4(A,A
2, B, C) = [A,A2][B,C] + [B,C][A,A2] + [A2, B][A,C] + [A,C][A2, B]− [A,B][A2, C]− [A2, C][A,B]

= [A2, B][A,C] + [A,C][A2, B]− [A,B][A2, C]− [A2, C][A,B].

= [A, [[A,B], [A,C]]]

Now it is enough to apply Lemma 4.2 for the Jordan normal form of a traceless matrix.

Case 2: At least one among the equalities α1 = α4 = α6 = α3 = −α2 = −α5 does not hold.

In this case one may check that there exist matrices A,B,C ∈ Mn(K) such that at least one of the
following is a nonzero matrix

f(A,A,B,C) = (α2 + α4)[A,B][A,C] + (α3 + α5)[A,C][A,B]

f(A,B,A,C) = (α1 − α4)[A,B][A,C] + (α6 − α3)[A,C][A,B]

f(A,B,C,A) = (−α1 − α5)[A,B][A,C] + (−α2 − α6)[A,C][A,B]

f(B,A,A,C) = (−α1 − α2)[A,B][A,C] + (−α5 − α6)[A,C][A,B]

f(B,A,C,A) = (−α3 + α1)[A,B][A,C] + (α6 − α4)[A,C][A,B]

f(B,C,A,A) = (α2 + α3)[A,B][A,C] + (α4 + α5)[A,C][A,B].

Hence it is enough to study the image of the polynomial

f = [x1, x2][x1, x3] + λ[x1, x3][x1, x2] (4.1)

on Mn(K) , where λ ∈ K . This will be done in the next two lemmas. 2

The next lemma is [5, Lemma 5].
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Lemma 4.5 Let K be an algebraically closed field of characteristic zero and let n ≥ 3 . Then each D ∈ sln(K)

can be written as D = [[A,B], [A,C]] for a suitable choice of matrices A,B,C ∈ Mn(K) .

We note that Lemma 4.5 completely solves the case where λ = −1 in (4.1). The next lemma is [5, Lemma
4] and it deals with the others values for λ .

Lemma 4.6 Let K be an algebraically closed field of characteristic zero, let n ≥ 3 and let λ ∈ K \ {−1} .
Then each D ∈ sln(K) can be written as D = [A,B][A,C] + λ[A,C][A,B] for a suitable choice of matrices
A,B,C ∈ Mn(K) .

We first note that the proof of Lemma 4.6 presented in [5] is not correct, since it was claimed that given
scalars d1, . . . , dn ∈ K satisfying

∑n
i=1 di = 0 the following system of equations

(λ+ 1)y1 = d1
(λ+ 1)y2 = d2

...
(λ+ 1)yn−1 = dn−1

−(n− 1)(λ+ 1)yn = dn

has a solution yi = bi, i = 1, . . . , n satisfying
∑n

i=1 bi = 0 . However the existence of such solution would give
us −n(λ + 1)bn = 0 by summing all equations above. Hence bn = 0 , which implies dn = 0 , contradicting the
generality of the chosen dn .

Next we will present a correction of the proof of Lemma 4.6. We recall the following lemma from [5,
Lemma 2] which will be used in our proof.

Lemma 4.7 Let K be a field, let ai,j ∈ K such that
∑n

i=1 ai,i = 0 and let A =
∑n−1

i=1 ei,i+1 ∈ Mn(K) . Then
there exists B ∈ Mn(K) such that

[A,B] =

n∑
i=1

ai,iei,i +

n−1∑
i=1

ai,i+1ei,i+1.

Proof [Proof of Lemma 4.6] We start noting that we may assume D is in its Jordan normal form since K is
an algebraically closed field, and the image of the polynomial

f(x1, x2, x3) = [x1, x2][x1, x3] + λ[x1, x3][x1, x2]

is closed under conjugation by invertible elements of Mn(K) .
So we write D as

D =

n∑
i=1

diieii +

n−1∑
i=1

di,i+1ei,i+1, (4.2)

where dii, di,i+1 ∈ K . Take A =

n−1∑
i=1

ei,i+1 , and consider any aii, bii ∈ K , i = 1, . . . , n and bi,i+1 ∈ K ,

i = 1, . . . , n− 1 , such that
n∑

i=1

aii = 0 =

n∑
i=1

bii.
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Lemma 4.7 gives us the existence of matrices B,C ∈ Mn(K) where

[A,B] =

n∑
i=1

aiieii and [A,C] =

n∑
i=1

biieii +

n−1∑
i=1

bi,i+1ei,i+1.

Therefore,

[A,B][A,C] + λ[A,C][A,B] = (1 + λ)

n∑
i=1

aiibiieii +

n−1∑
i=1

(aii + λai+1,i+1)bi,i+1ei,i+1 (4.3)

and we are looking for a simultaneous solution of the two systems below given by comparing Equations (4.2)
and (4.3)


(1 + λ)a11b11 = d11

...
(1 + λ)annbnn = dnn

(4.4)

and


(a11 + λa22)b12 = d12

...
(an−1,n−1 + λann)bn−1,n = dn−1,n

(4.5)

jointly with the conditions
n∑

i=1

aii = 0 =

n∑
i=1

bii .

Now we will divide our proof into the following three cases depending on the number of Jordan blocks in
the Jordan normal form of D .

Case 1: D has exactly one Jordan block.

In this case we must have dii = 0 for all i , since D is a traceless matrix and char(K) = 0 .

If λ 6= 1

n− 1
, one can check that is enough to choose b11 = · · · = bnn = 0, a11 = · · · = an−1,n−1 =

1, ann = −(n− 1), b12 =
d12
1 + λ

, b23 =
d23
1 + λ

, · · · , bn−2,n−1 =
dn−2,n−1

1 + λ
and bn−1,n =

dn−1,n

1 + λ(1− n)
.

If λ =
1

n− 1
6= 0 , then we choose b11 = · · · = bnn = 0, a11 = · · · = an−2,n−2 = 1, an−1,n−1 = 0, ann =

−(n−2), b12 =
d12
1 + λ

, · · · , bn−3,n−2 =
dn−3,n−2

1 + λ
, bn−2,n−1 = dn−2,n−1 and bn−1,n =

dn−1,n

λ(2− n)
, and we are done

with the first case.
Assuming aii 6= 0 , i = 1, . . . , n , by the equations in (4.4) we have (1+λ)aiibii = dii for i = 1, . . . , n and

then bii = (1 + λ)−1a−1
ii dii . Summing these equations for all i we get that (1 + λ)−1(

n∑
i=1

a−1
ii dii) = 0 , that is,

d11
a11

+ · · ·+ dnn
ann

= 0.

1802



FAGUNDES et al./Turk J Math

Case 2: D has exactly two Jordan blocks.

Suppose D has one block of size m1 and eigenvalue d1 , and another block of size m2 and eigenvalue
d2 . One of these two blocks must be of size at least two, since n ≥ 3 , and therefore we can take m1 ≥ 2 . Since
D has trace zero we have d1 = 0 if and only if d2 = 0 , and then the previous case allow us to assume that
d1 6= 0 . In this case we are looking for nonzero values for all aii such that aii + λai+1,i+1 is nonzero for all i .
Note that this last condition can be used to compute the values of bi,i+1 in (4.5) easily.

Taking a33 = · · · = ann = 1 , we obtain

0 =
d1
a11

+ · · ·+ d1
am1,m1

+
d2

am1+1,m1+1
+ · · ·+ d2

ann
=

d1
a11

+
d1

−a11 − (n− 2)
+ (m1 − 2)d1 −m1d1.

Therefore
1

a11
− 1

a11 + (n− 2)
− 2 = 0, i.e. a11 + (n− 2)− a11 − 2a211 − 2(n− 2)a11 = 0,

which leads us to the following equation

2a211 + 2(n− 2)a11 − (n− 2) = 0. (4.6)

Since n− 2 6= 0 , then a11 6= 0 . We have also a11 6= −(n− 2) , since otherwise

2(n− 2)2 + 2(n− 2)(−(n− 2))− (n− 2) = 0, that is, n = 2.

We note that the roots of Equation (4.6) in a11 are

a11 =
−(n− 2)±

√
n(n− 2)

2

and so

a22 =
−(n− 2)∓

√
n(n− 2)

2
,

provided that a22 = −a11 − (n− 2) .
In computing bi,i+1 , the variables b12 and b23 depend on a11 and a22 via the equations

(a11 + λa22)b12 = d12 and (a22 + λ)b23 = d23.

Denote

ā1 =
−(n− 2) +

√
n(n− 2)

2
and ā2 =

−(n− 2)−
√
n(n− 2)

2
.

For λ 6= −ā1/ā2 and λ 6= −ā2 , we take a11 = ā1 and a22 = ā2 . For λ 6= −ā1/ā2 and λ = −ā2 , we take
a11 = ā2 and a22 = ā1 . So in the first equation we will have ā2 − ā2ā1 , which is nonzero since ā1 6= 1 , and
in the second equation we will have ā1 − ā2 that is also nonzero. The last case is λ = −ā1/ā2 . Again we take

1803



FAGUNDES et al./Turk J Math

a11 = ā2 and a22 = ā1 . Hence ā2 + λā1 6= 0 , since otherwise ā1/ā2 = ā2/ā1 , i.e. ā21 = ā22 which is an absurd.
We also have ā1 − ā1/ā2 6= 0 , since otherwise ā2 = 1 , which is likewise absurd.

Since all λ ∈ K \ {−1} was considered above we finished the proof of the second case.

Case 3: D has k ≥ 3 Jordan blocks.

Now suppose that D is in the Jordan normal form with k ≥ 3 . We denote by ml the size of the l -th

Jordan block of D . For the matrix [A,B] =

n∑
i=1

aiieii , we will consider the same block division that occurs

in D , and in a same block we take all aii equal to each other. For every j ∈ {1, . . . , k} , we will denote the
element on the main diagonal of the j -th block of [A,B] by aj .

We assume that aj 6= 0 for all j ∈ {1, . . . , k} . Since (1 + λ)aiibii = dii , then bii = (1 + λ)−1a−1
ii dii and

so
n∑

i=1

a−1
ii dii = 0. Therefore,

0 =
m1d1
a1

+ · · ·+ mk−1dk−1

ak−1
+

mkdk
ak

=
m1d1
a1

+ · · ·+ mk−1dk−1

ak−1
+

−
k−1∑
j=1

mjdj

−
k−1∑
j=1

mj

mk
aj

=
m1d1
a1

+ · · ·+ mk−1dk−1

ak−1
+

mk

k−1∑
j=1

mjdj

k−1∑
j=1

mjaj

.

Taking a1 = · · · = ak−2 = 1 , we obtain

0 = m1d1 + · · ·+mk−2dk−2 +
mk−1dk−1

ak−1
+

mk

k−1∑
j=1

mjdj

k−2∑
j=1

mj +mk−1ak−1

,

and hence

0 = ak−1

( k−2∑
j=1

mj +mk−1ak−1

)( k−2∑
j=1

mjdj

)
+mk−1dk−1

( k−2∑
j=1

mj +mk−1ak−1

)
+ ak−1

(
mk

k−1∑
j=1

mjdj

)

= mk−1

( k−2∑
j=1

mjdj

)
a2k−1 +

(( k−2∑
j=1

mj

)( k−2∑
j=1

mjdj

)
+m2

k−1dk−1 +mk

k−1∑
j=1

mjdj

)
ak−1 +mk−1dk−1

k−2∑
j=1

mj .
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Setting d =

k−2∑
j=1

mjdj we obtain the follow quadratic equation in ak−1 :

mk−1da
2
k−1 +

(
d

k−2∑
j=1

mj +mkd+mk−1dk−1(mk−1 +mk)

)
ak−1 +mk−1dk−1

k−2∑
j=1

mj = 0. (4.7)

We want that ak−1 6= 0 and ak 6= 0 . Since ak =
−
∑k−2

j=1 mj −mk−1ak−1

mk
, we are looking for some

nonzero solution of (4.7) different from −
∑k−2

j=1 mj

mk−1
. We divide this task in the three following subcases.

Subcase 1: mk−1d = 0 .
In this last case we have d = 0 and so Equation (4.7) turns into

dk−1

(
(mk−1 +mk)ak−1 +

k−2∑
j=1

mj

)
= 0.

If dk−1 = 0 , then any element of K is solution and therefore we choose an appropriate one.

If dk−1 6= 0 , then ak−1 = −
∑k−2

j=1 mj

mk−1 +mk
. Given that k ≥ 3 we have ak−1 6= 0 , and since mk 6= 0 we

obtain ak−1 6= −
k−2∑
j=1

mj

mk−1
.

Subcase 2: mk−1d 6= 0 and mk−1dk−1

k−2∑
j=1

mj = 0 .

Since mk−1 and
k−2∑
j=1

mj are nonzero, then dk−1 = 0 . So Equation (4.7) can be rewritten as

mk−1da
2
k−1 + d

( k−2∑
j=1

mj +mk

)
ak−1 = 0.

A solution of the equation above is ak−1 = −
∑k−2

j=1 mj +mk

mk−1
6= 0 which is also different from −

k−2∑
j=1

mj

mk−1
,

since otherwise we would have mk = 0 , a contradiction.

Subcase 3: mk−1d 6= 0 and mk−1dk−1

k−2∑
j=1

mj 6= 0 .

We have necessarily two nonzero solutions in this case. Now we prove that at least one of them is

different from −
∑k−2

j=1 mj

mk−1
. Suppose, seeking a contradiction, that Equation (4.7) has two repeated roots equal
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to −
k−2∑
j=1

mj

mk−1
, i.e.

(
ak−1 +

k−2∑
j=1

mj

mk−1

)2

= 0. (4.8)

Hence ak−1 = −
k−2∑
j=1

mj

mk−1
and, on other hand, using the well known formula for the sum of the roots of

a quadratic equation and recalling that we have two repeated roots, we also have

ak−1 = −
d
∑k−2

j=1 mj +mkd+mk−1dk−1(mk−1 +mk)

2mk−1d
= −

k−2∑
j=1

mj

2mk−1
− mk

2mk−1
− dk−1

2d
(mk−1 +mk).

Therefore,

dk−1

2d
(mk−1 +mk) = − mk

2mk−1
+

1

2

k−2∑
j=1

mj

mk−1
, i.e.

dk−1

d
=

∑k−2
j=1 mj −mk

mk−1(mk−1 +mk)
. (4.9)

Dividing Equation (4.7) by mk−1d and comparing with Equation (4.8), we obtain



k−2∑
j=1

mj

mk−1
+

mk

mk−1
+

dk−1

d
(mk−1 +mk) = 2

k−2∑
j=1

mj

mk−1

dk−1

d

k−2∑
j=1

mj =
1

m2
k−1

( k−2∑
j=1

mj

)2

.

Since
k−2∑
j=1

mj 6= 0 , then dk−1

d
=

1

m2
k−1

( k−2∑
j=1

mj

)
and so we get

2mk−1
dk−1

d
=

k−2∑
j=1

mj

mk−1
+

mk

mk−1
+

dk−1

d
(mk−1 +mk)

=
n−mk−1

mk−1
+

dk−1

d
(mk−1 +mk),

which implies that

dk−1

d
(mk−1 −mk) =

n−mk−1

mk−1
.

By Equation (4.9), we have
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n−mk−1

mk−1
=

∑k−2
j=1 mj −mk

mk−1(mk−1 +mk)
(mk−1 −mk), that is,

n−mk−1 =
n−mk−1 − 2mk

mk−1 +mk
(mk−1 −mk).

Therefore we have

(n−mk−1)(mk−1 +mk) = (n−mk−1 − 2mk)(mk−1 −mk),

and expanding the brackets we obtain

nmk−1 + nmk −m2
k−1 −mk−1mk = nmk−1 − nmk −m2

k−1 +mk−1mk − 2mk−1mk + 2m2
k

which implies that
mk(n−mk) = 0, which means mk = 0 ou n = mk,

and in the both cases we get a contradiction.

We conclude that there exists a nonzero root of (4.7) different from −
k−2∑
j=1

mj

mk−1
.

Now it is enough to determine the values for bi,i+1 in the system (4.5).
In the matrix D , from the end of the block that contains the element dii to the beginning of the one

containing di+1,i+1 we have di,i+1 = 0 , and then we can take bi,i+1 = 0 . For the other elements above the main
diagonal we have (all +λal+1,l+1)bl,l+1 = dl,l+1 and all = al+1,l+1 . So we can take bl,l+1 = a−1

ll (1+λ)−1dl,l+1 .
This finishes the proof of the third and last case, and therefore we conclude the proof of the lemma. 2
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