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Abstract: In the spirit of Rosset’s proof of the Amitsur-Levitzki theorem, we show how the standard identiy (for
matrices over a commutative base ring) and the addition of external Grassmann variables can be used to derive a certain
Z2 -graded polynomial identity of Mn(E) .
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1. Introduction
An algebra R means a not necessarily commutative unitary algebra over a commutative ring C (or over a field
K ), and the notation for the full n× n matrix algebra over R is Mn(R) .

In case of char(K) = 0 , Kemer’s pioneering work (see [9], [10]) on the T -ideals of associative algebras
(leading to the solution of the Specht problem) revealed the importance of the identities satisfied by Mn(E)

and Mn,d(E) , where

E = K ⟨v1, v2, ..., vi, ... | vivj + vjvi = 0 for all 1 ≤ i ≤ j⟩ = E0 ⊕ E1 (1.1)

is the naturally Z2 -graded Grassmann (exterior) algebra generated by the infinite sequence of anticommutative
indeterminates (vi)i≥1 . The K -subspace E0 generated by 1 and the monomials in the vi ’s of even length and
E1 is the K -subspace generated by the monomials in the vi ’s of odd length. We note that E0 is a commutative
subalgebra of E and E is Lie nilpotent of index 2 .

Let K ⟨x1, x2, . . . , xi, . . .⟩ denote the free associative K -algebra generated by the infinite sequence
x1, x2, . . . , xi, . . . of noncommuting indeterminates. The prime T -ideals of this K -algebra are exactly the
T -ideals of the identities satisfied by Mn(K) for n ≥ 1 (see [2]). The T -prime (or verbally prime) T -ideals are
the prime T -ideals plus the T -ideals of the identities of Mn(E) for n ≥ 1 and of Mn,d(E) for 1 ≤ d ≤ n− 1 ,
where Mn,d(E) is the K -subalgebra of Mn(E) consisting of the so-called (n, d) -supermatrices with two diago-
nal E0 blocks of sizes d× d and (n− d)× (n− d) and with two E1 blocks of sizes d× (n− d) and (n− d)× d .
Another remarkable result is that any T -ideal contains the T -ideal of the identities satisfied by Mn(E) for
sufficiently large n (see p. 20 in [10]).
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The above mentioned three classes of T -prime (verbally prime) PI -algebras serve as basic building blocks
in Kemer’s theory, where Z2 -graded identities also play an important role. Since the appearance of [9] and
[10] considerable efforts have been concentrated on the study of the various algebraic properties of Mn(E) and
Mn,d(E) , see [1, 4–8, 11, 14–16].

The aim of the present note is to present a certain Z2 -graded polynomial identity of the Z2 -graded full
matrix algebra Mn(E) = Mn(E0) ⊕Mn(E1) . There is a possibility to derive the mentioned identity by using
the Amitsur-Levitzki standard identity (see [3])

S2n(x1, x2, . . . , x2n) =
∑

π∈Sym{1,2,...,2n}

sgn(π)xπ(1) · · ·xπ(2n) = 0 (1.2)

of degree 2n (for n × n matrices over a commutative base ring). In this case, the addition of external
Grassmann variables to E is essential. The ingenious idea of using (additional) Grassmann variables in an
enviroment without Grassmann algebras first appeared in Rosset’s short proof of the Amitsur-Levitzki theorem
(see [12]). The use of a single additional Grassmann variable (out of E ) in the study of Mn(E) appears in a
certain companion matrix construction (see [13]) providing a Cayley-Hamilton identity for a matrix A ∈ Mn(E)

of degree n2 (an entirely different treatment in [14] provided a similar CH identity of the same degree). Our
present work can be considered as a variation on Rosset’s original theme. One of the referees caused a surprise
by providing a different approach to derive the same Z2 -graded polynomial identity of Mn(E) based on the
use of the ∗ -transform of a Z2 -graded polynomial and the so-called Grassmann envelope. The authors decided
to keep their original proof and to present the mentioned short proof of the referee at the end of the paper.

2. A Z2 -graded identity of Mn(E)

The Grassmann algebra

E = K ⟨v1, v2, ..., vi, ... | vivj + vjvi = 0 for all 1 ≤ i ≤ j⟩ = K ⟨V ⟩ (2.1)

generated by (the countably) infinite set V = {v1, v2, . . . , vt, . . .} of anticommuting indeterminates can naturally
be extended as

F = K ⟨V ∪W ⟩ = K ⟨v1, v2, . . . , vt, . . . , w1, w2, . . . , wt, . . .⟩ (2.2)

by using a bigger set V ∪W of anticommuting generators, where

W = {w1, w2, . . . , wt, . . .} and V ∩W = ∅. (2.3)

Now we have vivj + vjvi = 0 , wiwj + wjwi = 0 for all 1 ≤ i ≤ j and viwj + wjvi = 0 for all 1 ≤ i, j .
The Grassmann algebra

G = K ⟨w1, w2, ..., wi, ... | wiwj + wjwi = 0 for all 1 ≤ i ≤ j⟩ = K ⟨W ⟩ (2.4)

generated by W is also a sub K -algebra of F . Since the cardinalities of V , W and V ∪W are all equal
to ℵ0 , the K -algebras E , G and F are isomorphic.

A Z2 -graded K -algebra R is a pair (R0, R1) , where R0 and R1 are K -subspaces of R such that
R = R0⊕R1 is a direct sum and RiRj ⊆ Ri+j for all i, j ∈ {0, 1} , where i+j is taken modulo 2 . A Z2 -graded
identity of R = R0 ⊕R1 is of the form

h(x1, x2, . . . , xm, y1, y2, . . . , yk) = 0, (2.5)
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where h(x1, x2, . . . , xm, y1, y2, . . . , yk) is in the free polynomial K -algebra generated by the noncommut-
ing indeterminates x1, x2, . . . , xm, y1, y2, . . . , yk . We only require that

h(r1, r2, . . . , rm, r′1, r
′
2, . . . , r

′
k) = 0 (2.6)

for all substitutions such that r1, r2, . . . , rm ∈ R0 and r′1, r
′
2, . . . , r

′
k ∈ R1 .

Thus,{x1, x2, . . . , xm} and {y1, y2, . . . , yk} are called the sets of even and odd variables (indeterminates)
in h , respectively.

For a vector −→
i = (i1, i2, . . . , ik) with strictly increasing integer coordinates 1 ≤ i1 < i2 < · · · < ik ≤ 2n

take
Π(

−→
i ) = {π ∈ Sym{1, 2, . . . , 2n} | π(i1), π(i2), . . . , π(ik) ∈ {1, 2, . . . , k}}

and consider the complementary vector i−→ = (j1, j2, . . . , j2n−k) with {j1, j2, . . . , j2n−k} = {1, 2, . . . , 2n} ∖

{i1, i2, . . . , ik} and 1 ≤ j1 < j2 < · · · < j2n−k ≤ 2n . Now

τ(
−→
i ) =

(
1
i1

2
i2

· · · k
ik

k + 1
j1

k + 2
j2

· · · 2n
j2n−k

)
(2.7)

defines a permutation in Sym{1, 2, . . . , 2n} . We need two more permutations

π(
−→
i ) ∈ Sym{1, 2, . . . , k} and π( i−→) ∈ Sym{k + 1, k + 2, . . . , 2n} (2.8)

which are determined by π ∈ Π(
−→
i ) as follows:

π(
−→
i ) =

(
1

π(i1)
2

π(i2)
· · · k

π(ik)

)
(2.9)

and

π( i−→) =

(
k + 1
π(j1)

k + 2
π(j2)

· · · 2n
π(j2n−k)

)
. (2.10)

For an integer 1 ≤ k ≤ 2n define a Z2 -graded polynomial of degree 2n as follows:

fk(X,Y ) =
∑

sgn(τ(
−→
i ))

1≤i1<i2<···<ik≤2n

( ∑
π∈Π(

−→
i )

sgn(π( i−→))xπ(1) · · ·xπ(i1−1)yπ(i1)xπ(i1+1) · · ·

· · ·xπ(i2−1)yπ(i2)xπ(i2+1) · · ·xπ(ik−1)yπ(ik)xπ(ik+1) · · ·xπ(2n)

)
,

(2.11)

where
X = {xk+1, xk+2, . . . , x2n} and Y = {y1, y2, . . . , yk}

are the sets of even and odd indeterminates (variables).

Theorem 2.1 If 1 ≤ k ≤ 2n , then fk(X,Y ) = 0 is a Z2 -graded polynomial identity of the Z2 -graded full
matrix algebra Mn(E) = Mn(E0)⊕Mn(E1) .
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Proof ( First proof of 2.1). First notice that for a permutation π ∈ Π(
−→
i ) we have π(

−→
i )⊔π( i−→) = π◦τ(−→i ) ,

where
π(
−→
i ) ⊔ π( i−→) ∈ Sym{1, 2, . . . , k, k + 1, . . . , 2n} is the ”disjoint union” of π(

−→
i ) and π( i−→) . Clearly, the

number of even cycles of π(
−→
i ) ⊔ π( i−→) is the sum of the numbers of the even cycles in π(

−→
i ) and in π( i−→) .

It follows that

sgn(π(
−→
i ))sgn(π( i−→)) = sgn(π(

−→
i ) ⊔ π( i−→)) = sgn(π)sgn(τ(

−→
i )), (2.12)

whence sgn(π)sgn(π(
−→
i )) = sgn(τ(

−→
i ))sgn(π( i−→)) can be derived. In order to show that fk(X,Y ) = 0 is a

Z2 -graded polynomial identity on Mn(E) = Mn(E0)⊕Mn(E1) take the substitutions

xk+1 = Ak+1, xk+2 = Ak+2, . . . , x2n = A2n

and
y1 = B1, y2 = B2, . . . , yk = Bk,

where Ak+1, Ak+2, . . . , A2n ∈ Mn(E0) and B1, B2, . . . , Bk ∈ Mn(E1) and consider the ”companion” matrices

w1B1, w2B2, . . . , wkBk ∈ Mn(F0)

(w1, w2, . . . , wk are generators in G) over the even part F0 of the extended Grassmann algebra F = K ⟨V ∪W ⟩ .
In view of Mn(E0) ⊆ Mn(F0) , the application of the Amitsur-Levitzki theorem on Mn(F0) yields that

S2n(w1B1, . . . , wkBk, Ak+1, Ak+2, . . . , A2n) = 0. (2.13)

Any summand in
S2n(w1B1, . . . , wkBk, Ak+1, Ak+2, . . . , A2n)

is a signed product of the terms w1B1, . . . , wkBk, Ak+1, Ak+2, . . . , A2n in a certain order and appears as

sgn(π)Aπ(1) · · ·Aπ(i1−1)wπ(i1)Bπ(i1)Aπ(i1+1) · · ·Aπ(i2−1)wπ(i2)Bπ(i2)Aπ(i2+1) · · ·

· · ·Aπ(ik−1)wπ(ik)Bπ(ik)Aπ(ik+1) · · ·Aπ(2n) =

sgn(π)(−1)1+2+···+(k−1)wπ(i1)wπ(i2) · · ·wπ(ik)Aπ(1) · · ·Aπ(i1−1)Bπ(i1)Aπ(i1+1) · · ·

· · ·Aπ(i2−1)Bπ(i2)Aπ(i2+1) · · ·Aπ(ik−1)Bπ(ik)Aπ(ik+1) · · ·Aπ(2n) =

sgn(π)(−1)1+2+···+(k−1)sgn(π(
−→
i ))w1w2 · · ·wkAπ(1) · · ·Aπ(i1−1)Bπ(i1)Aπ(i1+1) · · ·

· · ·Aπ(i2−1)Bπ(i2)Aπ(i2+1) · · ·Aπ(ik−1)Bπ(ik)Aπ(ik+1) · · ·Aπ(2n),

(2.14)

where 1 ≤ i1 < i2 < · · · < ik ≤ 2n and π ∈ Π(
−→
i ) are uniquely determined. In the above calculations we used

Atwr = wrAt, Bswr = −wrBs, 1 ≤ r, s ≤ k < t ≤ 2n,

and
wπ(i1)wπ(i2) · · ·wπ(ik) = sgn(π(

−→
i ))w1w2 · · ·wk.
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Thus, we can write that

S2n(w1B1, . . . , wkBk, Ak+1, Ak+2, . . . , A2n) =

∑
1≤i1<i2<···<ik≤2n

(∑
π∈Π(

−→
i )

sgn(π)Aπ(1) · · ·Aπ(i1−1)wπ(i1)Bπ(i1)Aπ(i1+1) · · ·

· · ·Aπ(i2−1)wπ(i2)Bπ(i2)Aπ(i2+1) · · ·Aπ(ik−1)wπ(ik)Bπ(ik)Aπ(ik+1) · · ·Aπ(2n)

)
=

(−1)1+2+···+(k−1)w1w2 · · ·wk

∑
1≤i1<i2<···<ik≤2n

sgn(τ(
−→
i ))·

( ∑
π∈Π(

−→
i )

sgn(π( i−→))Aπ(1)· · ·Aπ(i1−1)Bπ(i1)Aπ(i1+1) · · ·

Aπ(i2−1)Bπ(i2)Aπ(i2+1) · · ·Aπ(ik−1)Bπ(ik)Aπ(ik+1)· · ·Aπ(2n)

)
=

(−1)1+2+···+(k−1)w1w2 · · ·wkfk(Ak+1, Ak+2, . . . , A2n, B1, . . . , Bk),

(2.15)

whence fk(Ak+1, Ak+2, . . . , A2n, B1, . . . , Bk) = 0 follows. 2

Remark 2.2 The case k = 2n in the above Theorem 2.1 gives Rosset’s key observation that

f2n(Y ) =
∑

π∈Sym{1,2,...,2n}

yπ(1) · · · yπ(2n) = 0 (2.16)

(the multilinearization of y2n = 0) is a polynomial identity of the odd component Mn(E1) . The case k = 1 has
already appeared in the proof of Theorem 2.4 of [4].

A Z2 -graded polynomial h(x1, x2, . . . , xm, y1, y2, . . . , yk) which is linear in each odd variable yi can be
written as

h(x1, x2,. . ., xm, y1, y2,. . ., yk)=
∑
u

∑
σ∈Sym{1,2,...,k}

aσ,uu1yσ(1)u2yσ(2)· · ·ukyσ(k)uk+1, (2.17)

where aσ,u ∈ K and the ui ’s are words, possibly empty, in the even variables xj , 1 ≤ j ≤ m . The ∗ -transform
of h is defined as

h∗(x1, x2,. . ., xm, y1, y2,. . ., yk)=
∑
u

∑
σ∈Sym{1,2,...,k}

sgn(σ)aσ,uu1yσ(1)u2yσ(2)· · ·ukyσ(k)uk+1. (2.18)

Lemma 19.4.10 (in [1]) asserts that h = 0 is a Z2 -graded identity of the Z2 -graded K -algebra R = R0 ⊕R1 if
and only if h∗ = 0 is a Z2 -graded identity of the Grassmann envelope G(R) = (R0⊗E0)⊕(R1⊗E1) = (R⊗E)0

(the even part of R⊗ E ).

Proof (Second proof of 2.1). Take R = Mn(K ⊕ cK) with R0 = Mn(K) and R1 = cMn(K) , where
K⊕ cK ∼= K[c]/(c2−1) is the commutative group algebra of the two element group {1, c} with c2 = 1 . Clearly
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Mn(E) can be naturally identified with the Grassmann envelope G(R) . Since the Amitsur-Levitzki theorem
trivially ensures that

f(xk+1, xk+2, . . . , x2n, y1, y2, . . . , yk) = S2n(y1, y2, . . . , yk, xk+1, xk+2, . . . , x2n) = 0 (2.19)

is a Z2 -graded identity of R = R0⊕R1 , the application of the above Lemma 19.4.10 gives that Mn(E) satisfies
the Z2 -graded identity f∗(xk+1, xk+2, . . . , x2n, y1, y2, . . . , yk) = 0 . In view of

f = S2n(y1, y2, . . . , yk, xk+1, xk+2, . . . , x2n) =

∑
1≤i1<i2<···<ik≤2n

( ∑
π∈Π(

−→
i )

sgn(π)xπ(1) · · ·xπ(i1−1)yπ(−→i )(1)
xπ(i1+1) · · ·

· · ·xπ(i2−1)yπ(−→i )(2)
xπ(i2+1) · · ·xπ(ik−1)yπ(−→i )(k)

xπ(ik+1) · · ·xπ(2n)

)
,

(2.20)

we obtain that

f∗ =
∑

1≤i1<i2<···<ik≤2n

( ∑
π∈Π(

−→
i )

sgn(π(
−→
i ))sgn(π)xπ(1) · · ·xπ(i1−1)yπ(−→i )(1)

xπ(i1+1) · · ·

· · ·xπ(i2−1)yπ(−→i )(2)
xπ(i2+1) · · ·xπ(ik−1)yπ(−→i )(k)

xπ(ik+1) · · ·xπ(2n)

)
.

(2.21)

Now f∗=fk(X,Y ) is a consequence of sgn(π(
−→
i ))sgn(π)=sgn(τ(

−→
i ))sgn(π( i−→)) . 2
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