тӥвітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2022) 46: 1871 - 1885
© TÜBİTAK

Polynomial identities in matrix algebras with pseudoinvolution

Antonio IOPPOLO* ${ }^{\text {(ㅁ) }}$
Department of Mathematics, University of Milano Bicocca, Milan, Italy

Received: 06.12.2021 • Accepted/Published Online: 28.01.2022 • Final Version: 20.06.2022

Dedicated to our dear Professor Vesselin Drensky on the occasion of his seventieth anniversary.
Abstract: Let F be an algebraically closed field of characteristic zero. In this paper we deal with matrix superalgebras (i.e. algebras graded by \mathbb{Z}_{2}, the cyclic group of order 2) endowed with a pseudoinvolution. The first goal is to present the classification of the pseudoinvolutions that it is possible to define, up to equivalence, in the full matrix algebra $M_{n}(F)$ of $n \times n$ matrices and on its subalgebra $U T_{n}(F)$ of upper-triangular matrices. Along the way we shall give the generators of the T-ideal of identities for the algebras $M_{2}(F), U T_{2}(F)$ and $U T_{3}(F)$, endowed with all possible inequivalent pseudoinvolutions.

Key words: Polynomial identities, matrix algebras, superalgebras, pseudoinvolutions.

1. Introduction

Let F be an algebraically closed fixed field of characteristic zero. Given a countable set X of variables x_{1}, x_{2}, \ldots, the free associative algebra $F\langle X\rangle$ on X over F is the algebra of all polynomials in the variables from X and with coefficients in the field F. An F-algebra A is said to be a PI-algebra if it satisfies at least one non-trivial polynomial identity. In other words, there exists at least one non-zero polynomial $f \in F\langle X\rangle$ which vanishes under all substitutions of its variables in the elements of A. The set of all the polynomial identities satisfied by A is denoted by $\operatorname{Id}(A)$ and it is a T-ideal of the free algebra, i.e., an ideal invariant under all endomorphisms of $F\langle X\rangle$.

In this paper, in the context of the theory of polynomial identities (PI-theory for short), we shall focus our attention on the so-called superalgebras with pseudoinvolution. A superalgebra is simply an algebra graded by \mathbb{Z}_{2}, the cyclic group of order two. This means that A can be decomposed in the direct sum $A=A_{0} \oplus A_{1}$, where the A_{i} 's are the homogeneous components of A and they satisfy the following properties: $A_{0} A_{0}+A_{1} A_{1} \subseteq A_{0}$ and $A_{0} A_{1}+A_{1} A_{0} \subseteq A_{1}$. This kind of algebras first appeared in physics in order to have an algebraic structure representing the behaviour of the subatomic particles bosons $\left(A_{0}\right)$ and fermions $\left(A_{1}\right)$. The importance of superalgebras in PI-theory was highlighted by a famous theorem of Kemer ([9]). He showed that every PIalgebra is equivalent to (i.e., it has the same T-ideal of identities as) the Grassmann envelope of a finite dimensional superalgebra.

Now, a pseudoinvolution on a superalgebra $A=A_{0} \oplus A_{1}$, is a graded linear map $*: A \rightarrow A$ such that $a^{* *}=(-1)^{|a|} a$ and $(a b)^{*}=(-1)^{|a||b|} b^{*} a^{*}$, for any homogeneous elements $a, b \in A_{0} \cup A_{1}$. Here $|c|$ denotes

[^0]
IOPPOLO/Turk J Math

the homogeneous degree of $c \in A_{0} \cup A_{1}$. The existence of pseudoinvolutions of the first kind was proved in 2008 by Jaber (see [8]). Two years later, Martinez and Zelmanov used pseudoinvolutions in order to completely classify the irreducible bimodules over simple finite dimensional Jordan superalgebras (see [12]). In the PItheory context, several papers concerning superalgebras with pseudoinvolution have been published recently ([5-7]).

Now it is time to state more clearly the goals of this paper. Let $M_{n}(F)$ be the algebra of $n \times n$ matrices over F. In 1950, a celebrated theorem of Amitsur and Levitzki ([1]) showed that the standard polynomial $S t_{2 n}$ is an identity for the algebra $M_{n}(F)$ (actually, it is not hard to prove that $S t_{2 n}$ is, up to a scalar, the only identity of minimal degree of $M_{n}(F)$). This theorem was the beginning of a new approach to PI-theory, the main objective being the description of the polynomial identities satisfied by a given algebra. The purpose of this paper goes in this direction.

In characteristic zero, it is well known that, up to isomorphism, the matrix algebra $M_{n}(F)$ can be endowed with only one non trivial \mathbb{Z}_{2}-grading. More precisely, if we write $n=k+h$, then $M_{n}(F)$ has the following decomposition as superalgebra:

$$
M_{n}(F)=\left\{\left.\left(\begin{array}{cc}
X & 0 \\
0 & T
\end{array}\right) \right\rvert\, X \in M_{k}(F), T \in M_{h}(F)\right\} \oplus\left\{\left.\left(\begin{array}{cc}
0 & Y \\
Z & 0
\end{array}\right) \right\rvert\, Y \in M_{k \times h}(F), Z \in M_{h \times k}(F)\right\}
$$

Such a superalgebra is denoted by $M_{k, h}(F)$. In [8], Jaber proved that, up to equivalence, there are only two classes of inequivalent pseudoinvolutions on this superalgebra: the pseudotranspose $p t$ and the pseudosymplectic $p s$ (we shall define them in full detail later on). The first goal of this paper is to present the generators of the ideal of identities for the superalgebra $M_{1,1}(F)$ endowed with the pseudotranspose and the pseudosymplectic pseudoinvolution.

The last part of the paper is devoted to the study of the algebra $U T_{n}(F)$ of $n \times n$ upper-triangular matrices. If $n=2$, a basis of the identities of such an algebra was found by Malcev in 1971 (see [11]) whereas a solution for the general problem was given in 2010 by Latyshev ([10]). Now let us consider when the algebra $U T_{n}(F)$ has a structure of superalgebra. In [14], the authors completely characterized all the \mathbb{Z}_{2}-grading on this algebra by showing that, up to isomorphism, they are just the elementary ones. By taking into account these results and according to the classification of the involutions on $U T_{n}(F)$ given by Di Vincenzo, Koshlukov and La Scala in 2006, in 2021 the author completely classified the pseudoinvolutions on $U T_{n}(F)$ (see [4]). In the last sections of the paper we shall recall these results and, along the way, we shall give the generators of the T-ideal of identities of the algebras $U T_{2}(F)$ and $U T_{3}(F)$, endowed with all possible inequivalent pseudoinvolutions.

2. Preliminaries

Throughout this paper F will denote an algebraically closed field of characteristic zero and $A=A_{0} \oplus A_{1}$ an associative superalgebra over F, i.e., an algebra graded by \mathbb{Z}_{2}, the cyclic group of order two. The elements of A_{0} and A_{1} are called homogeneous of degree zero (or even elements) and of degree one (or odd elements), respectively.

Let now consider a countable set of variables $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Write $X=Y \cup Z$ as the disjoint union of two subsets, requiring that the variables of Y are of even homogeneous degree and the variables of Z are of odd homogeneous degree. If we denote by \mathcal{F}_{0} the subspace of $F\langle Y \cup Z\rangle$ spanned by all monomials in the variables of $Y \cup Z$ having an even number of variables of Z and by \mathcal{F}_{1} the subspace spanned by all monomials

IOPPOLO/Turk J Math

having an odd number of variables of Z, then it is clear that $F\langle Y \cup Z\rangle=\mathcal{F}_{0} \oplus \mathcal{F}_{1}$ is a \mathbb{Z}_{2}-grading. Thus we can refer to $F\langle Y \cup Z\rangle$ as the free associative superalgebra.

Now suppose that the superalgebra A is endowed with a pseudoinvolution *. Recall that a pseudoinvolution on A is a graded linear map $*: A \longrightarrow A$ such that $a^{* *}=(-1)^{|a|} a$ and $(a b)^{*}=(-1)^{|a||b|} b^{*} a^{*}$, for any homogeneous elements $a, b \in A_{0} \cup A_{1}$. Here $|c|$ denotes the homogeneous degree of $c \in A_{0} \cup A_{1}$.

Notice that, if $a \in A_{1}$, then $a^{* *}=-a$ and so there are no symmetric or skew-symmetric elements of homogeneous degree 1 . Moreover, the hypothesis that F is an algebraically closed field ensure us the existence of an element i such that $i^{2}=-1$. Furthermore, since char $F=0$, we can write

$$
A=A_{0}^{+} \oplus A_{0}^{-} \oplus A_{1}^{i} \oplus A_{1}^{-i},
$$

where $A_{0}^{+}=\left\{a \in A_{0} \mid a^{*}=a\right\}$ and $A_{0}^{-}=\left\{a \in A_{0} \mid a^{*}=-a\right\}$ denote the sets of symmetric and skew elements of A_{0} and $A_{1}^{i}=\left\{a \in A_{1} \mid a^{*}=i a\right\}$ and $A_{1}^{-i}=\left\{a \in A_{1} \mid a^{*}=-i a\right\}$ denote the sets of i-symmetric and i-skew elements of A_{1}, respectively.

We shall write $F\langle Y \cup Z, *\rangle$ for the free superalgebra with pseudoinvolution on the countable set $Y \cup Z$ over F. It is useful to regard $F\langle Y \cup Z, *\rangle$ as generated by (even) symmetric and skew variables and by (odd) i-symmetric and i-skew variables: if for $j=1,2, \ldots$, we let $y_{j}^{+}=y_{j}+y_{j}^{*}, y_{j}^{-}=y_{j}-y_{j}^{*}, z_{j}^{i}=z_{j}-i z_{j}^{*}$ and $z_{j}^{-i}=z_{j}+i z_{j}^{*}$, thus

$$
F\langle Y \cup Z, *\rangle=F\left\langle y_{1}^{+}, y_{1}^{-}, z_{1}^{i}, z_{1}^{-i}, y_{2}^{+}, y_{2}^{-}, z_{2}^{i}, z_{2}^{-i}, \ldots\right\rangle .
$$

A polynomial $f\left(y_{1}^{+}, \ldots, y_{m}^{+}, y_{1}^{-}, \ldots, y_{n}^{-}, z_{1}^{i}, \ldots, z_{r}^{i}, z_{1}^{-i}, \ldots, z_{s}^{-i}\right) \in F\langle Y \cup Z, *\rangle$ is a $*$-polynomial identity of A (or simply a $*$-identity), and we write $f \equiv 0$, if for all $u_{1}^{+}, \ldots, u_{m}^{+} \in A_{0}^{+}, u_{1}^{-}, \ldots, u_{n}^{-} \in A_{0}^{-}, v_{1}^{i}, \ldots, v_{r}^{i} \in A_{1}^{i}$ and $v_{1}^{-i}, \ldots, v_{s}^{-i} \in A_{1}^{-i}$, we get

$$
f\left(u_{1}^{+}, \ldots, u_{m}^{+}, u_{1}^{-}, \ldots, u_{n}^{-}, v_{1}^{i}, \ldots, v_{r}^{i}, v_{1}^{-i}, \ldots, v_{s}^{-i}\right)=0 .
$$

We denote by $\operatorname{Id}^{*}(A)=\{f \in F\langle Y \cup Z, *\rangle \mid f \equiv 0$ on $A\}$ the T_{2}^{*}-ideal of $*$-identities of A, i.e. an ideal of $F\langle Y \cup Z, *\rangle$ invariant under all graded endomorphisms of $F\langle Y \cup Z\rangle$ commuting with the pseudoinvolution *. Given polynomials $f_{1}, \ldots, f_{n} \in F\langle Y \cup Z, *\rangle$ we shall denote by $\left\langle f_{1}, \ldots, f_{n}\right\rangle_{T_{2}^{*}}$ the T_{2}^{*}-ideal generated by f_{1}, \ldots, f_{n}. Moreover, in order to simplify the notation, we shall denote by y any even variable, by z any odd variable and by x an arbitrary variable.

As in the ordinary case, in characteristic zero, every $*$-identity is equivalent to a system of multilinear *-identities. Hence, in order to study $\operatorname{Id}^{*}(A)$, one can define

$$
P_{n}^{*}=\operatorname{span}_{F}\left\{w_{\sigma(1)} \cdots w_{\sigma(n)} \mid \sigma \in S_{n}, w_{j}=y_{j}^{+} \text {or } w_{j}=y_{j}^{-} \text {or } w_{j}=z_{j}^{i} \text { or } w_{j}=z_{j}^{-i}, j=1, \ldots, n\right\}
$$

as the space of multilinear polynomials of degree n in the variables $y_{1}^{+}, y_{1}^{-}, z_{1}^{i}, z_{1}^{-i}, \ldots, y_{n}^{+}, y_{n}^{-}, z_{n}^{i}, z_{n}^{-i}$ and then analyze $P_{n}^{*} \cap \operatorname{Id}^{*}(A)$, for all $n \geq 1$. The non-negative integer

$$
c_{n}^{*}(A)=\operatorname{dim}_{F} \frac{P_{n}^{*}}{P_{n}^{*} \cap \operatorname{Id}^{*}(A)}, n \geq 1,
$$

is called the n-th $*$-codimension of A.

IOPPOLO/Turk J Math

Let $n \geq 1$ and write $n=n_{1}+\cdots+n_{4}$ as a sum of four non-negative integers. We denote by $P_{n_{1}, \ldots, n_{4}} \subseteq P_{n}^{*}$ the vector space of multilinear polynomials in which the first n_{1} variables are symmetric, the next n_{2} variables are skew, the next n_{3} variables are i-symmetric and the last n_{4} variables are i-skew. Now if we set $c_{n_{1}, \ldots, n_{4}}(A)=\operatorname{dim}_{F} \frac{P_{n_{1}, \ldots, n_{4}}}{P_{n_{1}, \ldots, n_{4}} \cap \operatorname{Id}^{*}(A)}$ then

$$
\begin{equation*}
c_{n}^{*}(A)=\sum_{n_{1}+\cdots+n_{4}=n}\binom{n}{n_{1}, \ldots, n_{4}} c_{n_{1}, \ldots, n_{4}}(A) \tag{2.1}
\end{equation*}
$$

where $\binom{n}{n_{1}, \ldots, n_{4}}=\frac{n!}{n_{1}!\cdots n_{4}!}$ stands for the multinomial coefficient. Hence the growth of $c_{n}^{*}(A)$ is related to the growth of multinomial coefficients and of $c_{n_{1}, \ldots, n_{4}}(A)$, for any $n=n_{1}+\cdots+n_{4}$.

Lemma 2.1 Let A be a superalgebra with pseudoinvolution satisfying an ordinary identity. Then, for $n \geq 1$,

$$
c_{n}(A) \leq c_{n}^{*}(A) \leq 4^{n} c_{n}(A)
$$

Since the ordinary codimension sequence of a PI-algebra is exponentially bounded (see [13]), we get the following. Recall that those algebras satisfying at least one non-trivial ordinary identity are called PI-algebras.

Corollary 2.2 If A is a PI-superalgebra with pseudoinvolution, then $c_{n}^{*}(A), n=1,2, \ldots$, is exponentially bounded.

3. Full matrix algebras and pseudoinvolutions

In this section we focus our attention on matrix superalgebras. Let us consider the full matrix algebra $M_{n}(F)$ of $n \times n$ matrices. Since we are dealing with a field F of characteristic zero, it is well known that, up to isomorphism, there is only one non trivial \mathbb{Z}_{2}-grading on $M_{n}(F)$. More precisely, if $n=k+h$, then $A=M_{n}(F)$ becomes a superalgebra $A=A_{0} \oplus A_{1}$, where the homogeneous components are

$$
A_{0}=\left\{\left.\left(\begin{array}{cc}
X & 0 \\
0 & T
\end{array}\right) \right\rvert\, X \in M_{k}(F), T \in M_{h}(F)\right\} \quad \text { and } \quad A_{1}=\left\{\left.\left(\begin{array}{cc}
0 & Y \\
Z & 0
\end{array}\right) \right\rvert\, Y \in M_{k \times h}(F), Z \in M_{h \times k}(F)\right\}
$$

Such a superalgebra is denoted by $M_{k, h}(F)$.
In [8, Theorems 4.3 and 4.4], Jaber proved that, up to equivalence, there are only two classes of inequivalent pseudoinvolutions on $M_{k, h}(F)$. Recall that if A and B are two algebras with pseudoinvolutions * and \star respectively, then $(A, *)$ and (B, \star) are isomorphic, as superalgebras with pseudoinvolution, if there exists an isomorphism of superalgebras $\psi: A \rightarrow B$ such that $\psi\left(x^{*}\right)=\psi(x)^{\star}$, for all $x \in A$.

For all $k \geq h \geq 0$, the superalgebra $M_{k, h}(F)$ can be endowed with the pseudotranspose pseudoinvolution $p t$ defined by:

$$
\left(\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right)^{p t}=\left(\begin{array}{cc}
X^{t} & Z^{t} \\
-Y^{t} & T^{t}
\end{array}\right)
$$

where t denotes the usual transpose involution.
If $h=k$, the superalgebra $M_{k, k}(F)$ can be also endowed with the pseudosymplectic pseudoinvolutions $p s_{i}$ and $p s_{-i}$ defined, respectively, by:

$$
\left(\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right)^{p s_{i}}=\left(\begin{array}{cc}
T^{t} & i Y^{t} \\
i Z^{t} & X^{t}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right)^{p s_{-i}}=\left(\begin{array}{cc}
T^{t} & -i Y^{t} \\
-i Z^{t} & X^{t}
\end{array}\right)
$$

IOPPOLO/Turk J Math

In what follows we shall present the results of [2], in which the authors gave the generators of the T_{2}^{*} ideal of identities of the superalgebra $M_{1,1}(F)$ endowed first with the pseudoinvolution $p t$ and then with the pseudoinvolutions $p s_{i}$ and $p s_{-i}$.

Consider first the algebra $\left(M_{1,1}(F), p t\right)$. Since $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{p t}=\left(\begin{array}{cc}a & c \\ -b & d\end{array}\right)$, it is not difficult to see that

$$
\left(M_{1,1}(F), p t\right)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{cc}
0 & c \\
i c & 0
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{cc}
0 & c \\
-i c & 0
\end{array}\right)\right\} .
$$

Theorem 3.1 The T_{2}^{*}-ideal of identities of $\left(M_{1,1}(F), p t\right)$ is generated by the following polynomials

$$
\left[y_{1}^{+}, y_{2}^{+}\right], \quad y^{-}, \quad\left[z_{1}^{i}, z_{2}^{i}\right], \quad\left[z_{1}^{-i}, z_{2}^{-i}\right], \quad z_{1}^{i} \circ z_{2}^{-i}, \quad z_{1}^{ \pm i} y_{2}^{+} z_{3}^{ \pm i}-z_{3}^{ \pm i} y_{2}^{+} z_{1}^{ \pm i}, \quad z_{1}^{ \pm i} y_{2}^{+} z_{3}^{\mp i}+z_{3}^{\mp i} y_{2}^{+} z_{1}^{ \pm i} .
$$

Proof (Sketch).

Let J be the T_{2}^{*}-ideal generated by the above polynomials. It is easy to prove that $J \subseteq \mathrm{Id}^{*}\left(M_{1,1}(F), p t\right)$. In order to prove the opposite inclusion, let $f \in \operatorname{Id}^{*}\left(M_{1,1}(F), p t\right), \operatorname{deg} f=n$, and assume, as we may, that f is multilinear. We want to show that f is the zero polynomial modulo J. By taking into account also the identities $\left[z_{1} z_{2}, y_{3}^{+}\right] \equiv 0$ and $\left[y_{1}^{+}, z_{2} y_{3}^{+} z_{4}\right] \equiv 0$, it follows that f is a linear combination (modulo J) of monomials of the type

$$
\begin{equation*}
y_{i_{1}}^{+} \cdots y_{i_{a}}^{+} z_{l_{1}} y_{j_{1}}^{+} \cdots y_{j_{b}}^{+} z_{l_{2}} \cdots z_{l_{h}}, \tag{3.1}
\end{equation*}
$$

where $h=0, \ldots, n$ is the number of variables z 's, $a+b=n-h$ counts the number of variables y^{+}'s and $i_{1}<\cdots<i_{a}, j_{1}<\cdots<j_{b}, l_{1}<\cdots<l_{h}$. In what follows, we may assume that the z 's are just z^{+}'s. Then, we can take into account that there are exactly 2^{h} monomials of each kind.

Now assume that $\alpha_{i_{1}, \ldots, i_{a}, j_{1}, \ldots, j_{b}, l_{1}, \ldots, l_{h}}$ is the coefficient with which the above monomial appears in f. In order to show that f is the zero polynomial, it is sufficient to consider the following evaluation:

- $y_{i_{1}}^{+}=\cdots=y_{i_{a}}^{+}=e_{11}$.
- $y_{j_{1}}^{+}=\cdots=y_{j_{b}}^{+}=e_{22}$.
- $y_{s}^{+}=0$, for any $s \notin\left\{i_{1}, \ldots, i_{a}, j_{1}, \ldots, j_{b}\right\}$.
- $z_{l_{1}}^{+}=\cdots=z_{l_{h}}^{+}=e_{12}+i e_{21}$.
- $z_{t}^{+}=0$, for any $t \notin\left\{l_{1}, \ldots, l_{h}\right\}$.

There are several possibilities but in any case it follows that f is the zero polynomial and we are done.
Corollary $3.2 c_{n}^{*}\left(M_{1,1}(F), p t\right)=4^{n}-2^{n}+1$.
Proof We need just to count the monomials in (3.1). For fixed a, b and $h>0$, it is easy to see that they are:

$$
\binom{n}{h} \sum_{j=0}^{n-h}\binom{n-h}{j} .
$$

IOPPOLO/Turk J Math

Recalling that we have to consider that each z can be i-symmetric or i-skew (2^{h} possibilities) and by taking into account the monomial $y_{1}^{+} \cdots y_{n}^{+}$, we get that

$$
c_{n}^{*}\left(M_{1,1}(F), p t\right)=1+\sum_{h=0}^{n} 2^{h}\left(\binom{n}{h} \sum_{j=0}^{n-h}\binom{n-h}{j}\right)=4^{n}-2^{n}+1
$$

Now let us consider the algebra $\left(M_{1,1}(F), p s_{i}\right)$. Since $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{p s_{i}}=\left(\begin{array}{ll}d & i b \\ i c & a\end{array}\right)$, we get

$$
\left(M_{1,1}(F), p s_{i}\right)=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

Theorem 3.3 The T_{2}^{*}-ideal of identities of $\left(M_{1,1}(F), p s_{i}\right)$ is generated by the following polynomials

$$
\left[y^{+}, x\right], \quad\left[y_{1}^{-}, y_{2}^{-}\right], \quad y^{-} \circ z^{i}, \quad z^{-i}, \quad z_{1}^{i} z_{2}^{i} z_{3}^{i}-z_{3}^{i} z_{2}^{i} z_{1}^{i}
$$

Proof (Sketch).

Let J be the T_{2}^{*}-ideal generated by the above polynomials. It is easy to prove that $J \subseteq \operatorname{Id}^{*}\left(M_{1,1}(F), p s_{i}\right)$. Now let $f \in \operatorname{Id}^{*}\left(M_{1,1}(F), p s_{i}\right), \operatorname{deg} f=n$, and assume, as we may, that f is multilinear. We want to show that f is the zero polynomial modulo J. Clearly, f is a linear combination (modulo J) of monomials of the type

$$
\begin{equation*}
y_{i_{1}}^{+} \cdots y_{i_{n_{1}}}^{+} y_{j_{1}}^{-} \cdots y_{j_{n_{2}}}^{-} z_{l_{1}}^{+} \cdots z_{l_{n-n_{1}-n_{2}}}^{+} \tag{3.2}
\end{equation*}
$$

where $i_{1}<\cdots<i_{n_{1}}, j_{1}<\cdots<j_{n_{2}}, l_{1}<l_{3}<\cdots, l_{2}<l_{4}<\cdots$. Moreover, assume that $\alpha_{I, J, l_{1}, \ldots, l_{n-n_{1}-n 2}}$ is the coefficient with which the above monomial appears in f. In order to show that f is the zero polynomial, it is sufficient to consider the following evaluation:

- $y_{i_{1}}^{+}=\cdots=y_{i_{n_{1}}}^{+}=e_{11}+e_{22}$ and $y_{r}^{+}=0$, for any $r \notin\left\{i_{1}, \ldots, i_{n_{1}}\right\}$.
- $y_{j_{1}}^{-}=\cdots=y_{j_{n_{2}}}^{-}=e_{11}-e_{22}$ and $y_{s}^{-}=0$, for any $s \notin\left\{j_{1}, \ldots, j_{n_{2}}\right\}$.
- $z_{l_{1}}^{+}=z_{l_{3}}^{+}=\cdots=e_{12}, z_{l_{2}}^{+}=z_{l_{4}}^{+}=\cdots=e_{21}$ and $z_{t}^{+}=0$, for any $t \notin\left\{l_{1}, \ldots, l_{n-n_{1}-n_{2}}\right\}$.

We get $\alpha_{I, J, l_{1}, \ldots, l_{n-n_{1}-n 2}} e_{11} \pm \alpha_{I, J, l_{n-n_{1}-n 2}, \ldots, l_{1}} e_{22}$ if $n-n_{1}-n_{2}$ is even and $\alpha_{I, J, l_{1}, \ldots, l_{n-n_{1}-n 2}} e_{12}$ otherwise. In any case we are done.

Corollary $3.4 \quad c_{n}^{*}\left(M_{1,1}(F), p s_{i}\right)=\binom{2 n+1}{n+1} \approx 4^{n}$.
Proof We need just to count the monomials in (3.2). For fixed n_{1} and n_{2}, it is not difficult to see that they are:

$$
\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}}\binom{n-n_{1}-n_{2}}{\left\lfloor\frac{n-n_{1}-n_{2}}{2}\right\rfloor} .
$$

Hence we get that

$$
c_{n}^{*}\left(M_{1,1}(F), p s\right)=\sum_{n_{1}, n_{2}}\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}}\binom{n-n_{1}-n_{2}}{\left\lfloor\frac{n-n_{1}-n_{2}}{2}\right\rfloor}=\binom{2 n+1}{n+1} \approx 4^{n}
$$

Finally, if we consider the pseudoinvolution $p s_{-i}$ on $M_{1,1}(F)$ given by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{p s_{-i}}=\left(\begin{array}{cc}d & -i b \\ -i c & a\end{array}\right)$, we get

$$
\left(M_{1,1}(F), p s_{-i}\right)=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)\right\}
$$

With the same approach of Theorem 3.3 and of Corollary 3.4, we get the following result.

Theorem 3.5 The T_{2}^{*}-ideal of identities of $\left(M_{1,1}(F), p s_{-i}\right)$ is generated by the following polynomials

$$
\left[y^{+}, x\right], \quad\left[y_{1}^{-}, y_{2}^{-}\right], \quad y^{-} \circ z^{-i}, \quad z^{i}, \quad z_{1}^{-i} z_{2}^{-i} z_{3}^{-i}-z_{3}^{-i} z_{2}^{-i} z_{1}^{-i}
$$

Moreover, $c_{n}^{*}\left(M_{1,1}(F), p s_{-i}\right)=\binom{2 n+1}{n+1} \approx 4^{n}$.

4. Pseudoinvolutions on upper-triangular matrices

In [4], the author gave a classification of the pseudoinvolutions on the superalgebra $U T_{n}(F)$ of $n \times n$ uppertriangular matrices. Such a classification was obtained by making use of the notion of the so-called superautomorphisms and of a strict relation between pseudoinvolutions and graded involutions. In what follows we shall recall these results.

Let us start by presenting two involutions on $U T_{n}(F)$. The so-called reflection involution $\circ: U T_{n}(F) \rightarrow$ $U T_{n}(F)$ is defined on the matrix units by the formula:

$$
e_{i j}^{\circ}=e_{n+1-j, n+1-i}, \quad \text { for any } 1 \leq i, j \leq n
$$

Now assume that $n=2 m$ is even and consider the matrix $J=\left(\begin{array}{cc}I_{m} & 0 \\ 0 & -I_{m}\end{array}\right)$. Then, for any $Y \in U T_{n}(F)$,

$$
\begin{aligned}
s: U T_{n}(F) & \longrightarrow U T_{n}(F) \\
Y & \longmapsto J Y^{\circ} J
\end{aligned}
$$

is an involution on $U T_{n}(F)$. In [3], the authors proved the following.
Theorem 4.1 [3, Proposition 2.5] If F is a field of characteristic different from 2, every involution on $U T_{n}(F)$ is equivalent to or to s. Moreover, s can occur only if n is even.

Now let us give a structure of superalgebra to $U T_{n}(F)$. In this direction, we have the following result of Valenti and Zaicev, proved for any finite abelian group G and here presented just for \mathbb{Z}_{2}, the cyclic group of order 2.

IOPPOLO/Turk J Math

Theorem 4.2 [14] Let F be an algebraically closed field of characteristic zero and let $U T_{n}(F)$ be the algebra of $n \times n$ upper-triangular matrices over F graded by \mathbb{Z}_{2}. Then $U T_{n}(F)$, as a \mathbb{Z}_{2}-graded algebra, is isomorphic to $U T_{n}(F)$ with some elementary \mathbb{Z}_{2}-grading.

Recall that an n-tuple $\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}_{2}^{n}$ defines an elementary \mathbb{Z}_{2}-grading on $U T_{n}(F)$ by setting

$$
\left(U T_{n}(F)\right)_{0}=\operatorname{span}\left\{e_{i j} \mid g_{i}+g_{j}=0(\bmod 2)\right\} \quad \text { and } \quad\left(U T_{n}(F)\right)_{1}=\operatorname{span}\left\{e_{i j} \mid g_{i}+g_{j}=1(\bmod 2)\right\}
$$

Finally, recall that an involution $*: A \rightarrow A$ on the superalgebra $A=A_{0} \oplus A_{1}$ is said to be a graded involution if $A_{i}^{*} \subseteq A_{i}$, for all $i \in\{0,1\}$. In 2009 Valenti and Zaicev classified, up to equivalence, all graded involutions on the G-graded algebra $U T_{n}(F)$. In the following theorem we present such a result in the context of superalgebras.

Theorem 4.3 [15, Theorem 5.4] Let F be an algebraically closed field of characteristic zero and let $U T_{n}(F)$ be the superalgebra of $n \times n$ upper-triangular matrices over F. Suppose that $U T_{n}(F)$ is endowed with a graded involution \sharp. Then $U T_{n}(F)$, as a \mathbb{Z}_{2}-graded algebra with graded involution, is isomorphic to $U T_{n}(F)$ with an elementary \mathbb{Z}_{2}-grading defined by an n-tuple $\left(g_{1}, \ldots, g_{n}\right)$ such that

$$
g_{1}+g_{n}=g_{2}+g_{n-1}=\cdots=g_{1}+g_{n}
$$

and with involution \circ or s. The involution s can occur only if n is even.

Now we are almost ready to give the classification of the pseudoinvolutions on the superalgebra $U T_{n}(F)$, proved in [4]. To this end, recall that a bijective graded linear map $\varphi: A \rightarrow A$ on a superalgebra $A=A_{0} \oplus A_{1}$ is a superautomorphism if

$$
\varphi(a b)=(-1)^{|a||b|} \varphi(a) \varphi(b), \text { for all } a, b \in A_{0} \cup A_{1}
$$

Now we introduce a particular superautomorphism that it is possible to define on any F-superalgebra A, where F is an algebraically closed field. In fact, under this hypothesis, we may assume that there exists an element $i \in F$ such that $i^{2}=-1$.

Definition 4.4 Let $A=A_{0} \oplus A_{1}$ be a superalgebra over an algebraically closed field F. We define

$$
\begin{aligned}
\Phi: A_{0} \oplus A_{1} & \longrightarrow A_{0} \oplus A_{1} \\
a_{0}+a_{1} & \longmapsto a_{0}+i a_{1} .
\end{aligned}
$$

In [4] it was proved that Φ is a superautomorphism commuting with any graded linear map on a superalgebra A and such that $\Phi^{2}(a)=(-1)^{|a|} a$, for any homogeneous element $a \in A_{0} \oplus A_{1}$.

The following result will allow us to give the classification of pseudoinvolutions on $U T_{n}(F)$.

Theorem 4.5 Let $A=A_{0} \oplus A_{1}$ be a superalgebra. A map $*: A \rightarrow A$ is a pseudoinvolution if and only if there exists a graded involution $\sharp: A \rightarrow A$ such that $*=\sharp \Phi$.

We now define two pseudoinvolutions on the upper-triangular matrix superalgebra. Let \circ and s be the reflection and the symplectic graded involution defined above. We give the following definitions.

Definition 4.6 The pseudoinvolution $\bar{\circ}: U T_{n}(F) \rightarrow U T_{n}(F)$, defined by $\bar{\circ}=\circ \Phi$, is called pseudo-reflection.

Definition 4.7 The pseudoinvolution $\bar{s}: U T_{n}(F) \rightarrow U T_{n}(F)$, defined by $\bar{s}=s \Phi$, is called pseudo-symplectic.
The following theorem is the main result of this section.

Theorem 4.8 Let F be an algebraically closed field of characteristic zero and let $U T_{n}(F)$ be the superalgebra of $n \times n$ upper-triangular matrices over F. Suppose that $U T_{n}(F)$ is endowed with a pseudoinvolution $*$. Then $U T_{n}(F)$, as a \mathbb{Z}_{2}-graded algebra with pseudoinvolution, is isomorphic to $U T_{n}(F)$ with an elementary \mathbb{Z}_{2}-grading defined by an n-tuple $\left(g_{1}, \ldots, g_{n}\right)$ such that

$$
g_{1}+g_{n}=g_{2}+g_{n-1}=\cdots=g_{1}+g_{n}
$$

and with pseudoinvolution $\bar{\circ}$ or \bar{s}. The pseudoinvolution \bar{s} can occur only if n is even.

5. Polynomial identities on $U T_{2}(F)$

In this section we focus our attention on 2×2 upper-triangular matrices. By Theorem 4.2, every \mathbb{Z}_{2}-grading on $U T_{2}(F)$ is an elementary \mathbb{Z}_{2}-grading and, among them, the different (non isomorphic) ones are induced by the following pairs of elements of \mathbb{Z}_{2} :
$(0,0)$ and $(0,1)$.
First we consider the case of $U T_{2}(F)$ with the elementary \mathbb{Z}_{2}-grading defined by the pair $(0,0)$. From now on, $U T_{2}(F)_{(0,0)}$ shall denote this superalgebra with trivial \mathbb{Z}_{2}-grading. Since $\left(U T_{2}(F)_{(0,0)}\right)_{1}=0$, it is clear that the pseudoinvolutions on $U T_{2}(F)_{(0,0)}$ coincide with the involutions. In [3], the authors proved that it is possible to define on $U T_{2}(F)$ only the two involutions \circ and s we have presented before. Here we recall the definition of such involutions in the case of 2×2 upper-triangular matrices.

Let $\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right) \in U T_{2}(F)$, then we have:

$$
\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)^{\circ}=\left(\begin{array}{ll}
b & c \\
0 & a
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)^{s}=\left(\begin{array}{cc}
b & -c \\
0 & a
\end{array}\right)
$$

It is important to remark that, since $U T_{2}(F)_{(0,0)}$ is a superalgebra with trivial grading, the superautomorphism Φ is the identity map and hence the pseudoinvolutions $\bar{\circ}$ and \bar{s} defined before are exactly the involutions \circ and s.

In the following theorems we present the results of [3] in which the authors found a basis of the T_{2}^{*}-ideal of $U T_{2}(F)$ in the settings of superalgebras with pseudoinvolution, for convenience of the reader.

Theorem 5.1 [3, Theorem 3.1] Let $\left(U T_{2}(F)_{(0,0)}, \circ\right)$ be the superalgebra of 2×2 upper-triangular matrices with trivial \mathbb{Z}_{2}-grading and endowed with the pseudoinvolution \circ. Then the T_{2}^{*}-ideal of identities of this algebra is generated, as a T_{2}^{*}-ideal, by the following polynomials:

$$
\left[y_{1}^{+}, y_{2}^{+}\right], \quad\left[y_{1}^{-}, y_{2}^{-}\right], \quad\left[y_{1}^{+}, y_{1}^{-}\right]\left[y_{2}^{+}, y_{2}^{-}\right], \quad y_{1}^{-} y^{+} y_{2}^{-}-y_{2}^{-} y^{+} y_{1}^{-}, \quad z^{i}, \quad z^{-i}
$$

IOPPOLO/Turk J Math

Theorem 5.2 [3, Theorem 3.2] Let $\left(U T_{2}(F)_{(0,0)}, s\right)$ be the superalgebra of 2×2 upper-triangular matrices with trivial \mathbb{Z}_{2}-grading and endowed with the pseudoinvolution s. Then the T_{2}^{*}-ideal of identities of this algebra is generated, as a T_{2}^{*}-ideal, by the following polynomials:

$$
\left[y_{1}^{+}, y_{2}^{+}\right], \quad\left[y^{-}, y^{+}\right], \quad\left[y_{1}^{-}, y_{2}^{-}\right]\left[y_{3}^{-}, y_{4}^{-}\right], \quad y_{1}^{-} y_{2}^{-} y_{3}^{-}-y_{3}^{-} y_{2}^{-} y_{1}^{-}, \quad z^{i}, \quad z^{-i}
$$

Let now focus our attention on $U T_{2}(F)_{(0,1)}$, the superalgebra of 2×2 upper-triangular matrices with elementary \mathbb{Z}_{2}-grading defined by the pair $(0,1)$. In this case the subspaces of homogeneous elements of degree 0 and 1 are:

$$
\left(U T_{2}(F)_{(0,1)}\right)_{0}=F e_{11} \oplus F e_{22}, \quad \text { and } \quad\left(U T_{2}(F)_{(0,1)}\right)_{1}=F e_{12}
$$

Since the pair $(0,1)$ satisfies the property $0+1=1+0$, according to Theorem 4.8 , we have that on $U T_{2}(F)_{(0,1)}$ we can define the pseudoinvolutions $\bar{\circ}$ and \bar{s}.

Let us start by considering $A=\left(U T_{2}(F)_{(0,1)}, \bar{o}\right)$, the superalgebra $U T_{2}(F)_{(0,1)}$ endowed with the pseudoinvolution $\bar{\circ}$. We have that

$$
\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)^{\bar{o}}=\left(\begin{array}{cc}
b & i c \\
0 & a
\end{array}\right)
$$

The four sets of symmetric and skew even elements and of i-symmetric and i-skew odd elements are:

$$
A_{0}^{+}=F\left(e_{11}+e_{22}\right), \quad A_{0}^{-}=F\left(e_{11}-e_{22}\right), \quad A_{1}^{i}=F e_{12}, \quad A_{1}^{-i}=0
$$

In the following we compute a basis for the T_{2}^{*}-ideal of identities of A. In order to simplify the notation, we denote by x an arbitrary variable.

Theorem 5.3 The T_{2}^{*}-ideal of identities of $A=\left(U T_{2}(F)_{(0,1)}, \bar{\circ}\right)$ is generated by the following polynomials

$$
\left[y^{+}, x\right], \quad\left[y_{1}^{-}, y_{2}^{-}\right], \quad y^{-} z^{i}+z^{i} y^{-}, \quad z_{1}^{i} z_{2}^{i}, \quad z^{-i} .
$$

Proof Let J be the T_{2}^{*}-ideal generated by the above polynomials. It is easy to prove that $J \subseteq \operatorname{Id}^{*}(A)$.
In order to prove the opposite inclusion, let $f \in \operatorname{Id}^{*}(A), \operatorname{deg} f=n$, and assume, as we may, that f is multilinear and $f \in P_{n_{1}, \ldots, n_{4}}$, where $n=n_{1}+\cdots+n_{4}$. We want to show that f is the zero polynomial modulo J. Since $z^{-i} \equiv 0$ and $z_{1}^{i} z_{2}^{i} \equiv 0$, if $n_{4} \neq 0$ or $n_{3} \geq 2$, it is obvious that f is the zero polynomial. Then let $n_{4}=0$ and $0 \leq n_{3} \leq 1$. By the other identities it is easy to see that

$$
f \equiv \alpha y_{1}^{+} \cdots y_{n_{1}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-}(\bmod J), n_{1}+n_{2}=n,
$$

or

$$
f \equiv \beta y_{1}^{+} \cdots y_{n_{1}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-} z^{+}(\bmod J), n_{1}+n_{2}+1=n
$$

In the first case, by making the evaluation $y_{i}^{+}=e_{11}+e_{22}, 1 \leq i \leq n_{1}$ and $y_{j}^{-}=e_{11}-e_{22}, 1 \leq j \leq n_{2}$, we get $\alpha\left(e_{11} \pm e_{22}\right)=0$. Thus $\alpha=0$. Similarly, if $f \equiv \beta y_{1}^{+} \cdots y_{n_{1}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-} z^{+}(\bmod J)$, by making the evaluation $y_{i}^{+}=e_{11}+e_{22}, 1 \leq i \leq n_{1}, y_{j}^{-}=e_{11}-e_{22}, 1 \leq j \leq n_{2}$ and $z^{i}=e_{12}$, we get $\beta e_{12}=0$ and so $\beta=0$. Hence f is the zero polynomial modulo J and the proof is complete.

An easy computation allows us to obtain the following result.

IOPPOLO/Turk J Math

Corollary 5.4 Let $A=\left(U T_{2}(F)_{(0,1)}, \bar{\circ}\right)$ be the superalgebra $U T_{2}(F)_{(0,1)}$ with the pseudoinvolution $\bar{\circ}$. Then

$$
c_{n}^{*}(A)=2^{n-1}(n+2)
$$

Let now $B=\left(U T_{2}(F)_{(0,1)}, \bar{s}\right)$ be the superalgebra $U T_{2}(F)_{(0,1)}$ with the pseudoinvolution \bar{s}. We have that

$$
\left(\begin{array}{cc}
a & c \\
0 & b
\end{array}\right)^{\bar{s}}=\left(\begin{array}{cc}
b & -i c \\
0 & a
\end{array}\right)
$$

The four sets of symmetric and skew even elements and of i-symmetric and i-skew odd elements are:

$$
B_{0}^{+}=F\left(e_{11}+e_{22}\right), \quad B_{0}^{-}=F\left(e_{11}-e_{22}\right), \quad B_{1}^{i}=0, \quad B_{1}^{-i}=F e_{12}
$$

The following result can be proved in a similar way as the preceding one, so we omit the proof.

Theorem 5.5 The T_{2}^{*}-ideal of identities of $B=\left(U T_{2}(F)_{(0,1)}, \bar{s}\right)$ is generated by the following polynomials

$$
\left[y^{+}, x\right], \quad\left[y_{1}^{-}, y_{2}^{-}\right], \quad y^{-} z^{-i}+z^{-i} y^{-}, z^{i}, z_{1}^{-i} z_{2}^{-i}
$$

Moreover, $c_{n}^{*}(B)=2^{n-1}(n+2)$.

6. Polynomial identities on $U T_{3}(F)$

In this section we focus our attention on 3×3 upper-triangular matrices. By Theorem 4.2, every \mathbb{Z}_{2}-grading on $U T_{3}$ is an elementary \mathbb{Z}_{2}-grading and, among them, the different (non isomorphic) ones are induced by the following triples of elements of \mathbb{Z}_{2} :

$$
(0,0,0), \quad(0,0,1), \quad(0,1,1), \quad(0,1,0)
$$

First we consider the case of $U T_{3}(F)$ with the elementary \mathbb{Z}_{2}-grading defined by the triple $(0,0,0)$. From now on, $U T_{3}(F)_{(0,0,0)}$ shall denote this superalgebra with trivial \mathbb{Z}_{2}-grading. Since $\left(U T_{3}(F)_{(0,0,0)}\right)_{1}=0$, it follows that the pseudoinvolutions on $U T_{3}(F)_{(0,0,0)}$ coincide with the involutions. In [3], the authors proved that it is possible to define on $U T_{3}(F)$ just the involution \circ (it is not possible to define the involution s since 3 is odd). Recall that

$$
\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right)^{\circ}=\left(\begin{array}{ccc}
f & e & c \\
0 & d & b \\
0 & 0 & a
\end{array}\right), \text { for all }\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \in U T_{3}(F)
$$

In the following theorem we present the results of [3] in the language of superalgebras with pseudoinvolution, for convenience of the reader. In order to simplify the notation, if the variable can be indifferently y_{i}^{+}or y_{i}^{-}we shall denote it as $y_{i}^{ \pm}$. Moreover we put $\left|y_{i}^{-}\right|=0$ and $\left|y_{i}^{+}\right|=1$. Here we observe that $\left[y_{i}^{+}, y_{j}^{+}\right]$ and $\left[y_{i}^{-}, y_{j}^{-}\right]$are skew elements while $\left[y_{i}^{+}, y_{j}^{-}\right]$is symmetric. We shall use the notation $\left|y_{i}^{ \pm} y_{j}^{ \pm}\right|$for $\left|\left[y_{i}^{ \pm}, y_{j}^{ \pm}\right]\right|$. In other words $\left|y_{i}^{ \pm} y_{j}^{ \pm}\right|$equals 0 when the commutator $\left[y_{i}^{ \pm}, y_{j}^{ \pm}\right]$is skew and it equals 1 if the commutator is symmetric.

Theorem 6.1 [3, Theorem 6.6] Let $\left(U T_{3}(F)_{(0,0,0)}, \circ\right)$ be the superalgebra of 3×3 upper-triangular matrices with trivial \mathbb{Z}_{2}-grading and endowed with the pseudoinvolution \circ. Then the T_{2}^{*}-ideal of identities of this algebra is generated, as a T_{2}^{*}-ideal, by the following polynomials:

1. z,
2. $S t_{3}\left(y_{1}^{-}, y_{2}^{-}, y_{3}^{-}\right)$,
3. $(-1)^{\left|y_{1}^{ \pm} y_{2}^{ \pm}\right|}\left[y_{1}^{ \pm}, y_{2}^{ \pm}\right]\left[y_{3}^{ \pm}, y_{4}^{ \pm}\right]-(-1)^{\left|y_{3}^{ \pm} y_{4}^{ \pm}\right|}\left[y_{3}^{ \pm}, y_{4}^{ \pm}\right]\left[y_{1}^{ \pm}, y_{2}^{ \pm}\right]$,
4. $y_{1}^{-}\left[y_{3}^{ \pm}, y_{4}^{ \pm}\right] y_{2}^{-}+(-1)^{\left|y_{3}^{ \pm} y_{4}^{ \pm}\right|} y_{2}^{-}\left[y_{3}^{ \pm}, y_{4}^{ \pm}\right] y_{1}^{-}$,
5. $\left[y_{1}^{ \pm}, y_{2}^{ \pm}\right] y_{5}^{-}\left[y_{3}^{ \pm}, y_{4}^{ \pm}\right]$,
6. $y_{1}^{-}\left[y_{4}^{ \pm}, y_{5}^{ \pm}\right] y_{2}^{-} y_{3}^{ \pm}+(-1)^{\left|y_{3}^{ \pm}\right|} y_{3}^{ \pm} y_{1}^{-}\left[y_{4}^{ \pm}, y_{5}^{ \pm}\right] y_{2}^{-}$,
7. $(-1)^{\left|y_{1}^{ \pm} y_{2}^{ \pm}\right|}\left[y_{1}^{ \pm}, y_{2}^{ \pm}\right]\left[y_{3}^{ \pm}, y_{4}^{ \pm}\right]-(-1)^{\left|y_{1}^{ \pm} y_{3}^{ \pm}\right|}\left[y_{1}^{ \pm}, y_{3}^{ \pm}\right]\left[y_{2}^{ \pm}, y_{4}^{ \pm}\right]+(-1)^{\left|y_{1}^{ \pm} y_{4}^{ \pm}\right|}\left[y_{1}^{ \pm}, y_{4}^{ \pm}\right]\left[y_{2}^{ \pm}, y_{3}^{ \pm}\right]$.

According to Theorem 4.8, it is easy to see that it is not possible to define any pseudoinvolution on $U T_{3}(F)_{(0,0,1)}$ and on $U T_{3}(F)_{(0,1,1)}$.

Finally we consider the superalgebra of 3×3 upper-triangular matrices with elementary \mathbb{Z}_{2}-grading defined by the triple $(0,1,0)$. In this case the subspaces of homogeneous elements of degree 0 and 1 are:

$$
\left(U T_{3}(F)_{(0,1,0)}\right)_{0}=F e_{11} \oplus F e_{22} \oplus F e_{33} \oplus F e_{13}, \quad \text { and } \quad\left(U T_{3}(F)_{(0,1,0)}\right)_{1}=F e_{12} \oplus F e_{23}
$$

According to Theorem 4.8, on $C=U T_{3}(F)_{(0,1,0)}$ it is possible to define only the pseudo-symplectic pseudoinvolution $\bar{\circ}=\circ \Phi$ given by

$$
\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right)^{\overline{ }}=\left(\begin{array}{ccc}
f & i e & c \\
0 & d & i b \\
0 & 0 & a
\end{array}\right)
$$

The four sets of symmetric and skew even elements and of i-symmetric and i-skew odd elements are:

$$
C_{0}^{+}=F\left(e_{11}+e_{33}\right) \oplus F e_{22} \oplus F e_{13}, \quad C_{0}^{-}=F\left(e_{11}-e_{33}\right), \quad C_{1}^{i}=F\left(e_{12}+e_{23}\right), \quad C_{1}^{-i}=F\left(e_{12}-e_{23}\right)
$$

In the following we compute a basis for the T_{2}^{*}-ideal of identities of C. In order to simplify the notation we denote by y_{i} any variable of homogeneous degree 0 and by z_{i} any variable of homogeneous degree 1 .

Theorem 6.2 Let $C=\left(U T_{3}(F)_{(0,1,0)}, \bar{\circ}\right)$ be the superalgebra of 3×3 upper-triangular matrices with elementary \mathbb{Z}_{2}-grading defined by the triple $(0,1,0)$ and endowed with the pseudoinvolution $\bar{\circ}$. Then the T_{2}^{*}-ideal of identities of this algebra is generated, as a T_{2}^{*}-ideal, by the following polynomials:

1. $\left[y_{1}^{+}, y_{2}^{+}\right]$,
2. $\left[y_{1}^{-}, y_{2}^{-}\right]$,
3. $y_{1}^{+} y_{2}^{-} y_{3}^{+}-y_{3}^{+} y_{2}^{-} y_{1}^{+}$,
4. $\left[y_{1}^{+}, y_{2}^{-}\right]\left[y_{3}^{+}, y_{4}^{-}\right]$,
5. $z\left[y_{1}^{+}, y_{2}^{-}\right]$,
6. $\left[y_{1}^{+}, y_{2}^{-}\right] z$,
7. $y_{1}^{-} z y_{2}^{-}$,
8. $z_{1} y^{-} z_{2}$,
9. $z_{1}^{i} y^{+} z_{2}^{i}-z_{2}^{i} y^{+} z_{1}^{i}$,
10. $z_{1}^{-i} y^{+} z_{2}^{-i}-z_{2}^{-i} y^{+} z_{1}^{-i}$,
11. $z_{1}^{i} y^{+} z_{2}^{-i}+z_{2}^{-i} y^{+} z_{1}^{i}$,
12. $\left[z_{1}^{i}, z_{2}^{i}\right]$,
13. $\left[z_{1}^{-i}, z_{2}^{-i}\right]$,
14. $z^{i} z^{-i}+z^{-i} z^{i}$,
15. $z_{1} z_{2} z_{3}$.

Proof Let J be the T_{2}^{*}-ideal generated by the above polynomials. It is easy to prove that $J \subseteq \mathrm{Id}^{*}(C)$.
In order to prove the opposite inclusion, first we find a set of generators of P_{n}^{*} modulo $P_{n}^{*} \cap J$, for all $n \geq 1$. To this end, let us consider $P_{n_{1}, \ldots, n_{4}}$, where $n_{1}+\cdots+n_{4}=n$. Since $z_{1} z_{2} z_{3} \equiv 0$, then it must be $n_{3}+n_{4} \leq 2$. Thus we have to consider three cases.

Case 1: $n_{3}=n_{4}=0$.
By the Poincaré-Birkhoff-Witt theorem, any polynomial can be written as a linear combination of products of the type

$$
y_{j_{1}}^{+} \cdots y_{j_{p}}^{+} y_{k_{1}}^{-} \cdots y_{k_{q}}^{-} w_{1} \cdots w_{m}
$$

where w_{1}, \ldots, w_{m} are left normed commutators in the y_{i}^{+}s and $y_{i}^{-} \mathrm{s}, j_{1}<j_{2}<\cdots<j_{p}$ and $k_{1}<k_{2}<\cdots<k_{q}$. By the identities 1. -4 . plus the identities

$$
\left[y_{1}^{+}, y^{-}, y_{2}^{+}\right] \equiv 0, \quad\left[y^{+}, y_{1}^{-}, y_{2}^{-}\right]-\left[y^{+}, y_{2}^{-}, y_{1}^{-}\right] \equiv 0, \quad\left[y^{+}, y_{2}^{-}, y_{1}^{-}\right]+2 y_{1}^{-}\left[y^{+}, y_{2}^{-}\right] \equiv 0
$$

it is not difficult to prove that $P_{n_{1}, n_{2}, 0,0}$ is generated modulo $P_{n_{1}, n_{2}, 0,0} \cap J$ by the polynomials

$$
\begin{equation*}
y_{1}^{+} \cdots y_{n_{1}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-} \quad \text { and } \quad y_{1}^{+} \cdots \widehat{y_{l}^{+}} \cdots y_{n_{1}}^{+}\left[y_{l}^{+}, y_{1}^{-}, \ldots, y_{n_{2}}^{-}\right] \tag{6.1}
\end{equation*}
$$

where $1 \leq l \leq n_{1}$ and $\widehat{y_{l}^{+}}$means that the variable y_{l}^{+}is omitted. We next show that these polynomials are linearly independent modulo $\mathrm{Id}^{*}(C)$. To this end, let $f \in \mathrm{Id}^{*}(C)$ be a linear combination of the above polynomials and write

$$
\begin{equation*}
f \equiv \alpha y_{1}^{+} \cdots y_{n_{1}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-}+\sum_{l=1}^{n_{1}} \beta_{l} y_{1}^{+} \cdots \widehat{y_{l}^{+}} \cdots y_{n_{1}}^{+}\left[y_{l}^{+}, y_{1}^{-}, \ldots, y_{n_{2}}^{-}\right](\bmod \mathrm{J}) \tag{6.2}
\end{equation*}
$$

By making the evaluation $y_{i}^{+}=e_{11}+e_{33}, i=1, \ldots, n_{1}$ and $y_{j}^{-}=e_{11}-e_{33}, 1 \leq j \leq n_{2}$, one gets $\alpha\left(e_{11} \pm e_{33}\right)=0$ and so $\alpha=0$. Now, for any $1 \leq l \leq n_{1}$, consider the evaluation

$$
y_{i}^{+}=e_{11}+e_{33}, i \in\left\{1, \ldots, n_{1}\right\} \backslash\{l\}, \quad y_{l}^{+}=e_{13}, \quad y_{m}^{-}=e_{11}-e_{33}, m \in\left\{1, \ldots, n_{2}\right\}
$$

We get $\beta_{l}(-2)^{n_{2}} e_{13}=0$ and so $\beta_{l}=0$. Therefore the polynomials in (6.1) are linearly independent modulo $P_{n_{1}, n_{2}, 0,0} \cap \mathrm{Id}^{*}(C)$ and we are done in this case.

Case 2: $n_{3}+n_{4}=1$. We suppose that $n_{3}=1, n_{4}=0$ (the case $n_{3}=0, n_{4}=1$ is analogous).
Since we are considering monomials in which a z^{i} appears, according to the identities 5 . and 6 . we can order also the variables y^{+}'s and y^{-}'s, both on the left and on the right. But by identity 7 ., it is not possible to have a variable y^{-}both on the left and on the right of the z^{i}. By making use also of the identities 1. and 2 ., we get that each monomial of $P_{n_{1}, n_{2}, 1,0}$ can be written modulo J as

$$
\begin{equation*}
y_{i_{1}}^{+} \cdots y_{i_{r}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-} z^{i} y_{j_{1}}^{+} \cdots y_{j_{s}}^{+} \quad \text { or } \quad y_{i_{1}}^{+} \cdots y_{i_{r}}^{+} z^{i} y_{j_{1}}^{+} \cdots y_{j_{s}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-} \tag{6.3}
\end{equation*}
$$

IOPPOLO/Turk J Math

where $r+s=n_{1}, i_{1}<i_{2}<\cdots<i_{r}$ and $j_{1}<j_{2}<\cdots<j_{s}$. So the monomials above span $P_{n_{1}, n_{2}, 1,0}$ modulo J. Let us show that they are linearly independent modulo $\operatorname{Id}^{*}(C)$. To this end, let $f \in \operatorname{Id}^{*}(C)$ be a linear combination of these monomials and write

$$
f \equiv \sum_{l, I, J} \alpha_{l, I, J} y_{i_{1}}^{+} \cdots y_{i_{r}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-} z_{l}^{i} y_{j_{1}}^{+} \cdots y_{j_{s}}^{+}+\sum_{m, H, K} \beta_{m, H, K} y_{h_{1}}^{+} \cdots y_{h_{t}}^{+} z_{m}^{+} y_{k_{1}}^{+} \cdots y_{k_{u}}^{+} y_{1}^{-} \cdots y_{n_{2}}^{-}(\bmod \mathrm{J}),
$$

with $r+s=t+u=n_{1}, I=\left\{i_{1}, \ldots, i_{r}\right\}, J=\left\{j_{1}, \ldots, j_{s}\right\}, H=\left\{h_{1}, \ldots, h_{t}\right\}, K=\left\{k_{1}, \ldots, k_{u}\right\}$ and $i_{1}<\cdots<i_{r}, j_{1}<\cdots<j_{s}, h_{1}<\cdots<h_{t}, k_{1}<\cdots<k_{u}$. Suppose that there exists $\alpha_{l, I, J} \neq 0$ or $\beta_{l, I, J} \neq 0$ for some l, I and J. The evaluation $y_{i_{a}}^{+}=e_{11}+e_{33}, a=1, \ldots, r, y_{b}^{-}=e_{11}-e_{33}, b=1, \ldots, n_{2}, z_{l}^{i}=e_{12}+e_{23}$, $y_{i_{c}}^{+}=e_{22}, c=1, \ldots, s$, gives $\alpha_{l, I, J} e_{12} \pm \beta_{l, J, I} e_{23}=0$. Thus $\alpha_{l, I, J}=\beta_{l, J, I}=0$, a contradiction. Therefore the monomials in (6.3) are linearly independent modulo $P_{n_{1}, n_{2}, 1,0} \cap \operatorname{Id}^{*}(C)$.

Case 3: $n_{3}+n_{4}=2$. We consider $n_{3}=2, n_{4}=0$ (the cases $n_{3}=0, n_{4}=2$ and $n_{3}=n_{4}=1$ are analogous). In this case, by using identities 1., 2., 5., 6. plus the identities from 8. to 12 . (notice that, instead of identity 12. in the case $n_{3}=0, n_{4}=2$ we will use identity 13 . and in the case $n_{3}=n_{4}=1$ we will use identity 14 .), each monomial in $P_{n_{1}, n_{2}, 2,0}$ can be written modulo J as

$$
\begin{equation*}
y_{i_{1}}^{+} \cdots y_{i_{t}}^{+} y_{1}^{-} \cdots y_{k}^{-} z_{1}^{i} y_{j_{1}}^{+} \cdots y_{j_{s}}^{+} z_{2}^{i} y_{i_{t+1}}^{+} \cdots y_{i_{n_{1}-s}^{-}}^{+} y_{k+1}^{-} \cdots y_{n_{2}}^{-}, \tag{6.4}
\end{equation*}
$$

where $i_{1}<\cdots<i_{t}<i_{t+1}<\cdots<i_{n_{1}-s}$ and $j_{1}<\cdots<j_{s}$. Thus these monomials span $P_{n_{1}, n_{2}, 2,0}$ modulo J. Let us show now that they are linearly independent modulo $\operatorname{Id}^{*}(C)$. To this end, let $f \in \operatorname{Id}^{*}(C)$ be a linear combination of the above monomials and write

$$
\begin{equation*}
f \equiv \sum_{\substack{a, b, I, J \\ a<b}} \alpha_{a, b, I, J} y_{i_{1}}^{+} \cdots y_{i_{t}}^{+} y_{1}^{-} \cdots y_{k}^{-} z_{a}^{i} y_{j_{1}}^{+} \cdots y_{j_{s}}^{+} z_{b}^{i} y_{i_{t+1}}^{+} \cdots y_{i_{n_{1}-s}}^{+} y_{k+1}^{-} \cdots y_{n_{2}}^{-}, \tag{6.5}
\end{equation*}
$$

where $I=\left\{i_{1}, \ldots, i_{n_{1}-s}\right\}, J=\left\{j_{1}, \ldots, j_{s}\right\}$ and $i_{1}<\cdots<i_{t}<i_{t+1}<\cdots<i_{n_{1}-s}, j_{1}<\cdots<j_{s}$.
Suppose that $\alpha_{a, b, I, J} \neq 0$ for some $a<b, I$ and J. The evaluation $y_{i_{h}}^{+}=e_{11}+e_{33}, h=1, \ldots, n_{1}-s$, $y_{k}^{-}=e_{11}-e_{33}, k=1, \ldots, n_{2}, z_{a}^{i}=z_{b}^{i}=e_{12}+e_{23}, y_{i_{l}}^{+}=e_{22}, l=1, \ldots, s$, gives $\pm \alpha_{a, b, I, J} e_{13}=0$. Therefore $\alpha_{a, b, I, J}=0$, a contradiction. In conclusion the monomials in (6.4) are linearly independent modulo $P_{n_{1}, n_{2}, 2,0} \cap \operatorname{Id}^{*}(C)$.

By putting together the previous results, we get that the polynomials in (6.1), (6.3) and (6.4) are linearly independent modulo $P_{n}^{*} \cap \mathrm{Id}^{*}(C), n=n_{1}+\cdots+n_{4}$, and since $P_{n}^{*} \cap \mathrm{Id}^{*}(C) \supseteq P_{n}^{*} \cap J$, they form a basis of P_{n}^{*} $\left(\bmod P_{n}^{*} \cap \operatorname{Id}^{*}(C)\right)$ and so $J=\operatorname{Id}^{*}(C)$.

References

[1] Amitsur SA, Levitzki J. Minimal identities for algebras. Proceedings of the American Mathematical Society 1950; 1: 449-463.
[2] Bessades DCL, Ioppolo A, Vieira AC. Standard polynomials and matrices with pseudoinvolutions. Preprint.
[3] Di Vincenzo OM, Koshlukov P, La Scala R. Involutions for upper triangular matrix algebras. Advances in Applied Mathematics 2006; 37: 541-568.
[4] Ioppolo A. Involutions, pseudoinvolutions and superinvolutions on superalgebras. Preprint.
[5] Ioppolo A. A characterization of superalgebras with pseudoinvolution of exponent 2. Algebras and Representation Theory 2021; 24 (6): 1415-1429.
[6] Ioppolo A, Martino F. Varieties of algebras with pseudoinvolution and polynomial growth. Linear and Multilinear Algebra 2018; 66 (11): 2286-2304.
[7] Ioppolo A, Martino F. Varieties of algebras with pseudoinvolution: Codimensions, cocharacters and colengths. Journal of Pure and Applied Algebra 2022; 226 (5): Article ID 106920.
[8] Jaber A. Existence of pseudo-superinvolutions of the first kind. International Journal of Mathematics and Mathematical Sciences 2008; Article ID 386468.
[9] Kemer AR. Representability of reduced-free algebras. Algebra i Logika 1988; 27 (3): 274-294, 375. Translation in Algebra and Logic 1988; 2 (3): 167-184.
[10] Latyshev VN. Standard basis in the T-ideal formed by polynomial identities of triangular matrices. Journal of Mathematical Sciences 2011; 177 (6): 908-914.
[11] Malcev JN. A basis for the identities of the algebra of upper triangular matrices. Algebra i Logika 1971; 10: 393-400.
[12] Martinez C, Zelmanov E. Representation theory of Jordan superalgebras. I. Transactions of the American Mathematical Society 2010; 362 (2): 815-846.
[13] Regev A. Existence of identities in $A \otimes B$. Israel Journal of Mathematics 1972; 11: 131-152.
[14] Valenti A, Zaicev MV. Abelian gradings on upper-triangular matrices. Archiv der Mathematik 2003; 80 (1): 12-17.
[15] Valenti A, Zaicev MV. Graded involutions on upper-triangular matrix algebras. Algebra Colloquium 2009; 16 (1): 103-108.

[^0]: *Correspondence: antonio.ioppolo@unimib.it
 2010 AMS Mathematics Subject Classification: 16R10, 16R50, 16W50

