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Abstract: We compute depth and Stanley depth of the quotient rings of the edge ideals associated with different classes
of graphs. These classes include some lobster trees and unicyclic graphs. We show that the values of depth and Stanley

depth are equal for the classes we considered.
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1. Introduction

Let S := KJz1, ..., 2] be the polynomial ring over a field K and M be a finitely generated Z"-graded S-
module. The K -subspace of M denoted by nK[D] is the subspace generated by monomials of the type nv,
where 7 is a homogeneous element of M and v is a monomial in K[D] and D C {1, 22, ..., x..}. The space
nK|[D] is called a Stanley space of dimension |D| if it is a free K[D]-module, here |D| refers to the number
of variables in D. A Stanley decomposition is the presentation of K -vector space M as a finite direct sum of

Stanley spaces
h

D: M= EB K [Dy).
b=1

The Stanley depth of decomposition D is sdepthD = min{|Dy|, b =1, ..., h}. The Stanley depth of M is
sdepth(M) = max{sdepthD : Dis a Stanley decomposition of M}.

If m:= (x1,22,...,2,), then (S, m) is Noetherian Z"-graded local ring. The depth of M is defined to be the
common length of all maximal M -sequences in m. Equivalently, depth(M) = min{i : Ext*(K, M) # 0}. In [16],
Stanley proposed the following conjecture for finitely generated Z"-graded S-modules, given by depth(M) <
sdepth(M), known as the Stanley’s conjecture. This conjecture was proved for several special cases; see for
instance [2, 3, 13]. But later Duval et al. showed in [7], that this inequality does not hold in general for modules
of type S/I, where I is a monomial ideal. In [9] Herzog, Vladoiu and Zheng proved that the Stanley depth of
a module can be computed in a finite number of steps using posets, when a Z"-graded S-module M is of the

type M = I, /15, where Iy C I; C S are monomial ideals. It is worth mentioning that the method of Herzog et
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al. for computing the Stanley depth of I;/I5 is a hard combinatorial problem, in general. Therefore, there are
a few classes of modules whose Stanley depth is known; see, for instance, [1, 6, 10]. In most of the cases we have
some bounds for Stanley depth and most of the existing bounds are weak, in general. So the objective of this
article is to compute the precise values of depth and Stanley depth of the quotient ring of edge ideals associated
with some classes of graphs. We compute the precise values of depth and Stanley depth of the quotient ring of
edge ideals associated with some classes of lobster trees; see Theorems 3.3 and 3.4 of this paper. Moreover, by
using Theorems 3.3 and 3.4 we compute the precise values of depth and Stanley depth of the quotient ring of
edge ideals associated with some unicyclic graphs; see Theorems 4.1 and 4.2 of this paper. We observe that the

Stanley’s inequality hold for modules associated with these classes of graphs.

2. Definitions and notation

Let G = (Vi, Eg) be a graph with vertex set Vg = {21,...,2,} and edge set E¢. The edge ideal I of the graph
G is the ideal generated by monomials of the type z;x;, where {z;, z;} C Eq. Let I C S be a monomial ideal,
then G(I) denotes the minimal set of monomial generators of I. For any monomial 7, supp(n) := {z; : z;|n}
and for an ideal I generated by monomials, supp(I) = {z; : x;|v, for some v € G(I)}. If there are no loops or
multiple edges in a graph, it is called a simple graph. Throughout this article, all considered graphs are simple.
For ¢ > 1, a graph P, with vertex set Vp, = {21, 2, ..., 2,} and an edge set Ep, = {x172, Tox3, ..., T4 124}
(Ep, =0,if ¢ =1) is called a path of length ¢ —1 denoted by P,. For ¢ > 3, a cycle on ¢ vertices denoted by
C, is a graph with vertex set and edge set, Vo, = {x1, 2, ..., 24} and Eg, = {w122, Tow3,..., Tq 174, T124},
respectively. A graph is said to be connected if there is a path between any pair of its vertices. A unicyclic
graph is a connected graph containing exactly one cycle. If an edge connects two vertices then the vertices are
said to be neighbours of each other. The degree of a vertex x in a graph is the total number of its neighbours
and it is denoted as dg(z). A vertex z with dg(x) > 2 is called an internal vertex. A vertex of degree one is
called a leaf (or pendant vertex). A simple and connected graph is called a tree if there exists a unique path
between any two vertices. For ¢ > 2, a g-star denoted by S, is a tree with (¢ — 1)-leaves and a single vertex
with degree ¢ — 1. A caterpillar is a tree with the property that the removal of pendant vertices leaves a path.
A lobster tree is a tree with the property that the removal of pendant vertices leaves a caterpillar.

Definition 2.1 Let ¢,m,h > 1 and P, be a path on q vertices with vertex set {x1,z2,...,x,}. We define a
lobster tree by attaching m vertices x; y at each vertex x;, where f =1,...,m, and then attaching h pendant

vertices x; 1 at each vertex x; ¢, where k=1,..., h. We denote this lobster tree by Py m p.

For examples of P, n see Figures 1-3.

Definition 2.2 Let ¢ > 3, m, h > 1 and Cy be a cycle on q vertices. We define a unicyclic graph by attaching
m wvertices x; ¢ at each vertex x; of Cy where f =1,...,m, and then atlaching h pendant vertices x; s at

each vertex x; 5, where k =1,...,h. This unicyclic graph is denoted by Cym, p.

For examples of Cy .5 see Figure 4.

Remark 2.3 E¢
mq + q + mqh.

:EP

a,m,h

U {aq, 21}, Thus |G(I(Pymn)| = mq+q+mgh —1 and |G(I(Cymn)| =

a,m,h
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Let ¢,m,h > 1 and P, ., be a lobster tree on g+ mg -+ mgh vertices. Then the edge ideal Iy ., 5 = I(Pym.n)

is given by
Iq,m,h = (I1$1,1, L1L1,25++ 3 L1L1,m, L1,121,1,1,L1,1L1,1,25+ - -, L1,1L1L,1,hy - - - s LI, mTLI,m, 1y - -«
L1,mELl,m by -y LiLitls Li41Ti42, .-+, Lg—1Lq, Lqq,1, LqLq,2y- -+ LgLgms Lq,1Lq,1,1
s Tq12g,1,25+ -+ Tq1Tg,1ms - - - s Tg,mTq, m,1, Tg,mTq,m, 25 « - - » Tg,mTq,m, h)-

Let ¢ = 3, m, h = 1 and Cgmpn be a unicyclic graph on ¢ + mq + mqh vertices. Then the edge ideal
L = 1(Cqm,n) is given by

g = Tgm.hy T174).

Figure 1. Pi55.

AAANAAAA

Figure 2. FPr13.

CONTEONTTO

Figure 3. Ps5.

Lemma 2.4 ([12], Lemma 2.4) Let 0 — N; — Ny — N3 — 0 be a short exact sequence of Z"-graded
S-modules. Then
sdepth(N2) > min{sdepth(Ny), sdepth(N3)}.

Lemma 2.5 ([4]) (Depth Lemma) If 0 — N; — N2 — N3 — 0 is a short exact sequence of modules over a

local ring S, or a Noetherian graded ring with Sy local, then
1. depth(N3) > min{depth(N3),depth(Ny)}.

2. depth(N7) > min{depth(N3), depth(N3) + 1}.
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Figure 4. From left to right Cs52 and Cs2,2.

3. depth(N3) > min{depth(N;) — 1,depth(N2)}.
Proposition 2.6 ([1]) Let » > 2. If I = I(S,), then sdepth(S/I) = depth(S/I) = 1.
Lemma 2.7 ([11], Lemma 2.8) Let r > 2. If I = I(P,), then depth(S/I) = [5].

Proposition 2.8 Let I C S be a monomial ideal and for any monomial v ¢ I, we have
1. depthg(S/(I :v)) > depthg(S/I), ([15, Corollary 1.3]).
2. sdepthg(S/(I : v)) > sdepthg(S/I), ([5, Proposition 2.7]).

Lemma 2.9 ([9], Lemma 3.6) Let I C S be a monomial ideal. If S’ := S®x K[z,41], then depth(S’/IS") =
depth(S/I) + 1 and sdepth(S’/IS") = sdepth(S/I) + 1.

Lemma 2.10 ([6], Lemma 2.12) Let I’ C S’ = Klz1,...,2,] and I” C S” = K[zy41,...,2,] be the
monomial ideals, where 1 < v < r. Then depthg(S’/I'®k S”/I") = depthg(S/(I'S+1"S)) = depthg (S'/I")+
depthg., (S”/1").

Lemma 2.11 ([6], Lemma 2.13) Let I' C S’ = K[z1,...,2,]) and I” C 8" = K[zy+1,...,%,] be the ideals

generated by monomials, where 1 < v < r. Then
sdepthg(S/(I'S +I"S)) = sdepthg(S'/I' @K S”/I") > sdepthg, (S"/I") + sdepthg, (S”/I").

Lemma 2.12 ([10], Lemma 3.3) Let I C S be a square-free monomial ideal with supp(I) = {z1,z2,...,2.}.
Let w := @y, 24, - - - 2, € S/I, such that, z,,w € I, for all z,, € {x1,22,...,2,}\supp(w). Then sdepth(S/I) <

v.
3. Depth and Stanley depth of cyclic modules associated with some classes of lobster trees
Let A := {z1,..., 2.}, B = Ul_{zi1,..., zim} and C = U, UL, {z;71,2if2,...,2ifnt. Then

Sq,mp = K[AUBUC]. In this section, we compute depth and Stanley depth of a cyclic module Sy m.n/Iqm h-

We show that the values of depth and Stanley depth are equal and can be given in terms of ¢ and m, which
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also proves the Stanley’s inequality for this module. We make the following remarks before the proof of our

main theorems.

Remark 3.1 While proving our results by induction on ¢, sometimes we may have the description S . 1/Z0,m.h ,
in that case we define So m,n/lo,m,n = K, hence depth(So m.n/lo,m,n) = sdepth(So m.n/lo.m,n) = 0.

Remark 3.2 Let I be a squarefree monomial ideal of S minimally generated by monomials of degree at most
2. We associate a graph Gy to the ideal I with Vi, = supp(I) and Eg, = {{zs,z;} : z;z; € G(I)}. Let
x4 € S be a variable of the polynomial ring S such that x; ¢ I. Then (I : z;) and (I, ;) are monomial ideals
of S such that G(;.,,) and G(1 ,) are subgraphs of G;. See Figures 5 and 6 for examples of Gz,
and G(;

m,h ,qum)

, respectively. For examples of G . y and Gpr

W Tam) S€€ Figure 7. For instance,
q,m,h>? ’

am,h i Tqm) b Tqm

we have the following isomorphism:

S532/(Is32 @ ©53) = 9532/ 1(G 1,4, 054)) = S132/1a32 @K K[r51,751,1,%51,2]/(51,175,1,75,175,1,2)

QK Klxs2,252,1,5,2,2]/ (2521052, %5 20522) Qx K25 3,25 3,1,25,32]

OTOTOTS

Figure 5. GUs,a,zws,a)'

FOTOTOIN

Figure 6. G(Is,s,z:x5,3)~

Theorem 3.3 Let ¢, m, h > 1. Then depth(Sgm,n/Iqm.n) = mq.

Proof We have the following short exact sequence

0 — Sqm,n/Tgm,n  Tqm) T Sqmh/Igmn — Sqm.n/Tgm,n, Tgm) — 0. (3.1)
Let m,h > 1. We have two cases to consider, namely ¢ =1 and ¢ > 2.

(1) Let ¢ =1. If m =1, then Py 1 = Shyo and by Proposition 2.6 depth(S1,1,4/l11,) =1 =1-1, as
required. If m > 2, then

m—1

Stmn/Timn : T1,m) = ® K[z, 50, gl /(T2 g1, T T g R) ®K[$1,m]~
f=1 K
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AN

Figure 7. From left to right G; and Gy

é,s,2 ) 5,3) 5,3,2°25,3) "

By Lemma 2.10 we have

m—1
depth (S, mn/(T1mp  T1m)) = Y depth(K [z g, 21,10, - 21, £.0]/ (@1, 521,10, - - T2, 571, 1.0)
F=1

+ depth(K[z1,m)).
Using Proposition 2.6, we get depth (S1,m.n/(T1,m.h : T1,m)) = 1+ Z}n:_ll 1=14+m—1=m. It is easy to
see that S1mn/(T1,m.h, T1.m) = 51, m=1,0/11, m=1,n @Kk K[T1,m,1,T1,m, 2, - -5 T1,m, n]- By Lemma 2.10

depth (S1.m.n/(T1,m.h, T1,m)) = depth(S1,m—1.n/I1,m—1,1) + depth (K[z1,m.1, T1,m,2; - - - » T1,m,n])-
Applying induction on m, we get depth(S1,m.n/(I1,m.h, T1,m)) =m — 1+ h. Since

depth(sl,m,h/(ll,m,h : xl,m)) < depth(Sl,m,h/(Il,m,mxl,m))~

Thus by applying Depth Lemma on Eq. 3.1, depth(S1,m n/I1,m.n) = depth(S1m.n/(T1,mp @ T1,m)) = m,
this completes the proof when ¢ = 1.

(2) Let ¢ > 2. If m =1, then S%Lh/(l%lyh : l‘q71) = Sq_1717h/Iq_1,1,}L RK K[xq,1]~ If m > 2, then

Sqmn! Tgm,h * Tam) = Sq—1,mn/Ig—1,m,n ® Klzg,m] ®

K K

m—1

® kK[zqf,2q, 0, Tq 0]/ (Tg,1Tq 115 - s g, £ Tq,f.0)-
f=1

By Lemma 2.10, Proposition 2.6, and induction on ¢, we have
depth(Sg,1,n/(Ig,1,h : g,1)) = depth(Sg—1,1,n/Ig—1,1,n) + depth(K[zg1]) = 1(¢ — 1) + 1 = ¢.
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If m > 2, then by Lemma 2.10

depth(Sy m.n/(Lgmn : Tqm)) = depth(Sy—1.m.n/lg—1,mn) + depth(K[zg m])+

> depth(K[2q 5, %q,,1, - > Tq 10l (Tq fTq p.15 -5 Ta fTqpn)):

By Proposition 2.6 and induction on ¢, we have

m—1
depth(Sy m.n/Tgmn : Tgm)) =m(g—1)+ 1+ Z 1=m(g—1)+1+4+ (m—1) =mgq.
f=1
Thus depth(Sg,m,n/(Ig,mh ¢ Tqm)) = mq, for all m > 1. Let I; ;= (IgmnsTqm). We have the
following short exact sequence
0 — Squmn/Ugmn : Ta) = Sqann/Igmn — Squnn/ L5 mn:Tq) — 0. (3.2)

Sqmnd Tgmn : q) = Sq-2mn/Tg—2mn Q) k Klq .1, -, 2q,1.0] ) Klzg] @)

f=1 K K
m
Q) kK[wg-1.5:Tg- 1.0 s Tg1,£0]/(@q1 fTg 1,505 -+ Tq1,fTq-1.7.0)5
f=1
and
m—1
Sqmn/ ULgm,ns Tq) = Sq=1,mn/Lg—1,m,n ® kK[Tg 5, %q, 11, s Tq ]/ (TqpTq, 1,05 -y Tq,Tq,1,h)
K f=1

Q Kltgm1s - Tgmpl-
K

Thus by Lemma 2.10

depth(qum,h/(I;mﬁh txg)) = depth(Sq_z,myh/Iq_gymh)Jrz depth(K[zqg 51, - .., Tq r.n))+depth(K[z,])

f=1
m
+ Y depth(K[zg 1,5, %g 1,41, > Tg1,£8)/ (Tq-1,Tq 1,11, -+ 1 Tq1,fTg-1.£.1));
and
depth(Sg,m,n/(1g,m,nsTq)) = depth(Sg—1,m,n/Ig—1,m,n)
+ Z depth(K[zq,r, T, £,1, - s Tq,£,0)/ (Tq £ Ta,p,15 - -5 Ta,fTq,f,0))

-+ depth(K[:ﬂq,m,l, RS xq,m,h])'
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By induction on ¢ and Proposition 2.6, we have

depth(Sgmn/ (L mn : 7g) =m(g—2)+mh+1+> L=m(g—1)+mh+1,

f=1
and
m—1
depth(Sy m.n/ (g mnsTq)) =m(qg—1) + Z 1+h=m(g—1)+m—-1+h=mg—1+h.
f=1

Now applying Depth Lemma on Egs. 3.1 and 3.2, we have

depth(Syg m,n/Igm.n) >

min { depth(Sy m.n/(Lgmn : Tgm)), depth(Sq,m)h/(I;m’h 1 xq))s depth(Sq’m’h/(I;m’h,xq))} =

min{mg, m(q—1) +mh+1, mg— 1+ h} =mq.

For the upper bound using Proposition 2.8 we get depth(Sg.m,n/Igm.n) < depth(Sqmn/(Igm.h : Tgm)) =
mq. This completes the proof.

Theorem 3.4 Let g,m,h > 1. Then sdepth(Sg m.n/Ilgm.n) = mg.

Proof The proof of the inequality, sdepth(Sqm.n/Iqm,n) > mg, is similar to the proof of the same in-

equality for depth in Theorem 3.3. We have to use Lemma 2.11 instead of Lemma 2.10 and to apply Lemma
2.4 instead of Depth Lemma on Egs. 3.1 and 3.2. It remains to show that sdepth(Sgm n/Igm.n) < mq.
Since w = T11T12° T1,mT2,1%2.2  T2m * Lg1Lq 2" Tgm € Sqmi/Ilgmn, and zyw € Iy, 5, for all
x; € Vp, ., \supp(w), therefore by using Lemma 2.12, we have sdepth(Sy m,n/lgm,n) < mq. This completes
the proof. O

Corollary 3.5 Stanley’s inequality holds for cyclic module Sgm.pn/Iqm.h -

4. Depth and Stanley depth of cyclic modules associated with some classes of unicyclic graphs

In this section, we use the values of depth and Stanley depth of cyclic module Sgmn/Iq,m,n for finding the
values of depth and Stanley depth of cyclic module Sy m.n/1 (/Jm - We also show that the values of depth and
Stanley depth are equal which proves the Stanley’s inequality for the cyclic module Sy .0/

,m,h*
Theorem 4.1 Let ¢ >3 and m, h > 1. Then depth(Sqm.n/1;,, ;) = mq.

Proof We have the following short exact sequence

"Tq,m

0— qum’h/(‘[(ll,m,h P Tgm) —— Sq,m,h/Iz;,m,h - Sq,m,h/utg,m,h’xq,m) — 0. (4.1)



IQBAL and ISHAQ/Turk J Math

Clearly, Sqmn/(y n t Tam) = Sqmn/Tgm,n * Tgm), thus by Theorem 3.3 depth(Sqmn/(1; 1 Tqm)) =

depth(Sy m.n/(Lgmn : Tgm)) = mq. Let I** = (I

aomn = g mn Zq,m)- We consider another short exact sequence

0 — S/ n : g) — Squmn/ L — Squmin) L psq) — 0. (4.2)

We have the following isomorphism

m
Sgmn! Ty n s %q) = Sq-smn/Ig-smn Q) Q) k Klw1.p, 2111, - - w1 pnl/ (@ gz 51, - 21, 521,5.0) Q)

K f=1 K
m—1

Q) kK[zg 1.5, Tq-1.41, s Tg-1,10]/(Tq-1,fTg-1.1.1, -+ Tq1,fTg-1.7.1)

f=1

&) K Klq 1,15 g5, Q) Kl
=1 K

by Lemma 2.10
depth(Sy,m.n/(Iy 5 n : ©q)) = depth(Sq—3 m.n/Ig—3m.n)+

m
+ Y depth(K (w1 g, 21,41, -5 @1, 1.0)/(T1 5T, 105 - T15T110))
f=1
m
+ Y depth(K[ag 1., Tg-1,15 - » Tgo1,£0]/(@q1,Tq 1415 -+ Tq1,/Tq1,£,n))
=1
m
+ Z depth(K[zg 1, ..., %q,f,n]) + depth(Kz,]).
F=1

Using Theorem 3.3 and Proposition 2.6 we have

depth(Sg,mn/(Iymn : q)) = (¢ —3)m + Z 1+ Z 1+mh+1=m(g—1)+mh+1.
f=1  f=1

Depending the values of m we have the following isomorphisms:

Son/ g nTe) = Sq—11,0/Ig—1,1,0 @Kk K[g1,1, -+ Tg1,n]s
and for m > 2,
m—1
Sqmn! Lo q) = Sq—tmn/Ig-1mn Q) Q) kK[2q.f:Tq.p.1s -+ s Ta.fun]/(Tq fTq p 1, - -+ Tq T, pn)
K f=1

® Klzgm,a1, -5 Tamnl-
K
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Again by Lemma 2.10,
depth(Sq’l,h/(I;f‘Lh, xq)) = depth(Sy—1.1.n/Ig—1.1.n) + depth(K[zgm.1, - -+, Tgm.h])s

and for m > 2,

depth(Sq,m,n/(1g7m.ns%q)) = depth(Sq—1,m,n/Ig—1,m,n)
m—1
+ ) depth(K[zg,7, 2,51, -+ Tq, 10/ (g, fq, .15 - Ta.5Tq,1,0))
f=1

+ depth(K[zgm1, ---» Tgm.h])-
From Theorem 3.3 and Proposition 2.6, we have
depth(Sg.n/(Ig1h:2q)) = (¢—1) +h=qg—1+h,

and for m > 2,
m—1
depth(Sgmn/ (I3t %)) = (@ —)m+ Y 1+h=mg—1+h.
F=1
Thus we have depth(Sy,m,n/(1;75, 1 Tq)) = mq—1+ h, for all m > 1. Now applying Depth Lemma on Eqgs.
4.1 and 4.2, we have

depth(sqm,h/(ﬂ;,m,hvxq,m)) >

min { depth(Sq’m,h/(IzI;,m,h t Zg,m)), depth(Sq,m.n/(Igim n : Tq)), depth(Sqm.n/( ;::n,qu))}

= min{mg,m(qg — 1) + mh + 1,mg — 1 + h} = mq.

Now by Proposition 2.8 we have depth(Sqm.n/1; ) < depth(Sqmn/ (L} 1 ¢+ Tqm)) = mg. This completes
the proof. O

Theorem 4.2 Let ¢ > 3 and m, h > 1. Then sdepth(Sqmn/1} ) = mq.

Proof We use Lemma 2.11 and Theorem 3.4 instead of Lemma 2.10 and Theorem 3.3, respectively and repeat
the proof of Theorem 4.1. Then applying Lemma 2.4 instead of Depth Lemma on Eqgs. 4.1 and 4.2 we get
sdepth(Sg,m,n/1g ) = Mmg. Since w = 211212+ T1,mT21T2,2*** T2m *** Tq,1Z¢,2 " * Tq,m € Sqmn/ 1}, p, and

zw € I’

gm.h for all z; € Viogm,p\supp(w), thus by Lemma 2.12 we have sdepth(Sgmn/I} ;) < mgq. This

completes the proof.
O

Corollary 4.3 Stanley’s inequality holds for cyclic module S, ,m7h/1,;

,m,h *
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