tüвітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: 1809 - 1813
© TÜBİTAK
doi:10.55730/1300-0098.3233

Symmetric polynomials in the free metabelian associative algebra of rank 2

Dedicated to the $70^{\text {th }}$ anniversary of Vesselin Drensky

Şehmus FINDIK* (D)
Department of Mathematics, Faculty of Arts and Sciences, Çukurova University, Adana, Turkey

| Received: 19.01 .2022 | Accepted/Published Online: $08.04 .2022 \quad$ • | Final Version: 20.06 .2022 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

Let F be the free metabelian associative algebra generated by x and y over a field of characteristic zero. We call a polynomial $f \in F$ symmetric, if $f(x, y)=f(y, x)$. The set of all symmetric polynomials coincides with the algebra $F^{S_{2}}$ of invariants of the symmetric group S_{2}. In this paper, we give the full description of the algebra $F^{S_{2}}$.

Key words: Metabelian, symmetric polynomial

1. Introduction

Let $K\left[X_{n}\right]$ be the algebra of polynomials in n commuting variables over a field K of characteristic zero, where $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. It is well known that the algebra

$$
K\left[X_{n}\right]^{S_{n}}=\left\{p \in K\left[X_{n}\right] \mid p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), \forall \pi \in S_{n}\right\}
$$

of symmetric polynomials is generated by elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n}$, where

$$
\sigma_{1}=x_{1}+\cdots+x_{n}, \sigma_{2}=x_{1} x_{2}+\cdots+x_{1} x_{n}+\cdots+x_{n-1} x_{n}, \ldots, \sigma_{n}=x_{1} \cdots x_{n}
$$

One may consider noncommutative or nonassociative analogues of the above result. As a pioneer, Wolf [12] in 1936 handled the problem for the algebra $K\left\langle X_{n}\right\rangle^{S_{n}}$, where $K\left\langle X_{n}\right\rangle$ is the free associative algebra. One may also see the work of Bergeron et al. [3] on the invariants and coinvariants of the symmetric groups in noncommuting variables. For a survey on symmetric polynomials in noncommutative variables, we suggest the paper by Boumova et al. [4]. In a recent work [1], the algebra of symmetric polynomials of the free algebra of rank three in the variety of Grassmann algebras was described. One may also see the work [8] on the symmetric polynomials of the algebra generated by two 2×2 generic traceless matrices and of its Lie subalgebra. When considering the nonassociative case, the recent papers [6, 9], [10], and [7] consider symmetric polynomials of free metabelian Lie algebras, free metabelian Leibniz algebras, and free metabelian Poisson algebras, respectively.

In the present paper, we describe the algebra $F^{S_{2}}$ of symmetric polynomials in the free metabelian associative algebra F of rank two, and provide a finite generating set for $F^{S_{2}}$.

[^0]
FINDIK/Turk J Math

2. Preliminaries

Let A be the free associative algebra of rank two over a field K of characteristic zero. Then, the algebra $F=A /\left(A^{\prime}\right)^{2}$ is the free metabelian associative algebra of rank two, where $A^{\prime}=A[A, A] A$ stands for the commutator ideal of A generated by all elements of the form $[a, b]=a b-b a$, when $a, b \in A$. The algebra F satisfies the metabelian identity $[a, b][c, d]=0$ (see [11]). Assume that F is freely generated by x and y. Let all commutators be left normed: $[a, b, c]=[[a, b], c]$. Then it is well known that (see $[2,5]$) the commutator ideal F^{\prime} of F is of a basis consisting of elements of the form

$$
x^{m} y^{n}[x, y, \underbrace{x, \ldots, x}_{k}, \underbrace{y, \ldots, y}_{l}], m, n, k, l \geq 0 .
$$

However, for the needs of the paper we use another basis of the algebra F as follows.

$$
\underbrace{x^{m} y^{n}}_{\text {basis of } F / F^{\prime}}, \underbrace{x^{m} y^{n}[x, y] x^{k} y^{l}}_{\text {basis of } F^{\prime}}, \quad m, n, k, l \geq 0 .
$$

The metabelian identity implies that $x y u=y x u$ and $u x y=u y x$ for every element $u \in F^{\prime}$. This yields the following construction. We consider the action of the commutative polynomial algebra $K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$ on F^{\prime} defined as

$$
\left(x_{1}^{a} y_{1}^{b} x_{2}^{c} y_{2}^{d}\right) u=x^{a} y^{b} u x^{c} y^{d}, \quad u \in F^{\prime}
$$

Hence, the vector space F^{\prime} is the free left $K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$-module generated by $[x, y]$ via this action.
Recall that every element of the set

$$
F^{S_{2}}=\{f(x, y) \in F \mid f(x, y)=f(y, x)\}
$$

is called a symmetric polynomial of the free associative algebra F. Note that $F^{S_{2}}$ coincides with the algebra of invariants of the symmetric group S_{2}. In the next section, we give a generating set for the algebra $F^{S_{2}}$.

3. Main results

The next lemma describes the forms of symmetric polynomials in the left $K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$-module F^{\prime}.

Lemma 3.1 Let $p \in K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$. Then the followings are equivalent.
(1) $p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)[x, y] \in\left(F^{\prime}\right)^{S_{2}}$.
(2) $p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=-p\left(y_{1}, x_{1}, y_{2}, x_{2}\right)$.
(3) $p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\left(x_{1}-y_{1}\right) p_{1}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)+\left(x_{2}-y_{2}\right) p_{2}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$, for some $p_{1}, p_{2} \in K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]^{S_{2}}$.

Proof $(1) \Rightarrow(2)$ Let $\tau_{12} \in S_{2}$ be the transposition exchanging x and y. Then,

$$
\begin{aligned}
p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)[x, y] & =\tau_{12}\left(p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)[x, y]\right) \\
& =p\left(y_{1}, x_{1}, y_{2}, x_{2}\right)[y, x] \\
& =-p\left(y_{1}, x_{1}, y_{2}, x_{2}\right)[x, y] .
\end{aligned}
$$

Hence, $\left(p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)+p\left(y_{1}, x_{1}, y_{2}, x_{2}\right)\right)[x, y]=0$. Therefore, $p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)+p\left(y_{1}, x_{1}, y_{2}, x_{2}\right)=0$ in the free left $K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$-module F^{\prime} generated by the single element $[x, y]$.
$(2) \Rightarrow(1)$ and $(3) \Rightarrow(2)$ are clear.
$(2) \Rightarrow(3)$ We may assume that $p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\left(x_{1}-y_{1}\right) p_{1}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)+q\left(y_{1}, x_{2}, y_{2}\right)$, where q does not depend on x_{1}. Then,

$$
\begin{aligned}
p\left(y_{1}, x_{1}, y_{2}, x_{2}\right) & =\left(y_{1}-x_{1}\right) p_{1}\left(y_{1}, x_{1}, y_{2}, x_{2}\right)+q\left(x_{1}, y_{2}, x_{2}\right) \\
& =-p\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \\
& =\left(y_{1}-x_{1}\right) p_{1}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)-q\left(y_{1}, x_{2}, y_{2}\right)
\end{aligned}
$$

Substituting $x_{1}=y_{1}$, we get that $q\left(y_{1}, y_{2}, x_{2}\right)=-q\left(y_{1}, x_{2}, y_{2}\right)$. Hence, one may express that

$$
q\left(y_{1}, x_{2}, y_{2}\right)=\left(x_{2}-y_{2}\right) q_{1}\left(y_{1}, x_{2}, y_{2}\right)+q_{2}\left(y_{1}, y_{2}\right)
$$

where q_{2} does not depend on x_{1}, x_{2}. Then

$$
\begin{aligned}
q\left(y_{1}, y_{2}, x_{2}\right) & =\left(y_{2}-x_{2}\right) q_{1}\left(y_{1}, y_{2}, x_{2}\right)+q_{2}\left(y_{1}, x_{2}\right) \\
& =-q\left(y_{1}, x_{2}, y_{2}\right) \\
& =\left(y_{2}-x_{2}\right) q_{1}\left(y_{1}, x_{2}, y_{2}\right)-q_{2}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

Now $x_{2}=y_{2}$ yields that $2 q_{2}\left(y_{1}, y_{2}\right)=0$, and hence $q_{2}=0$.

Remark 3.2 Note that the algebra $K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]^{S_{2}}$ is generated by $x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}$ and $x_{1} y_{2}+x_{2} y_{1}$ (see [6]). In addition, the following holds.

$$
\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2}+A\left(x_{1} y_{2}+x_{2} y_{1}\right)+B=0
$$

where $A=-\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)$ and $B=x_{1} y_{1}\left(\left(x_{2}+y_{2}\right)^{2}-2 x_{2} y_{2}\right)+x_{2} y_{2}\left(\left(x_{1}+y_{1}\right)^{2}-2 x_{1} y_{1}\right)$. Hence, A and B depend on $x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}$. Therefore, every polynomial $p \in K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]^{S_{2}}$ is of the form

$$
p=q\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}\right)+r\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}\right)\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

for some $q, r \in K\left[x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}\right]$.
In the next theorem, we give generators of the algebra $F^{S_{2}}$ of symmetric polynomials.

Theorem 3.3 Let char $K \neq 2$. Then $F^{S_{2}}$ is generated by

$$
\begin{aligned}
& x+y, \quad x y+y x, \quad u_{1}=x[x, y]-y[x, y], \quad u_{2}=[x, y] x-[x, y] y \\
& u_{3}=x u_{1} y+y u_{1} x, \quad u_{4}=x u_{2} y+y u_{2} x
\end{aligned}
$$

Proof Initially, it follows from char $K \neq 2$ that $x+y$ and $x y+y x$ generate $K[x, y]^{S_{2}} \cong\left(F / F^{\prime}\right)^{S_{2}}$. They act on F^{\prime} as the polynomials

$$
x_{1}+y_{1}, x_{2}+y_{2}, 2 x_{1} y_{1}, 2 x_{2} y_{2} \in K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]
$$

FINDIK/Turk J Math

If we show that $\left(F^{\prime}\right)^{S_{2}}$ is generated by $u_{1}, u_{2}, u_{3}, u_{4}$ as a $K\left[x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}\right]$-module, then the proof will be completed. We prove the theorem in two steps.
Step 1 Let $f=f_{1}+f_{2} \in F^{S_{2}}$, where $f_{1} \in K[x, y]^{S_{2}}$ and $f_{2} \in\left(F^{\prime}\right)^{S_{2}}$. Then $f_{1}=p(x+y, 2 x y)$ for some $p \in K\left[v_{1}, v_{2}\right]$. Thus, $f_{1}-p(x+y, 2 x y) \equiv 0\left(\bmod \left(F^{\prime}\right)^{S_{2}}\right)$. This implies that $f_{1}-p(x+y, 2 x y) \in\left(F^{\prime}\right)^{S_{2}}$, and for some $q \in K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$ we have

$$
f-p(x+y, 2 x y)=q\left(x_{1}, y_{1}, x_{2}, y_{2}\right)[x, y]
$$

i.e. can be presented.
$\underline{\text { Step } 2}$ Now let $p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)[x, y] \in\left(F^{\prime}\right)^{S_{2}}$. Then

$$
p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\left(x_{1}-y_{1}\right) p_{1}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)+\left(x_{2}-y_{2}\right) p_{2}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)
$$

for some $p_{1}, p_{2} \in K\left[x_{1}, y_{1}, x_{2}, y_{2}\right]^{S_{2}}$ by Lemma 3.1. Then, we have that

$$
p_{i}=q_{i}\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}\right)+r_{i}\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}\right)\left(x_{1} y_{2}+x_{2} y_{1}\right), \quad i=1,2
$$

for some explicitly given $q_{1}, q_{2}, r_{1}, r_{2}$ depending on $x_{1}+y_{1}, x_{2}+y_{2}, x_{1} y_{1}, x_{2} y_{2}$ by Remark 3.2. This implies that

$$
\begin{aligned}
p\left(x_{1}, y_{1}, x_{2}, y_{2}\right)[x, y] & =\left(\left(x_{1}-y_{1}\right)\left(q_{1}+r_{1}\left(x_{1} y_{2}+x_{2} y_{1}\right)\right)+\left(x_{2}-y_{2}\right)\left(q_{2}+r_{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)\right)\right)[x, y] \\
& =q_{1}(\underbrace{x[x, y]-y[x, y]}_{u_{1}})+r_{1}\left(x u_{1} y+y u_{1} x\right)+q_{2}(\underbrace{[x, y] x-[x, y] y}_{u_{2}})+r_{2}\left(x u_{2} y+y u_{2} x\right)
\end{aligned}
$$

The action of q_{i} and r_{i} is a linear combination of composition of multiplications from both sides by $x+y$ and $\frac{x y+y x}{2}$.

Acknowledgement

The author is grateful to anonymous referees for careful reading and useful suggestions.

References

[1] Akdoğan N, Fındık Ş. Symmetric polynomials in the variety generated by Grassmann algebras. Journal of Algebra and Its Applications 2022; to appear. doi: 10.1142/S0219498823500196
[2] Bahturin Yu A. Identical Relations in Lie Algebras (Russian). Moscow: Nauka, 1985. Translation: Utrecht: VNU Science Press, 1987.
[3] Bergeron N, Reutenauer C, Rosas M, Zabrocki M. Invariants and coinvariants of the symmetric groups in noncommuting variables. Canadian Journal of Mathematics 2002; 60 (2): 266-296. doi: 10.4153/CJM-2008-013-4
[4] Boumova S, Drensky V, Dzhundrekov D, Kassabov M. Symmetric polynomials in free associative algebras. Turkish Journal of Mathematics 2022; to appear. doi: 10.3906/mat-2112-142
[5] Drensky V. Free Algebras and PI-Algebras. Singapore: Springer, 1999.
[6] Drensky V, Fındık Ş, Öğüşlü NŞ. Symmetric polynomials in the free metabelian Lie algebras. Mediterranean Journal of Mathematics 2020; 17 (5): 1-11. doi: 10.1007/s00009-020-01582-8
[7] Dushimirimana A, Fındık Ş, Öğüşlü NŞ. Symmetric polynomials in the free metabelian Poisson algebras. Journal of Algebra and Its Applications 2022; to appear. doi: 10.1142/S0219498823500494
[8] Fındık Ş, Kelekci O. Symmetric polynomials of algebras related with 2×2 generic traceless matrices. International Journal of Algebra and Computation 2021; 31 (07): 1433-1442. doi: 10.1142/S0218196721500521
[9] Findık Ş, Öğüşlü NŞ. Palindromes in the free metabelian Lie algebras. International Journal of Algebra and Computation 2019; 29: 885-891. doi: 10.1142/S0218196719500334
[10] Fındık Ş, Özkurt Z. Symmetric polynomials in Leibniz algebras and their inner automorphisms. Turkish Journal of Mathematics 2020; 44 (6): 2306-2311. doi: 10.3906/mat-2006-44
[11] Umirbaev UU. On an extension of automorphisms of polynomial rings. (Russian) Sibirskii Matematicheskii Zhurnal 1995; 36 (4): 911-916. Translation: Siberian Mathematical Journal 1995; 36 (4): 787-791. doi: 10.1007/BF02107336
[12] Wolf MC. Symmetric Functions of Non-Commutative Elements. Duke Mathematical Journal 1936; 4(2): 626-637.

[^0]: *Correspondence: sfindik@cu.edu.tr
 2010 AMS Mathematics Subject Classification: 17B01; 17B30; 16S15.

