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Abstract: Let F be the free metabelian associative algebra generated by x and y over a field of characteristic zero.
We call a polynomial f ∈ F symmetric, if f(x, y) = f(y, x) . The set of all symmetric polynomials coincides with the
algebra FS2 of invariants of the symmetric group S2 . In this paper, we give the full description of the algebra FS2 .
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1. Introduction

Let K[Xn] be the algebra of polynomials in n commuting variables over a field K of characteristic zero, where
Xn = {x1, . . . , xn} . It is well known that the algebra

K[Xn]
Sn = {p ∈ K[Xn] | p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n)), ∀π ∈ Sn}

of symmetric polynomials is generated by elementary symmetric polynomials σ1, . . . , σn , where

σ1 = x1 + · · ·+ xn , σ2 = x1x2 + · · ·+ x1xn + · · ·+ xn−1xn , . . . , σn = x1 · · ·xn.

One may consider noncommutative or nonassociative analogues of the above result. As a pioneer, Wolf [12]
in 1936 handled the problem for the algebra K⟨Xn⟩Sn , where K⟨Xn⟩ is the free associative algebra. One
may also see the work of Bergeron et al. [3] on the invariants and coinvariants of the symmetric groups in
noncommuting variables. For a survey on symmetric polynomials in noncommutative variables, we suggest the
paper by Boumova et al. [4]. In a recent work [1], the algebra of symmetric polynomials of the free algebra of
rank three in the variety of Grassmann algebras was described. One may also see the work [8] on the symmetric
polynomials of the algebra generated by two 2× 2 generic traceless matrices and of its Lie subalgebra. When
considering the nonassociative case, the recent papers [6, 9], [10], and [7] consider symmetric polynomials of free
metabelian Lie algebras, free metabelian Leibniz algebras, and free metabelian Poisson algebras, respectively.

In the present paper, we describe the algebra FS2 of symmetric polynomials in the free metabelian
associative algebra F of rank two, and provide a finite generating set for FS2 .
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2. Preliminaries
Let A be the free associative algebra of rank two over a field K of characteristic zero. Then, the algebra
F = A/(A′)2 is the free metabelian associative algebra of rank two, where A′ = A[A,A]A stands for the
commutator ideal of A generated by all elements of the form [a, b] = ab − ba , when a, b ∈ A . The algebra F

satisfies the metabelian identity [a, b][c, d] = 0 (see [11]). Assume that F is freely generated by x and y . Let
all commutators be left normed: [a, b, c] = [[a, b], c] . Then it is well known that (see [2, 5]) the commutator
ideal F ′ of F is of a basis consisting of elements of the form

xmyn[x, y, x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
l

] , m, n, k, l ≥ 0.

However, for the needs of the paper we use another basis of the algebra F as follows.

xmyn︸ ︷︷ ︸
basis of F/F ′

, xmyn[x, y]xkyl︸ ︷︷ ︸
basis of F ′

, m, n, k, l ≥ 0.

The metabelian identity implies that xyu = yxu and uxy = uyx for every element u ∈ F ′ . This yields the
following construction. We consider the action of the commutative polynomial algebra K[x1, y1, x2, y2] on F ′

defined as
(xa

1y
b
1x

c
2y

d
2)u = xaybuxcyd , u ∈ F ′.

Hence, the vector space F ′ is the free left K[x1, y1, x2, y2] -module generated by [x, y] via this action.

Recall that every element of the set

FS2 = {f(x, y) ∈ F | f(x, y) = f(y, x)}

is called a symmetric polynomial of the free associative algebra F . Note that FS2 coincides with the algebra
of invariants of the symmetric group S2 . In the next section, we give a generating set for the algebra FS2 .

3. Main results
The next lemma describes the forms of symmetric polynomials in the left K[x1, y1, x2, y2] -module F ′ .

Lemma 3.1 Let p ∈ K[x1, y1, x2, y2] . Then the followings are equivalent.
(1) p(x1, y1, x2, y2)[x, y] ∈ (F ′)S2 .
(2) p(x1, y1, x2, y2) = −p(y1, x1, y2, x2) .
(3) p(x1, y1, x2, y2) = (x1−y1)p1(x1, y1, x2, y2)+(x2−y2)p2(x1, y1, x2, y2) , for some p1, p2 ∈ K[x1, y1, x2, y2]

S2 .

Proof (1) ⇒ (2) Let τ12 ∈ S2 be the transposition exchanging x and y . Then,

p(x1, y1, x2, y2)[x, y] =τ12

(
p(x1, y1, x2, y2)[x, y]

)
=p(y1, x1, y2, x2)[y, x]

=− p(y1, x1, y2, x2)[x, y].
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Hence,
(
p(x1, y1, x2, y2) + p(y1, x1, y2, x2)

)
[x, y] = 0 . Therefore, p(x1, y1, x2, y2) + p(y1, x1, y2, x2) = 0 in the

free left K[x1, y1, x2, y2] -module F ′ generated by the single element [x, y] .
(2) ⇒ (1) and (3) ⇒ (2) are clear.
(2) ⇒ (3) We may assume that p(x1, y1, x2, y2) = (x1 − y1)p1(x1, y1, x2, y2) + q(y1, x2, y2) , where q does not
depend on x1 . Then,

p(y1, x1, y2, x2) = (y1 − x1)p1(y1, x1, y2, x2) + q(x1, y2, x2)

= −p(x1, y1, x2, y2)

= (y1 − x1)p1(x1, y1, x2, y2)− q(y1, x2, y2).

Substituting x1 = y1 , we get that q(y1, y2, x2) = −q(y1, x2, y2) . Hence, one may express that

q(y1, x2, y2) = (x2 − y2)q1(y1, x2, y2) + q2(y1, y2),

where q2 does not depend on x1, x2 . Then

q(y1, y2, x2) = (y2 − x2)q1(y1, y2, x2) + q2(y1, x2)

= −q(y1, x2, y2)

= (y2 − x2)q1(y1, x2, y2)− q2(y1, y2).

Now x2 = y2 yields that 2q2(y1, y2) = 0 , and hence q2 = 0 . 2

Remark 3.2 Note that the algebra K[x1, y1, x2, y2]
S2 is generated by x1 + y1 , x2 + y2 , x1y1 , x2y2 and

x1y2 + x2y1 (see [6]). In addition, the following holds.

(x1y2 + x2y1)
2 +A(x1y2 + x2y1) +B = 0,

where A = −(x1 + y1)(x2 + y2) and B = x1y1
(
(x2 + y2)

2 − 2x2y2
)
+ x2y2

(
(x1 + y1)

2 − 2x1y1
)
. Hence, A and

B depend on x1 + y1 , x2 + y2 , x1y1 , x2y2 . Therefore, every polynomial p ∈ K[x1, y1, x2, y2]
S2 is of the form

p = q(x1 + y1, x2 + y2, x1y1, x2y2) + r(x1 + y1, x2 + y2, x1y1, x2y2)(x1y2 + x2y1)

for some q, r ∈ K[x1 + y1, x2 + y2, x1y1, x2y2] .

In the next theorem, we give generators of the algebra FS2 of symmetric polynomials.

Theorem 3.3 Let charK ̸= 2 . Then FS2 is generated by

x+ y, xy + yx, u1 = x[x, y]− y[x, y], u2 = [x, y]x− [x, y]y,

u3 = xu1y + yu1x, u4 = xu2y + yu2x.

Proof Initially, it follows from charK ̸= 2 that x+ y and xy+ yx generate K[x, y]S2 ∼= (F/F ′)S2 . They act
on F ′ as the polynomials

x1 + y1, x2 + y2, 2x1y1, 2x2y2 ∈ K[x1, y1, x2, y2].
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If we show that (F ′)S2 is generated by u1, u2, u3, u4 as a K[x1+ y1, x2+ y2, x1y1, x2y2] -module, then the proof
will be completed. We prove the theorem in two steps.
Step 1 Let f = f1 + f2 ∈ FS2 , where f1 ∈ K[x, y]S2 and f2 ∈ (F ′)S2 . Then f1 = p(x + y, 2xy) for some

p ∈ K[v1, v2] . Thus, f1 − p(x+ y, 2xy) ≡ 0 (mod (F ′)S2) . This implies that f1 − p(x+ y, 2xy) ∈ (F ′)S2 , and
for some q ∈ K[x1, y1, x2, y2] we have

f − p(x+ y, 2xy) = q(x1, y1, x2, y2)[x, y],

i.e. can be presented.
Step 2 Now let p(x1, y1, x2, y2)[x, y] ∈ (F ′)S2 . Then

p(x1, y1, x2, y2) = (x1 − y1)p1(x1, y1, x2, y2) + (x2 − y2)p2(x1, y1, x2, y2),

for some p1, p2 ∈ K[x1, y1, x2, y2]
S2 by Lemma 3.1. Then, we have that

pi = qi(x1 + y1, x2 + y2, x1y1, x2y2) + ri(x1 + y1, x2 + y2, x1y1, x2y2)(x1y2 + x2y1) , i = 1, 2,

for some explicitly given q1, q2, r1, r2 depending on x1 + y1 , x2 + y2 , x1y1 , x2y2 by Remark 3.2. This implies
that

p(x1, y1, x2, y2)[x, y] =
(
(x1 − y1)

(
q1 + r1(x1y2 + x2y1)

)
+ (x2 − y2)

(
q2 + r2(x1y2 + x2y1)

))
[x, y]

=q1
(
x[x, y]− y[x, y]︸ ︷︷ ︸

u1

)
+ r1

(
xu1y + yu1x

)
+ q2

(
[x, y]x− [x, y]y︸ ︷︷ ︸

u2

)
+ r2

(
xu2y + yu2x

)
.

The action of qi and ri is a linear combination of composition of multiplications from both sides by x+ y and
xy+yx
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