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Abstract: We analyze three types of integrable nonlinear evolution equations (NLEE) related to the Kac-Moody

algebras A
(1)
r . These are Zh -reduced derivative NLS equations (DNLS), multicomponent mKdV equations and

2-dimensional Toda field theories (2dTFT). We outline the basic tools of this analysis: i) the gradings of the
simple Lie algebras using their Coxeter automorphisms; ii) the construction of the relevant Lax representations;
and iii) the spectral properties of the Lax operators and their reduction to Riemann–Hilbert problems. We also
formulate the minimal set of scattering data which allow one to recover the asymptotics of the fundamental
analytic solutions to L and its potential.

Key words: Integrable nonlinear evolution equations, graded simple Lie algebras, Kac-Moody algebras, Riemann–
Hilbert problems

1. Introduction
The general theory of the nonlinear evolution equations (NLEE) allowing Lax representation is well
developed [1, 5, 8, 11, 13, 20, 34, 35]. This paper is an extension of the old report [9] and more recent
papers [10, 15, 16, 18] and deals with three types of NLEE.

The first one is as generalizations of the derivative NLS equations [9], see also [26, 28]:

i
∂ψk

∂t
+ γ

∂

∂x

(
cotan πk

h
· ψk,x + i

h−1∑
p=1

ψpψk−p

)
= 0, k = 1, 2, . . . , h− 1, (1.1)

where γ is a constant and the index k − p should be understood modulus h , ψ0 = ψh = 0 . The system
(1.1) allows also the involutions:

a) ψk = −ψ∗
k, γ = −γ∗,

b) ψk = ψ∗
h−k, γ = γ∗.

(1.2)
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The second type of such equations is known as the mKdV type equations [7, 15, 16, 18]. They are
multicomponent generalizations of the famous mKdV equation. Examples of such systems will be given
below in the text. Here we will demonstrate the Hamiltonian of one of them:

H =
1

α

∫ ∞

−∞
dx

(
−4

(
∂q1
∂x

)(
∂q5
∂x

)
+

1

4

(
∂q3
∂x

)2

+
√
3q3

(
q1
∂q2
∂x

+ 3q2
∂q1
∂x

− 3q4
∂q5
∂x

− q5
∂q4
∂x

+ 2q25
∂q2
∂x

− 2q21
∂q4
∂x

)
− 1

4
q43

+ 3(q1q2 + q4q5)
2 + 2q3(q

3
1 + q35 + 3q22q5 + 3q1q

2
4) + 3q23(q1q5 + q2q4)

)
. (1.3)

The corresponding NLEE takes the form:

∂qj
∂t

=
∂

∂x

δH

δqj(x, t)
. (1.4)

The third type of NLEE contains the famous 2-dimensional Toda field theories discovered by [28].
For the sl(h) algebras they take the form:

∂2q⃗j
∂x∂t

=

h−1∑
j=0

αje
−2(α,q⃗), j = 1, . . . , h− 1. (1.5)

where q⃗(x, t) is an h − 1 -component vector functions; the vectors αj = ej − ej+1 , j = 1, . . . , h − 1 are
the simple roots of sl(h) while α0 = −e1 + eh is the minimal root of sl(h) .

Each of these types of equations possesses Lax representation, i.e. for each of them there exist a
pair of first order matrix linear operators L(λ) and M(λ) depending on the spectral parameter λ and
such, that the NLEE appears as the commutativity condition [L,M ] = 0 . The potentials of L and M

depend on the variables x and t and take values in a simple Lie algebra g . Below for simplicity we choose
g ≃ sl(r+1) . The Lax pairs generating these NLEE are special in the sense, that each one possesses Zh

Mikhailov reduction group [28].
In fact to each Lax pair one can relate a Kac-Moody algebra. For the first two types of NLEE we

described above this construction is provided in [7]. We will demonstrate that the Lax operator L̃(λ) for
the third type of these NLEE can be obtained from L(λ) by a gauge transformation. One of our aims
is to construct this transformation explicitly. Next we will show that the spectral problem L and L̃ can
be reduced to the same Riemann–Hilbert problem.

Section 2 contains preliminaries about the Kac-Moody algebras necessary to construct the Lax
representations for the NLEE described above. We assume that the readers are familiar with the theory
of simple Lie algebras, their root systems and Weyl reflections [25]. In particular we provide a convenient
basis of sl(h) which is compatible with the Zh -reduction. In Section 3 we derive the constraints on the
Lax operator L which lead to additional reductions like (1.2) and their consequences for the scattering
matrix and scattering data of L . We also give several particular cases of the DNLS equations and
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their reductions. In Section 4 we establish the gauge transformation that makes L and L̃ equivalent. In
Section 5 we outline the construction of the fundamental analytic solutions (FAS) of L , their asymptotics
for x → ±∞ and their symmetry properties. We demonstrate that the FAS are directly related to the
solutions of a Riemann–Hilbert problem (RHP) on a set of lines intersecting at the origin and closing
angles π/h . Thus instead of solving the inverse scattering problem for the operator L we can treat the
RHP and use the dressing Zakharov–Shabat method [30, 36, 37] for constructing the soliton solutions
[28, 34]. We also derive the simplest integrals of motion of the DNLS equations. Section 6 contains
discussion and conclusion.

2. Preliminaries
2.1. Kac-Moody algebras
Let g be a finite-dimensional simple Lie algebra over C . Let us introduce related infinite-dimensional
algebra:

g[λ, λ−1] =

{
m∑
i=n

viλ
i : vi ∈ g, n,m ∈ Z

}
, (2.1)

with generic element:

f [λ] =

{
m∑
i=0

fiλ
i : fi ∈ g,m ∈ Z

}
. (2.2)

There is a natural Lie algebraic structure on g[λ, λ−1] . Let φ be an automorphism of g of order
h and let:

L(g, φ) =
{
f ∈ g[λ, λ−1] : φ(f(λ)) = f [λω]

}
, ω = exp

(
2πi

h

)
. (2.3)

L(g, φ) is a Lie subalgebra of g[λ, λ−1] . If g is simple and if h is the Coxeter number of g then L(g, φ)

with an appropriate central extensions, is called a Kac-Moody algebra. It is obvious that Kac-Moody
algebras are graded algebras.

Roughly speaking, the elements of a Kac-Moody algebras are formal series in λ with coefficients
in some properly graded finite-dimensional simple Lie algebra. The grading in g is constructed using the
Coxeter automorphism C of g , and the Coxeter number is order h of C : Ch ≡ 11.

Let us assume that Hj , j = 1, . . . , r and Eα , α ∈ ∆ are the Cartan–Weyl basis of g . Here Hj ∈ h

are the basis of the Cartan subalgebra, r = dim h is the rank of g ; the Weyl generators Eα are labeled
by the roots α ∈ ∆ of g . We will denote by αj the simple roots of g . One of the realization of the
Coxeter automorphism is as the maximal element of the Weyl group of g . For example we can choose
C1 = Sα1Sα2 . . . Sαr to be the composition of Weyl reflections with respect to the simple roots.

The Coxeter automorphism introduces grading in g . Indeed, since Ch
1 ≡ 11 then it has h

eigenvalues ωk , k = 0, 1, . . . , h− 1 and h eigensubspaces in g , i.e.:

g =
h−1
⊕
k=0

g(k), (2.4)
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such that

C1(X) = ωkX ∀X ∈ g(k). (2.5)

Such grading has the special property:

[X,Y ] ∈ g(k+m mod h), ∀X ∈ g(k), Y ∈ g(m). (2.6)

With all that in mind we can provide explicit realization of L(g, C1) introducing basis in each of
the subspaces g(k) as follows:

X =

m∑
k=n

X(k)λk, n,m ∈ Z, (2.7)

where X(k) ∈ g(k mod h) . Each of the subspaces g(k) has a basis given by:

E(k)
α =

h−1∑
s=0

ω−skCs
1(Eα), H(k)

j =

h−1∑
s=0

ω−skCs
1(Hj). (2.8)

Note that H(k)
j is nonvanishing only if k is an exponent.

Below we will mostly use the algebra g ≃ sl(r+1) which has rank r and Coxeter number h = r+1 .
The root system of sl(r + 1) is ∆ ≡ {ek − ej , k ̸= j where 1 ≤ k, j ≤ r + 1 . The simple roots are
αj = ej − ej+1 , j = 1, . . . , r .

sl(h,C) =
h−1
⊕
k=0

g(k). (2.9)

We will use a convenient basis in g(k) , namely:

J (k)
s =

h∑
j=1

ωkjEj,j+s, C−1
1 J (k)

s C1 = ω−kJ (k)
s . (2.10)

Obviously, J (k)
s satisfies the commutation relations:[

J (k)
s , J

(m)
l

]
=
(
ωms − ωkl

)
J
(k+m)
s+l . (2.11)

2.2. Another realization of the Coxeter automorphisms
Each grading relevant for Kac-Moody algebras is fixed up by a Coxeter automorphism C which satisfies
Ch = 11, where h is the Coxeter number of g . For the first one we choose C to be an element of the
Cartan subgroup:

C̃1 = exp

(
2πi

h

r∑
k=1

Hωk

)
, (2.12)
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where ωk are the fundamental weights of g . Using the Cartan–Weyl commutation relations one easily
finds that:

C̃1(H) = H, C̃1(Eα) ≡ C̃1EαC̃
−1
1 = exp

(
2πi

h

r∑
k=1

2(ωk, α)

(α, α)

)
= ωht (α)Eα, (2.13)

where ω = exp(2πi/h) and ht (α) is the height of the root α . Then

g(k) ≡ {Eβ , ht (β) = k mod (h)}. (2.14)

We have two different choices for the Coxeter automorphism C1 and C̃1 for the algebra g ≃ sl(h) ,
h = r + 1 . In what follows we assume that the reader is familiar with the basic concepts of the simple
and affine Lie algebras, see for example [6, 25, 27]. Each of these choices satisfies Ch

1 = 11 and C̃h
1 = 11,

and each of these automorphisms induces a grading in g

g =
r
⊕
k=0

g(k), g̃ =
r
⊕
s=0

g̃s . (2.15)

Here the linear subspaces are such that

C1XC
−1
1 = ω−kX, C̃1Y C̃

−1
1 = ω−sY, (2.16)

where X ∈ g(k), Y ∈ g̃s and ω = e2πi/(r+1) . Each of the gradings satisfies

[g(k), g(m)] ∈ g(k+m), [g̃s, g̃p] ∈ g̃s+p, (2.17)

where (k +m) and (s+ p) must be understood modulo (r + 1) .

In what follows we will specify the choice of the automorphisms setting C1 , C̃1 to be

C1 =

r+1∑
p=1

Ep,p+1 = J
(0)
1 , C̃1 =

r+1∑
p=1

ωp−1Ep,p = J
(1)
0 , (2.18)

where the (r + 1)× (r + 1) matrices Ekm are defined by (Ekm)sp = δksδmp .

Further we will use a convenient basis in the affine Lie algebra A
(1)
r which is compatible with the

gradings, see [9, 12] and [6, 25, 27]:

J (k)
s =

r∑
j=0

ωkjEj+1,j+s+1. (2.19)

The elements of this basis satisfy the commutation relations[
J (k)
s , J

(m)
l

]
=
(
ωms − ωkl

)
J
(k+m)
s+l . (2.20)

Besides it is easy to check that

C−1
1 J (k)

s C1 = ω−kJ (k)
s , C̃−1

1 J (k)
s C̃1 = ω−sJ (k)

s (2.21)
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and

J (k)
s J (m)

p = ωsmJ
(k+m)
s+p , (J (k)

s )−1 = (J (k)
s )†. (2.22)

Using this we can specify bases in each of the linear subspaces as follows:

g(k) ≡ span{J (k)
s , s = 1, . . . , r + 1}, g̃s ≡ span{J (k)

s , k = 1, . . . , r + 1}. (2.23)

The realization of the Coxeter automorphism by C1 corresponds to choosing it as a Weyl group
element C1 = Sα1

. . . Sαr
, where αk are the simple roots of sl(r+1) and Sα is the Weyl reflection with

respect to the root α . In the other realization C̃1 is an element of the Cartan subgroup of sl(r + 1) .
Then g(0) ≡ h is the Cartan subalgebra of sl(r + 1) . Both realizations are equivalent, i.e. there exists
a similarity transformation which takes C1 into C̃1 . In the first realization each of the linear subspaces
g(k) (with the exception of g(0) ) has a one-dimensional section with the Cartan subalgebra, i.e.

g(s) ∩ h ≡ csJ
(s)
0 , (2.24)

where cs is an arbitrary constant.

3. Lax representations
3.1. The Zh DNLS and the mKdV equations
Lax operators subject to Zh reductions mean that the ordinary differential operators L and M can be
written as:

Lχ(x, t, λ) ≡
(
d

dx
+ U(x, t, λ)

)
χ(x, t, λ) = 0, (3.1)

Mχ(x, t, λ) =

(
d

dt
+ V (x, t, λ)

)
χ(x, t, λ) = λ2χ(x, t, λ)K, (3.2)

where the potentials U(x, t,Λ) and V (x, t,Λ) are polynomials of λ . For simplicity we assume that:

U(x, t, λ) = U0(x, t) + λU1, (3.3)

V (x, t, λ) = V0(x, t) + λV1(x, t) + λ2K. (3.4)

Obviously the Lax pair (3.1) possesses Zh and Dh -reduction groups [28]. For the case of Zh -reduction
this means that we impose on (3.1) and (3.2) a Zh -reduction by [28]:

U(x, t, λ) = C−1
1 U(x, t, λω)C1, V (x, t, λ) = C−1

1 V (x, t, λω)C1, (3.5)

where C1 is given by (2.18). Of course Uk , Vk ∈ g(k) which means that:

U0(x) =

h−1∑
j=1

ψj(x, t)J
(0)
j , U1 = −aω−1/2J

(1)
0 , K = −bJ (2)

0 . (3.6)
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Then the requirement that (3.1) and (3.2) are compatible for all values of λ allows us to express V0(x, t)
and V1(x, t) in terms of ψj(x, t) as follows:

V1(x, t) =

N∑
k=1

v1,k(x, t)J
(1)
j , v1,p = − b

a
ω(p+1)/2 cos(pπ/N)ψp(x, t),

V0(x, t) =

N−1∑
k=1

v0,k(x, t)J
(0)
j , v0,p = γ

i cotan pπ
N

ψp,x −
N∑

k+s=p

ψkψs(x, t)

 ,

(3.7)

where γ = bω
a2 . The λ -independent term in the Lax representation vanishes whenever the functions ψk

satisfy the DNLS equation (1.1).
The approach to the mKdV equations is similar. In fact they are the next element of the hierarchy

related to L . Their dispersion law is λ3K3 where K3 is a constant matrix belonging to g(3) ∩ h . Thus
its Lax pair is:

Lψ ≡ ∂ψ

∂x
+ (Q(x, t)− λJ

(1)
0 )ψ(x, t, λ) = 0,

M3ψ ≡ ∂ψ

∂t
+

(
2∑

k=0

Vk(x, t)λ
k − λ3K3

)
ψ(x, t, λ) = λ3ψ(x, t, λ)K3.

(3.8)

Skipping the details we write down the corresponding equations for the case r = 5 . Thus is a system of
5 equations for five functions:

α
∂q1
∂t

=
∂

∂x

(
4
∂2q1
∂x2

+
√
3

(
4
∂q2
∂x

q5 + 2q3
∂q4
∂x

+ 3
∂q3
∂x

q4

)
+ 6q3(q

2
2 + q25) + 3q1q

2
3 + 6q4(q1q2 + q4q5)

)
,

α
∂q2
∂t

=
∂

∂x

(√
3

(
4
∂q1
∂x

q1 + q5
∂q3
∂x

− 2
∂q5
∂x

q3

)
+ 6q5(q1q2 + q4q5) + 3q2q

2
3 + 12q1q3q4

)
,

α
∂q3
∂t

=
∂

∂x

(
−1

2

∂2q3
∂x2

+
√
3

(
∂q2
∂x

q1 + 3q2
∂q1
∂x

− ∂q4
∂x

q5 − 3
∂q5
∂x

q4

)
+ 6(q3(q2q4 + q1q5) + q1q

2
4 + q22q5) + 2q31 − q33 + 2q35

)
,

α
∂q4
∂t

=
∂

∂x

(√
3

(
2
∂q1
∂x

q3 − q1
∂q3
∂x

− 4
∂q5
∂x

q5

)
+ 6q1(q1q2 + q4q5) + 3q4q

2
3 + 12q2q3q5

)
,

α
∂q5
∂t

=
∂

∂x

(
4
∂2q5
∂x2

−
√
3

(
4
∂q4
∂x

q1 + 2q3
∂q2
∂x

+ 3
∂q3
∂x

q2

)
+ 6q3(q

2
1 + q24) + 3q5q

2
3 + 6q2(q1q2 + q4q5)

)
.

(3.9)

The corresponding Hamiltonian was given in (1.3) in the Introduction.
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3.2. The 2-dimensional Toda field theories

The importance of the reduction group discovered by Mikhailov [28] is well known. Its first achievement
was the discovery of the integrability of the 2-dimensional Toda field theories (2dTFT) which allow
generalizations to any simple Lie algebra [28, 29]. If we choose a reduction group isomorphic to the Zh

we naturally obtain Lax pair on a Kac-Moody algebra. Here we have the freedom to choose the simple
Lie algebra g , but we also have to comply with the relativistic invariance of TFT. In two-dimensional
space-time this results in a symmetry of the Lax pair under the change λ→ λ−1 .

The first Lax pair for the 2dTFT has the form:

L̃ψ̃ ≡ ∂ψ̃

∂x
+ (q⃗x − λJ (x, t))ψ̃(x, t, λ) = 0,

M̃ ψ̃ ≡ ∂ψ̃

∂t
− (q⃗t −

1

λ
K(x, t))ψ̃(x, t, λ) = 0,

q⃗ =

r∑
s=1

qs(x, t)Hs, J (x, t) =
∑
α∈δ

fα(x, t)Eα, K(x, t) =
∑
α∈δ

gα(x, t)E−α.

(3.10)

Here q⃗ , J (x, t) and K(x, t) are elements of a Zh -graded simple Lie algebra g , δ is the set of admissible
roots of g . In other words, δ contains all simple roots αj , j = 1, . . . , r and the minimal one α0 . We
should mention here that the grading is achieved by using Coxeter automorphism C̃1 which belongs to
the Cartan subgroup of g .

There are several obvious differences with respect to the construction of the previous subsection.
As we mentioned above, the Lax pair L̃(λ−1) , M̃(λ−1) produce precisely the same NLEE as the original
pair L̃(λ) and M̃(λ) . Another difference is that the Coxeter automorphism C̃ is realized as an element
of the Cartan subgroup, see Eq. (2.13). As a result the structure of the subspaces g̃(k) is different. In
particular g̃(0) ≃ h , i.e. the λ -independent terms in both L̃ and M̃ are diagonal matrices. In addition
the terms proportional to λ in L̃ and to λ−1 in M̃ cannot be chosen as diagonal matrices, and become
functions of x and t . These facts seem to make the 2dTFT more difficult to solve than the Zh DNLS
and mKdV equations.

On the other hand the fact that we are using Coxeter automorphisms allows us to treat the
problem adequately. Indeed, now the subspaces g̃(k) for k ̸= 0 are spanned by the Weyl generators Eα

corresponding to the roots of height ht (α) = k mod h . In particular J (x, t) is linear combination of all
admissible roots.

Following [28] we choose g ≃ sl(r + 1) and write down the compatibility condition of the pair
L̃ and M̃ . The terms proportional to λ and λ−1 in the equation [L̃, M̃ ] = 0 give simple differential
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equations:

λ
∂J
∂t

+ [q⃗t,J (x, t)] = 0,

λ−1 ∂K
∂x

− [q⃗x,K(x, t)] = 0,

λ0
∂2q⃗

∂x∂t
= [J ,K].

(3.11)

In order to solve them we need to use the commutation relations of the Cartan–Weyl basis, see [25].
Here with some abuse of notations we have used the duality between the Cartan subalgebra h and the
r -dimensional Euclidean space, i.e. by q⃗ we mean an element of the Cartan subalgebra which is dual to
the vector q⃗ ∈ Er .

[q⃗, E±α] = ±(α, q⃗)E±α, [Eα, E−α] = Hα. (3.12)

The solution to the first two equations in (3.11) are given by:

fα(x, t) = exp(−(α, q⃗(x, t))), gα(x, t) = exp(−(α, q⃗(x, t))), (3.13)

and the 2dTFT equations take the form:

∂q⃗

∂x∂t
=
∑
α∈δ0

e−2(α,q⃗)Hα, (3.14)

which (after identifying Hα with α) coincide with (1.5)

3.3. Additional involutions and examples

Along with the ZN -reduction (3.5), we can introduce one of the following involutions (Z2 -reductions):

a) K−1
0 U†(x, t,−λ∗)K0 = −U(x, t, λ),

b) K−1
0 U∗(x, t, λ∗)K0 = U(x, t, λ),

c) UT (x, t,−λ) = −U(x, t, λ),

(3.15)

where

K0 =

h∑
k=1

Ek,h−k+1.

An immediate consequences of Eq. (3.15) are the constraints on the potentials:

a) K−1
0 U†

0 (x, t)K0 = −U0(x, t), K−1
0 U†

1K0 = U1,

b) K−1
0 U∗

0 (x, t)K0 = U0(x, t), K−1
0 U∗

1K0 = U1,

c) UT
0 (x, t) = −U0(x, t), U1 = U1,

(3.16)
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and the constraints on the fundamental solutions:

a) K−1
0 χ†(x, t,−λ∗)K0 = χ−1(x, t, λ),

b) K−1
0 χ∗(x, t, λ)K0 = χ(x, t, λ),

c) χT (x, t, λ) = χ−1(x, t, λ),

(3.17)

More specifically from Eq. (3.16) there follows:

a) ψ∗
j (x, t) = −ψj(x, t), j = 1, . . . , h− 1.

b) ψ∗
j (x, t) = ψh−j(x, t), j = 1, . . . , h− 1,

c) ψj(x, t) = −ψh−j(x, t), j = 1, . . . , h− 1.

(3.18)

The involutions a) and b) lead directly to the constraints in Eq. (1.2). All three involutions
are valid reductions for the L operator. However, the third involution is not applicable to the DNLS
equations and thus the constraint (3.18c) is not compatible with Eq. (1.1). The reason for that is that
the second operator M is not compatible with it. In fact the reduction (3.16c) is compatible only with
M -operators whose highest order term in λ is of odd power. In other words, this involutions is good
only for NLEE that have odd dispersion laws.

Let us write down examples of DNLS systems of equations. The involution (1.2a) reduces Eq.
(1.1) to a system of equations for h real-valued functions uk = iψk , γ = iγ0 :

∂uk
∂t

+ γ0
∂

∂x

(
cotan πk

h
· uk,x −

h−1∑
p=1

upuk−p

)
= 0, k = 1, 2, . . . , h− 1. (3.19)

The other two examples are obtained with involution (1.2b). If h = 5 the involution (1.2b) leads
to: ψ0 = ψ5 = 0 , ψ1 = ψ∗

4 , ψ2 = ψ∗
3 , i.e. we have only two independent complex-valued fields and

i
∂ψ1

∂t
+ γcotan π

5

∂2ψ1

∂x2
+ iγ

∂

∂x

(
2ψ2ψ

∗
1 + (ψ∗

2)
2
)
= 0,

i
∂ψ2

∂t
+ γcotan 2π

5

∂2ψ2

∂x2
+ iγ

∂

∂x

(
2ψ∗

1ψ
∗
2 + (ψ1)

2
)
= 0.

(3.20)

For h = 6 and ψ1 = ψ∗
5 , ψ2 = ψ∗

4 , ψ3 = ψ∗
3 , so we have a system for two complex-valued fields ψ1 and

ψ2 and the real field ψ3 :

i
∂ψ1

∂t
+ γcotan π

6

∂2ψ1

∂x2
+ 2iγ

∂

∂x
(ψ∗

1ψ2 + ψ∗
2ψ3) = 0,

i
∂ψ2

∂t
+ γcotan 2π

6

∂2ψ2

∂x2
+ iγ

∂

∂x

(
ψ2
1 + 2ψ∗

1ψ3 + (ψ∗
2)

2
)
= 0,

∂ψ3

∂t
+ 2γ

∂

∂x
(ψ1ψ2 + ψ∗

1ψ
∗
2) = 0,

(3.21)
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4. The interrelations between L and L̃

Our aim is to compare the two approaches and demonstrate that they are related by gauge transformation.
As a result the two hierarchies of NLEE: the one containing 2dTFT and the other containing the mKdV
are shown to be equivalent. We also demonstrate that the spectral problems of both Lax operators L

and L̃ can be reduced to the same Riemann–Hilbert problems. In addition the minimal sets of scattering
data for both Lax operators are equivalent.

Let us somewhat simplify the notations in the two Lax operators

Lψ ≡ ∂ψ

∂x
+ (Q(x, t)− λJ)ψ(x, t, λ) = 0,

L̃ψ̃ ≡ ∂ψ̃

∂x
+ (q⃗x − λJ (x, t))ψ̃(x, t, λ) = 0,

(4.1)

where J = diag (1, ω, ω2, . . . , ωr) and ω = exp(2πi/h) .

Following [7] in writing down J (x, t) we will use the Chevalie basis of A(1)
r algebra. It is given

by:
Eα0

= Er+1,1λ, Eαj
= Ej,j+1λ, j = 1, . . . , r

E−α0 = E1,r+1λ
−1, E−αj = Ej+1,jλ

−1, j = 1, . . . , r

Hα0
= Er+1,r+1 − E1,1, Hαj

= Ej,j − Ej+1,j+1, j = 1, . . . , r.

(4.2)

Thus we have the explicit matrix form of J (x, t) .

The next step is to analyze the direct and the inverse scattering problems for L and L̃ . These
problems have been solved for the operator L some time ago [3, 4, 21, 22, 24]. Important factor for it
was in the fact that J is constant and diagonal matrix.

As for the operator L̃ we first check the characteristic equation for J (x, t) with the result:

det(J (x, t)− z11) = zh − 1, h = r + 1. (4.3)

Therefore the eigenvalues of J (x, t) are ωp , p = 0, 1, . . . , h− 1 , i.e. they are independent of both t and
x . Thus there exists a matrix w(x, t) which diagonalize J (x, t) :

J (x, t) = w−1Jw(x, t), (4.4)

where J is the same as in the operator L . It is only natural to apply gauge transformation to L̃ with
w(x, t) . In addition we will need to multiply L̃ by i and have to replace λ by iλ . Thus it is easy to
find that these transformations map L̃ into L where Q(x, t) = −wxw

−1 +wq⃗xw
−1 . As a result we have

shown that the operator L̃ is gauge equivalent to L , so they have the same spectral properties.

5. The spectral properties of the Lax operators with Zh -reduction
5.1. The FAS of the Lax operators L

Here we just outline the procedure of constructing the FAS of L [3, 4, 21, 22, 24]. First we have to
determine the regions of analyticity. For smooth potentials U0(x) that fall off fast enough for x → ±∞
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these regions are the 2h sectors Ων separated by the rays lν on which Reλ(aj − ak) = 0 , where by aj

here and below we mean aj = −U1,jj = −ωj−1/2 . The rays lν are given by:

lν : arg(λ) =
π(ν − 1)

h
, ν = 1, . . . , 2h, (5.1)

and close angles equal to π/h . Here without restrictions we have put a = 1 ; indeed, we can always
change λ→ λ′ = aλ .

The next step is to construct the set of integral equations equivalent to (3.1) whose solution will
be analytic in Ων . To this end we associate with each sector Ων the relations (orderings) >

ν
and <

ν
by:

i>
ν
j

i<
ν
j

if Reλ(ai − aj) < 0 for λ ∈ Ων ,
Reλ(ai − aj) > 0 for λ ∈ Ων .

(5.2)

Then the solution of the system

ξνij(x, λ) = δij + i

∫ x

−∞
dye−λ(ai−aj)(x−y)

h∑
p=1

U0;ip(y)ξ
ν
pj(y, λ), i >

ν
j;

ξνij(x, λ) = i

∫ x

∞
dye−λ(ai−aj)(x−y)

h∑
p=1

U0;ip(y)ξ
ν
pj(y, λ), i <

ν
j;

(5.3)

will be the FAS of L in the sector Ων . The asymptotics of ξν(x, λ) and ξν−1(x, λ) along the ray lν can
be written in the form [10, 21]:

lim
x→−∞

e−λU1xξν(x, λei0)eλU1x = S+
ν (λ), λ ∈ lν ,

lim
x→−∞

e−λU1xξν−1(x, λe−i0)eλU1x = S−
ν (λ), λ ∈ lν ,

lim
x→∞

e−λU1xξν(x, λei0)eλU1x = T−
ν D

+
ν (λ), λ ∈ lν ,

lim
x→∞

e−λU1xξν−1(x, λe−i0)eλU1x = T+
ν D

−
ν (λ), λ ∈ lν ,

(5.4)

where the matrices S+
ν , T+

ν (resp. S−
ν , T−

ν ) are upper-triangular (resp. lower-triangular) with respect
to the ν -ordering. They provide the Gauss decomposition of the scattering matrix with respect to the
ν -ordering, i.e.:

Tν(λ) = T−
ν (λ)D+

ν (λ)Ŝ
+
ν (λ) = T+

ν (λ)D−
ν (λ)Ŝ

−
ν (λ), λ ∈ lν . (5.5)

More careful analysis shows [21] that in fact Tν(λ) belongs to a subgroup Gν of SL(N,C) . Indeed, with
each ray lν one can relate a subalgebra gν ⊂ sl(N,C) . Each such sl(2) -subalgebra can be specified by
a pair of indices (k, s) and is generated by:

h(k,s) = Ekk − Ess, e(k,s) = Eks, f (k,s) = Esk, k <
ν
s. (5.6)
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Then the scattering matrix Tν(λ) will be a product of mutually commuting matrices T (k,s)
ν of the form:

T (k,s)
ν = 11 + (a+ν;ks(λ)− 1)Ekk + (a−ν;ks(λ)− 1)Ess − b−ν;ks(λ)Eks + b+ν;ks(λ)Esk, (5.7)

where k <
ν
s , with only 4 nontrivial matrix elements, just like the ZS (or AKNS) system. The Zn -

symmetry imposes the following constraints on the FAS and on the scattering matrix and its factors:

C0ξ
ν(x, λω)C−1

0 = ξν−2(x, λ), C0Tν(λω)C
−1
0 = Tν−2(λ),

C0S
±
ν (λω)C−1

0 = S±
ν−2(λ), C0D

±
ν (λω)C

−1
0 = D±

ν−2(λ,
(5.8)

where the index ν − 2 should be taken modulo 2N . Consequently we can view as independent only the
data on two of the rays, e.g., on l1 and l2N ≡ l0 ; all the rest will be recovered using (5.8).

If in addition we impose the Z2 -symmetry (3.17a), then we will have also:

a) K−1
0 (ξν(x,−λ∗))†K0 = (ξN+1−ν(x, λ))−1,

K−1
0 (S±

ν (−λ∗))K0 = (S∓
N+1−ν(λ))

−1,

b) K−1
0 (ξν(x, λ∗))∗K0 = (ξν(x, λ))−1,

K−1
0 (S±

ν (λ∗))K0 = (S∓
N+1−ν(λ))

−1,

(5.9)

and analogous relations for T±
ν (λ) and D±

ν (λ) . One can prove also that D+
ν (λ) (resp. D−

ν (λ)) allows
analytic extension for λ ∈ Ων (resp. for λ ∈ Ων−1 . Another important fact is that D+

ν (λ) = D−
ν+1(λ)

for all λ ∈ Ων [21].

5.2. The inverse scattering problem and the Riemann–Hilbert problem
The next important step is the possibility to reduce the solution of the ISP for the generalized Zakharov–
Shabat system to a (local) RHP. More precisely, we have:

ξν(x, t, λ) = ξν−1(x, t, λ)Gν(x, t, λ), λ ∈ lν ,

Gν(x, t, λ) = eλU1x−λ2V2tG0,ν(λ)e
−λU1x+λ2V2t, G0,ν(λ) = Ŝ−

ν S
+
ν (λ)

∣∣∣
t=0

.
(5.10)

The collection of all relations (5.10) for ν = 1, 2, . . . , 2h together with

lim
λ→∞

ξν(x, t, λ) = 11, (5.11)

can be viewed as a local RHP posed on the collection of rays Σ ≡ {lν}2hν=1 with canonical normalization.
Rather straightforwardly we can prove that if ξν(x, λ) is a solution of the RHP (5.10), (5.11) then
χν(x, λ) = ξν(x, λ)e−λU1x is a FAS of L with potential

U0(x, t) = lim
λ→∞

λ
(
U1 − ξν(x, t, λ)U1ξ̂

ν(x, t, λ)
)
. (5.12)
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The analyticity properties of D±
k (λ) allow one to reconstruct them from the sewing function G(λ) (5.10)

and from the locations of their simple zeroes and poles through

ln Dk(λ) =
1

2πi

∫ ∞

−∞

dµ

µ− λ
ln µG0,k +

N∑
j=1

N−1∑
s=0

ln
λ− λ+j,s

λ− λ−j,s
, (5.13)

where µG0,k is the principal upper minor of G0(t, λ) of order k . The zeroes and poles λ±j,s of D are in
fact discrete eigenvalues of L , which due to the reductions come in multiplets:

a) λ+j,s = λ+j ω
s−1, λ−j,s = −(λ+j,s)

∗, λ+j ∈ Ω1,

b) λ+j,s = λ+j ω
s−1, λ−j,s = (λ+j,s)

∗, λ+j ∈ Ω1.
(5.14)

Consider first case a). For odd N and λ+j ∈ Ω1 it is easy to check that all eigenvalues are inside

sectors Ω2ν−1 with odd indices; if λ+j ∈ Ω0 then all eigenvalues are inside sectors Ω2ν with even indices.

Thus for each generic choice of λ+j we have a multiplet of 2N discrete eigenvalues. However, if we choose

arg λ+j = π/(2h) , then the set of λ−j,s coincides with the set of λ+j,s and we have smaller multiplets with
N discrete eigenvalues each. Thus one may conclude that for odd N the DNLS equations have two types
of one-soliton solutions corresponding to the two different types of multiplets. For even N the situation
is different. All multiplets containing λ+j have exactly 2N discrete eigenvalues, one in each of the 2N

sectors Ων . So for odd N only one type of one-soliton solutions exists.
In the case b) we will have multiplets of 2N eigenvalues, one for each of the sectors Ων both for

N even and N odd.
More detailed analysis shows that D+

k (λ) (resp. D−
k (λ)) are related to the principle upper (resp.

lower) minors of order k of the scattering matrix T (t, λ) by:

Dk(λ) =

{
ln m+

k (λ), λ ∈ C+

−ln m−
n−k(λ), λ ∈ C−.

(5.15)

One can view Dk(λ) as generating functionals of the conserved quantities for the related NLEE.
Using the fact that ln m+

ν,k(λ) allows asymptotic expansions

ln m+
ν,k(λ) =

∞∑
s=1

M
(s)
ν,kλ

−s. (5.16)

We are able to calculate the local integrals of motion for the DNLS equations. We illustrate it by the
two first integrals of motion of the Zn -NLS equation:

M
(1)
1,1 =

1

2ω

∫ ∞

−∞
dx

n∑
p=1

ψpψn−p(x, t), (5.17)

M
(2)
1,1 =

1

2ω2

∫ ∞

−∞
dx


n∑

p=1

i cotan
(πp
n

)(dψp

dx
ψn−p − ψp

dψn−p

dx

)
− 2

3

∑
p+k+l=n

ψpψkψl(x, t)

 . (5.18)
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5.3. The minimal sets of scattering data
As a consequence of the above considerations we conclude that the following Lemma holds true:

Lemma 5.1 Let us assume that ξν(x, t, λ) is a regular solution of the RHP (5.10). Then Each of the
minimal sets of scattering data:

T1 = {S+
ν (λ), S−

ν (λ), ν = 0, 1},

T2 = {T+
ν (λ), T−

ν (λ), ν = 0, 1},
(5.19)

determines uniquely: i) the sewing functions Gν(x, t, λ) of the RHP; ii) the solution of the RHP; and
iii) the potential of the Lax operator U0(x, t) .

Proof i) Given T1 (respectively T2 ) and using (5.8) we recover all functions S±
ν (λ, t) (respectively

T±
ν (λ, t)) for all ν = 0, . . . , 2h− 1 . It remains to use (5.9) to recover all sewing functions Gν(x, t, λ) .

ii) It is well known that the RHP has unique regular solution.
iii) The potential of the Lax operator is determined from Eq. (5.12). 2

6. Conclusion
We outlined the inverse scattering method for three types of NLEE related to the Kac-Moody algebras

of the class A(1)
r . Some of the above results have also been extended to other Kac-Moody algebras, such

as D(s)
4 , s = 1, 2, 3 and A

(2)
5 [12, 14–19, 21, 22]. For many others there are still open problems.

The extension of the dressing Zakharov–Shabat method [37] to the above classes of Lax operators
is also an open problem. One of the difficulties is due to the fact that the Zh reductions requires dressing
factors with 2h pole singularities. This makes the relevant linear algebraic equations rather involved.

The ideas of [1, 13, 20] about the interpretation of the inverse scattering method as a generalized
Fourier transform hold true also for the Zh reduces Lax operators [22–24, 31, 32]. This may allow one
to derive the action-angle variables for these classes of NLEE.

Another important aspect of the theory concerns the geometric interpretation of the recursion
operators and the relevant hierarchies of Hamiltonian structures [20, 33].
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