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Abstract: An element a of R is called s-weakly regular (SWR) if a ∈ aRa2R . A ring R is called an almost SWR if
for any a ∈ R , either a or 1− a is SWR. In this paper, we introduce almost SWR rings as the generalization of abelian
von Neumann local (VNL) rings and SWR rings. We provide various properties and characterizations of almost SWR
rings. We discuss various extension rings to be almost SWR. Further, we discuss SWR group rings and almost SWR
group rings.
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1. Introduction
Throughout this paper, R is assumed to be an associative ring with identity 1 ̸= 0 , and all modules are unitary
unless otherwise stated. We denote the ring of integers modulo n by Zn and cyclic group of order n by Cn .
The symbol J(R) denotes the Jacobson radical of R . We denote the ring of all upper triangular n×n matrices
over a ring R by symbol Tn(R) . The ring of formal power series in indeterminate x over a ring R is denoted by
R[[x]] . For a nonempty subset X of R , l(X) and r(X) stand for left and right annihilator of X , respectively.
For some usual notations, we refer to [10] and [14].

An element a ∈ R is (strongly) regular if there exists an element b ∈ R such that a = aba (ab = ba). A
ring R is called (strongly) regular if every element of R is (strongly) regular. Camillo and Xiao [3] investigated
weakly regular rings. A ring R is called right (left) weakly regular if for every element a ∈ R , a ∈ aRaR(RaRa) .
A ring R is weakly regular if it is both right and left weakly regular. As a generalization of strongly regular
rings, in [12], Gupta introduced SWR rings. An element a ∈ R is called SWR if a ∈ aRa2R . A ring R is said
to be SWR if every element of R is SWR. The class of SWR rings lies strictly between the class of right (or
left) weakly regular rings and strongly regular rings. A ring R is local if and only if for any a ∈ R , either a

or 1 − a is invertible. Contessa in [8], as a common generalization of regular rings and local rings, introduced
von Neumann local (VNL) rings for commutative rings. A ring R is called VNL if for any a ∈ R , either a or
1 − a is regular. VNL-rings for noncommutative rings were studied by Chen and Tong [6]. Moreover, Grover
and Khurana [11] characterized VNL-rings in the sense of relating them to some other familiar classes of rings.
For more information about VNL-rings and their related rings, one can see [5, 6, 8] and [17].

The concept of SWR rings together with the notion of local rings gives motivation for the paper. In the
present paper, we discuss those elements where either a or 1 − a is SWR. We introduce a new class of rings
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called almost SWR rings. The class of almost SWR rings is a proper generalization of the class of abelian VNL
rings and SWR rings. This paper is motivated by papers [6, 12].

Definition 1.1 A ring R is said to be an almost SWR ring if for any a ∈ R , either a or 1− a is SWR.

In Section 2 , we prove various properties of almost SWR rings, and some examples are provided to show
that the class of almost SWR rings properly contains the classes of SWR, abelian VNL and weakly tripotent
rings. A two sided ideal I in a ring R is said to be SWR ideal if each of its elements is SWR. We prove that a
ring R is almost SWR if and only if, for any SWR ideal I of R , R/I is almost SWR. We characterize abelian
almost SWR rings. It is proved that if e is an idempotent in an abelian almost SWR ring R , then either eRe

or (1−e)R(1−e) is SWR, but the converse holds if R is an exchange ring. In Section 3 , we consider extensions
of almost SWR rings such as triangular matrix rings, trivial extensions, and so on. In Section 4 , we study
semiperfect almost SWR rings. In Section 5 , we prove that if RG is a commutative ring, then RG is SWR if
and only if R is SWR, G is locally finite and n ∈ o(G) is a unit in R where o(G) is the set of orders of all
finite subgroups of G . Let KG be a group algebra over a field K satisfying a nontrivial polynomial identity.
If KG is SWR, then K is SWR and G is locally finite. It is proved that if RH is almost SWR for every
finitely generated subgroup H of G , then RG is almost SWR, but the converse of this result partially holds.
We prove that if G = H ⋊ K is a semidirect product of finite subgroup H by a subgroup K , then almost
s-weakly regularity of RG implies almost s-weakly regularity of RK . We show that for a finite group G , the
group ring RG need not be almost SWR. It is also proved that if R is a commutative local ring and G an
abelian p -group with p ∈ J(R) , then RG is almost SWR.

2. Basic properties and examples

We first recall some definitions. An element a of R is called tripotent if a3 = a and a ring R is tripotent if all
elements in R are tripotent. In [9], Danchev introduced weakly tripotent rings. A ring R is weakly tripotent if
any of its element a ∈ R satisfies the equations a3 = a or a3 = −a . A ring R is called semiregular if for each
a ∈ R , there exists a regular element b ∈ R such that a − b ∈ J(R) . Recall that a ring R is called abelian if
each idempotent in R is central.

Remark 2.1 (1) Clearly, SWR and local rings are almost SWR rings.

(2) Every abelian VNL-ring is an almost SWR ring.

(3) Every tripotent ring and weakly tripotent ring is an almost SWR ring.

(4) For a commutative ring, R[[x]] is almost SWR if and only if R is local.

(5) For n ≥ 2 and n =
∏m

i=1 pi
ki is a prime power decomposition, the ring Zn of integers mod n is almost

SWR if and only if (pq)2 does not divide n , where p and q are distinct primes.

(6) If R = {(q1, q2, . . . , qn, a, a, . . . ) | n ≥ 1, qi ∈ Q, a ∈ Z(2)} , where Z(2) is the localization of Z at prime ideal
generated by 2 , then R is an abelian VNL-ring with J(R) = 0 but not regular. Thus, R is almost SWR
but not semiregular.
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Thus, the class of almost SWR rings contains the classes of SWR, abelian VNL and weakly tripotent
rings. Then, we have

Abelian VNL
⇓

SWR =⇒ Almost SWR
⇑

Weakly Tripotent

However, the following examples show that its reverse implication is not true.

Example 2.2 (1) Let R = Z4 be the ring of intergers modulo 4 . Then, R is an almost SWR ring but not
SWR.

(2) Let R =

{(
a b
0 a

)
| a, b ∈ Z2

}
. Then,

R =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
0 0

)
,

(
1 1
0 1

)}
.

If r =

(
0 1
0 0

)
, we can not find x, y in R such that r = rxr2y but we can easily verify that

1− r =

(
1 1
0 1

)
is SWR. Thus, R is an almost SWR ring but not SWR.

(3) Let R = T2(Z2) . Then, R is an almost SWR ring but not an abelian VNL because idempotents are not
central in R .

(4) Consider R = Z4 . Then, R is an almost SWR ring but not weakly tripotent.

Example 2.3 Let RMS be a bimodule. If R is SWR and S is local, then T =

(
R M
0 S

)
is an almost SWR

ring.

Proof Let β =

(
a m
0 b

)
∈ T . Since S is local, b or 1S − b is invertible. Assume that b is invertible. By

hypothesis, a is SWR in R . So, we have a = axa2y for some x, y ∈ R . Thus,(
a m
0 b

)
=

(
a m
0 b

)(
x −x(am+mb)b−2

0 b−2

)(
a m
0 b

)2 (
y 0
0 1

)
.

It implies that β is SWR.
Assume that 1S − b is invertible. Since 1R − a is SWR, we have 1− a = (1− a)z(1− a)2w for some z, w

in R . Similarly, 1T − β =

(
1− a −m
0 1− b

)
is SWR in T . 2

Now we elaborate some properties of almost SWR rings.

Proposition 2.4 The following statements are true for an almost SWR ring R .
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(1) Every homomorphic image of R is almost SWR.

(2) The center of R is a VNL-ring.

(3) The corner ring eRe is almost SWR for every e2 = e ∈ R .

Proof (1) It is straightforward.
(2) Let C(R) be the center of R and x ∈ C(R) . Since R is an almost SWR ring, either x or 1− x is

an SWR element. If x is SWR, then we have x ∈ xRx2R = x3R implies immediately that x = x(xky)x with
y ∈ R and k ≥ 1 . Moreover, for every a ∈ R , a(xky) = xk−1(xa)y = xk−1(xk+1yx)ay = xk−1ya(xk+1yx) =

xk−1y(ax) = (xky)a . Hence, xky ∈ C(R) . Similarly, if 1− x ∈ C(R) is an SWR element in R , then 1− x is
regular in C(R).

(3) Let a ∈ eRe . Since R is an almost SWR ring, either a or 1 − a is SWR. If a is SWR, we have
a = axa2y for some x, y ∈ R . Thus, a = eae = eaxa2ye = aexea2eye . It follows that a is SWR in eRe .
Similarly, if 1− a is SWR in R , then e− a is SWR in eRe . Hence, eRe is an almost SWR ring. 2

The following result follows immediately from Proposition 2.4(2) .

Corollary 2.5 Let R be an almost SWR ring. Then, R is indecomposable as a ring if and only if its center
is local.

Remark 2.6 In [1], r -clean rings were studied by Ashrafi and Nasibi. A ring R is called r -clean if for any
element a ∈ R , we have a = e + r where e is an idempotent and r is a regular element in R . If R is an
r -clean ring with no zero divisor, then by [1, Corollary 2.10 ], R is local. Thus, R is an almost SWR ring.

It can be easily verified that direct product of SWR rings is SWR if and only if all factors are SWR. But
we observe that the direct product of almost SWR rings may not be an almost SWR ring.

Example 2.7 The ring Z4 of integers modulo 4 is an almost SWR ring. But Z4 × Z4 is not an almost SWR
ring. By choosing a = (2̄, 3̄) , we can easily show that neither a nor 1− a is SWR, and we are done.

For the direct product of rings to be almost SWR, we prove the following theorem.

Theorem 2.8 Let R =
∏

β∈I Rβ . Then, R is an almost SWR ring if and only if there exists β0 ∈ I such that
Rβ0

is an almost SWR ring and for each β ∈ I\β0 , Rβ is an SWR ring.

Proof Let x = (xβ) ∈ R , β ∈ I . By hypothesis, xβ0
or 1Rβ0

− xβ0
is SWR in Rβ0

. Assume that xβ0
is

SWR in Rβ0
, then x is SWR. If 1Rβ0

− xβ0
is SWR in Rβ0

, then 1− x is SWR in R .
Conversely, suppose that R is an almost SWR ring. Then, Rβ is also an almost SWR ring for every

β ∈ I by Proposition 2.4(1) . Write R = Rβ0
× S , where S =

∏
Rβ , β ∈ I\β0 . If neither Rβ0

nor S is SWR,
then there exist non SWR elements a ∈ Rβ0 and b ∈ S . Now choose r = (1Rβ0

− a, b) . Then, neither r nor
1 − r = (a, 1S − b) is SWR in R , a contradiction. Thus, either Rβ0

or S is SWR. If S is an SWR ring, then
we are done. If S is an almost SWR ring, then the iteration of the previous technique completes the proof. 2

Lemma 2.9 Let R be an abelian almost SWR ring. Then for every idempotent e ∈ R , either eRe or
(1− e)R(1− e) is SWR.
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Proof Consider the Pierce decomposition

R ∼=
(

eRe eR(1− e)
(1− e)Re (1− e)R(1− e)

)
.

Suppose that a ∈ eRe and b ∈ (1 − e)R(1 − e) are not SWR. Then neither r :=

(
a 0
0 1− b

)
nor

(1− r) =

(
1− a 0
0 b

)
is an SWR element in R , which is a contradiction. 2

The example given below reveals that the converse of the Lemma 2.9 is false.

Example 2.10 Let R = {(q1, q2, . . . , qn, z, z . . . ) | qi ∈ Q, z ∈ Z, n ≥ 1} . Clearly, either eRe or (1−e)R(1−e)

is SWR for every e2 = e ∈ R . But R is not an almost SWR ring because the homomorphic image Z of R is
not almost SWR.

An element a of R is said to be an exchange [16] if there exists an idempotent e ∈ R such that e ∈ Ra

and 1− e ∈ R(1− a) . A ring R is an exchange ring if and only if each element of R is exchange. It is easy to
show that a commutative almost SWR ring is an exchange ring. The next theorem shows that the converse of
Lemma 2.9 is true for an exchange ring.

Theorem 2.11 Let R be an abelian exchange ring. Then R is almost SWR if and only if either eRe or
(1− e)R(1− e) is SWR for every e2 = e ∈ R .

Proof The ‘only if’ part follows by Lemma 2.9 .
Conversely, suppose that R is an exchange ring. Then, for any a ∈ R , we have an idempotent e ∈ R

such that e ∈ Ra and 1− e ∈ R(1− a) . Then Ra+ R(1− e) = R and Re+ R(1− a) = R . Thus, Rae = Re

and R(1− a)(1− e) = R(1− e) . So, both ae and (1− a)(1− e) are SWR. Since R is an abelian, eRe = Re .
By hypothesis, if eRe is SWR, then (1 − a)e is SWR. Therefore, 1 − a = (1 − a)e + (1 − a)(1 − e) is SWR.
Similarly, if (1− e)R(1− e) is SWR, then we can prove that a is SWR. 2

Proposition 2.12 Let R be a commutative ring. Then R[x] is not an almost SWR ring.

Proof Assume that R[x] is an almost SWR ring. Then R[x] being a commutative almost SWR ring implies
that R[x] is a VNL-ring, which contradicts [17, Corollary 4.8 ]. 2

Lemma 2.13 Let R be a ring. If a− aza2w is SWR for some z, w ∈ R , then a is SWR.

Proof If a− aza2w is SWR, then there exist s, t ∈ R such that

(a− aza2w)s(a− aza2w)2t = a− aza2w.

If we set x = saz − s+ z and y = t− wsa2t+ waza2wt− wsaza2waza2wt− za2wt+ wsa2za2wt+ w , then it
can be verified that axa2y = a . Thus, a is SWR. 2

Let R be an almost SWR ring and I an ideal of R . Then, clearly, R/I is almost SWR. But in general,
the converse of this result is not true (for example, let R = Zp where p is a prime number, then R is almost
SWR but Z is not almost SWR). The following theorem gives another characterization of almost SWR rings.

1901



JANGRA and UDAR/Turk J Math

Theorem 2.14 Let I be an SWR ideal of a ring R . Then, R is an almost SWR ring if and only if R/I is
almost SWR.

Proof Suppose that R is an almost SWR ring. Then, by Proposition 2.4(1) , R/I is almost SWR.
Conversely, suppose that R/I is almost SWR. Then, either a+ I or 1− a+ I is SWR. Thus, there exist

x, y, z, w ∈ R such that either a − axa2y ∈ I or (1 − a) − (1 − a)z(1 − a)2w ∈ I . Since I is an SWR ideal,
either a− axa2y or (1− a)− (1− a)z(1− a)2w is an SWR element of R . If a− axa2y is SWR, then we have
(a − axa2y) = (a − axa2y)t(a − axa2y)2s for some t, s ∈ R . By Lemma 2.13 , it follows that a = aga2h for
some g, h ∈ R . Similarly, if (1− a)− (1− a)z(1− a)2w is SWR, then we can show that 1− a is SWR. 2

In [12], Gupta introduced S(R) = {a ∈ R | (a) is a SWR ideal in R} , which is the unique maximal two
sided SWR ideal of R , where (a) is the principal ideal of R generated by a ∈ R and proved that S(R/S(R)) = 0 .
Following [2], M(R) = {a ∈ R | (a) is a regular ideal in R} is the unique maximal two sided regular ideal of
R . In [6], Chen and Tong gave a characterization of abelian VNL rings through local rings. Analogously, we
characterize commutative almost SWR rings through local rings.

Proposition 2.15 Let R be a commutative ring. Then, R is an almost SWR ring if and only if R/S(R) is a
local ring.

Proof Suppose that R/S(R) is a local ring. Then R/S(R) is an almost SWR ring. Thus, by Theorem 2.14 ,
R is an almost SWR ring.

Conversely, it is easy to see that a commutative almost SWR ring R is a VNL-ring. Let I be a SWR
ideal in R . Then, we have

S(R) = {a ∈ R | ar ∈ I, r ∈ R}

= {a ∈ R | ar = (ar)x(ar)2y, x, y ∈ I}

= {a ∈ R | ar = (ar)z(ar), z = x(ar)y ∈ I}

= M(R)

Then, in view of [6, Lemma 2.7 ], R/S(R) is local. 2

The necessary conditions of Theorem 2.15 is not true for arbitrary rings, as shown in the following
example.

Example 2.16 Let R = T2(Z2) . Then R is an almost SWR ring but R/S(R) is not local. Since in view of
[12, Theorem 10(4) ], S(T2(Z2)) = 0 . Then, R/S(R) = T2(Z2) is not local.

Proposition 2.17 Let L be some nonempty subset of R and (L)r be a right ideal generated by L . Then, for
a commutative ring R , the following are equivalent:

(1) R is a almost SWR ring.

(2) At least one of the element in L is SWR, whenever (L)r = R .

Proof For any a ∈ R , let L = {a, 1− a} . Since 1 = a+ 1− a ∈ (L)r , (L)r = R . Thus, either a or 1− a is
SWR.
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Conversely, if R is SWR, then the result follows. Otherwise, suppose that R is an almost SWR ring
which is not SWR. Now there exist l1, l2, . . . , lt in any nonempty subset L of R with (L)r = R such that
l1R+ l2R+ · · ·+ ltR = R . Then, there exist r1, r2, . . . , rt ∈ R satisfying l1r1 + l2r2 + · · ·+ ltrt = 1 , and thus
l̄1r̄1 + l̄2r̄2 + · · · + l̄tr̄t = 1̄ in R = R/S(R) . And by Proposition 2.15 , R is a local ring. It follows that there
exists an l̄k such that l̄k ∈ U(R) ; thus, l̄k is SWR in R . So, l̄k = l̄kx̄k(l̄k)

2ȳk for some x̄k, ȳk ∈ R . Then
lk − lkxk(lk)

2yk ∈ S(R) , it implies that lk − lkxk(lk)
2yk = (lk − lkxk(lk)

2yk)ak(lk − lkxk(lk)
2yk)

2bk for some
ak, bk ∈ R . Thus, lk is an SWR element by Lemma 2.13 . 2

The following proposition shows that an almost SWR ring R is the direct summand of either r(a) or
r(1− a) for all a ∈ R .

Proposition 2.18 If r(a) = r(b) and r(1− a) = r(1− b) , for each a ∈ R and b ∈ Ra2R . Then R is almost
SWR if and only if either r(a) or r(1− a) is direct summand.

Proof Let a ∈ R and r(a) be the direct summand. Then, we have an ideal I ⊂ R such that R = r(a)⊕ I .
So, there exist d ∈ r(a) and b ∈ I such that d+ b = 1 and hence, a = ad+ ab . Thus, a = ab . Since Ra2R is
a two sided ideal of R , b ∈ Ra2R . Thus, a is SWR. If r(1− a) is direct summand, then there exists an ideal
J ⊂ R such that R = r(1− a)⊕ J . Thus, we can prove that 1− a is SWR.

Conversely, let for any a ∈ R , either a or 1−a is SWR. If a is SWR, then there exists b = ta2s ∈ Ra2R

such that a = ata2s for some t, s ∈ R . Then, a(1− ta2s) = 0 , so (1− ta2s) ∈ r(a) . Thus, 1 = (1− ta2s)+ ta2s .
Hence, R = r(a) + Ra2R . Now suppose that x ∈ r(a) ∩ Ra2R , then ax = 0 and x = ta2s for some t, s ∈ R .
Thus, ta2s ∈ r(a) = r(b) , so bta2s = 0 . Then, bx = 0 and so, x = 0 . Therefore, r(a) ∩ Ra2R = 0 . Hence,
R = r(a) ⊕ Ra2R . Similarly, if 1 − a is SWR, then we can deduce that R = r(1 − a) + R(1 − a)2R and
r(1− a) ∩R(1− a)2R = 0 . Hence, R = r(1− a)⊕R(1− a)2R . 2

3. Extension rings
We start this section with the necessary conditions for an upper triangular matrix ring to be almost SWR.

The proof of the following lemma is trivial.

Lemma 3.1 Let diag(a1, a2, . . . , an) be the n×n diagonal matrix with ai in each entry on the main diagonal.
Then, diag(a1, a2, . . . , an) is SWR in Tn(R) if and only if a1, a2, . . . , an are all SWR in R .

Theorem 3.2 If Tn(R) is an almost SWR ring for some n ≥ 2 , then R is an SWR ring.

Proof Let A =diag(a, 1 − a, 1, . . . , 1) ∈ Tn(R) . Then In − A =diag(1 − a, a, 0, . . . , 0) . Since Tn(R) is an
almost SWR ring, either A or In −A is SWR. For any case, by Lemma 3.1 , a is SWR. Thus, R is SWR. 2

The example given below shows that the converse of above Theorem 3.2 may not be true.

Example 3.3 The ring T2(Z6) is not almost SWR because neither
(

3 1
0 3

)
nor

(
1 0
0 1

)
−

(
3 1
0 3

)
is

SWR although Z6 is an SWR ring.

Proposition 3.4 For any ring R and n ≥ 4,Tn(R) is not an almost SWR ring.
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Proof By applying Proposition 2.4(3), we may assume that n = 4 . Let C =

(
0 a
0 0

)
, then neither

diag(C, I2 − C) =

((
0 a
0 0

)
,

(
1 −a
0 1

))
nor diag(I2 − C,C) =

((
1 −a
0 1

)
,

(
0 a
0 0

))
is SWR.

Hence, Tn(R) is not an almost SWR ring for any n ≥ 4 . 2

Let A be a ring and B a subring of ring A with 1A ∈ B . We set

R[A,B] = {(c1, c2 . . . , cn, d, d . . . )|ci ∈ A, d ∈ B,n ≥ 1}

with addition and multiplication defined componentwise.

Theorem 3.5 The following statements are equivalent:

(1) R[A,B] is an almost SWR ring.

(2) A is an SWR ring and B is an almost SWR ring.

Proof Construct a homomorphism f : R[A,B] → B defined by f(c1, c2, . . . , cn, d, d . . . ) = d . Then,
R[A,B]/kerf ∼= B . Thus, B is an almost SWR ring by using Proposition 2.4(1) . If A is not an SWR
ring, then we have a non SWR element α ∈ A . Let x = (α, 1 − α, 1, 1, . . . ) ∈ R[A,B] . So, either x or
1− x = (1− α, α, 0, 0, . . . ) ∈ R[A,B] is SWR. If x is SWR, so is α ∈ A , a contradiction. Hence, we conclude
that A is an SWR ring.

Conversely, for any (c1, c2, . . . , cn, d, d, . . . ) ∈ R[A,B] with each ci ∈ A and d ∈ B . Since A is an SWR
ring, we have ci = citici

2si for some ti, si in A and B is an almost SWR ring, then either d or 1 − d is
SWR. If d is SWR, then we can find some g, h in B such that d = dgd2h . Thus, (c1, c2, . . . , cn, d, d . . . ) =

(c1, c2, . . . , cn, d, d, . . . )(t1, t2, . . . , tn, g, g, . . . )(c1, c2, . . . , cn, d, d, . . . )
2(s1, s2, . . . , sn, h, h, . . . ) . This implies that

(c1, c2, . . . , cn, d, d, . . . ) ∈ R[A,B] is SWR. If 1−d is SWR, then we have 1−d = (1−d)y(1−d)2z for some y, z

in B . Thus, we get (1, 1, . . . , 1, 1, 1, . . . )− (c1, c2, . . . , cn, d, d, . . . )=(1− c1, 1− c2, . . . , 1− cn, 1− d, 1− d, . . . ) ∈
R[A,B] is SWR. Therefore, R[A,B] is an almost SWR ring. 2

Corollary 3.6 R[A,A] is an almost SWR ring if and only if A is an SWR ring.

Let R be a ring, then the trivial extension of R over R is

RΘR = {(s, n) | s ∈ R,n ∈ R}

with componentwise addition and multiplication defined by (s1, n1)(s2, n2) = (s1s2, n1s2 + s1n2) . Then, RΘR

is isomorphic to subring
{(

a b
0 a

)
| a, b ∈ R

}
of T2(R) .

Theorem 3.7 Let R be a ring. If RΘR is an almost SWR ring, then R is almost SWR.

Proof Let θ : RΘR → R be a canonical epimorphism. Then, we have RΘR/0ΘR ∼= R . Hence, R is an
almost SWR ring by Proposition 2.4(1). 2

Proposition 3.8 For a ring S and n ≥ 2 , R = Tn(S) . Then, RΘR is not an almost SWR ring.
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Proof Assume that n = 2 . Let A = (C, I2) ∈ RΘR , where C =

(
1 1
0 0

)
. Suppose that A is

SWR, then there exist (X,Y ) , (V,W ) ∈ RΘR such that (C, I2) = (C, I2)(X,Y )(C, I2)
2(V,W ) . Thus

(X + CY )C2V + 2CXCV + CXC2W = I2 . Write X =

(
x1 x2

0 x3

)
, Y =

(
y1 y2
0 y3

)
, V =

(
v1 v2
0 v3

)
and W =

(
w1 w2

0 w3

)
. Then we obtain

[(
x1 x2

0 x3

)
+

(
1 1
0 0

)(
y1 y2
0 y3

)](
1 1
0 0

)2 (
v1 v2
0 v3

)
+

2

(
1 1
0 0

)(
x1 x2

0 x3

)(
1 1
0 0

)(
v1 v2
0 v3

)
+

(
1 1
0 0

)(
x1 x2

0 x3

)(
1 1
0 0

)2 (
w1 w2

0 w3

)
=

(
1 0
0 1

)
,

we get a contradiction by comparing the (2, 2) entry of matrices on both side. Similarly, we can also show that
(I2, 0)−A is not SWR. Hence, T2(S)ΘT2(S) is not an almost SWR ring.

Suppose that n ≥ 3 . Let C =

(
C1 α
0 C2

)
, D =

(
D1 β
0 D2

)
∈ R , where C1, D1 ∈ T2(S) . If (C,D)

is SWR ring in RΘR , then (C1, D1) is SWR in T2(S)ΘT2(S) . As T2(S)ΘT2(S) is not almost SWR, neither
is RΘR . 2

The converse of Theorem 3.7 does not hold, which is shown in the following corollary.

Corollary 3.9 Let R = T2(Z2) be an almost SWR ring. Then, RΘR is not almost SWR.

Proof From Proposition 3.8 , RΘR = T2(Z2)ΘT2(Z2) is not almost SWR. 2

4. Semiperfect almost SWR rings

In this section, we consider the structure of semiperfect (see [4]) almost SWR rings. Recall that a ring R is
called reduced if R has no nonzero nilpotent elements.

Lemma 4.1 [11, Lemma 4.2 ]. Let e1 and e2 be two local idempotents of a ring R . Then, either e1R ∼= e2R ,
or e1Re2 ⊆ J(R) and e2Re1 ⊆ J(R) .

Proposition 4.2 Let R be a semiperfect ring with 1 = e1 + e2 , where e1 , e2 are orthogonal primitive
idempotents. If R is almost SWR, then R is isomorphic to either of the following:

(1) M2(C) for some reduced ring C ;

(2)
(

A X
Y B

)
where A is a reduced ring, B is a local ring and XY ⊆ J(A) , Y X ⊆ J(B) .

In particular, if J(R) = 0 . Then, R is isomorphic to either M2(C) or
(

A1 0
0 A2

)
where A1 , C are reduced

and A2 is a local ring.

Proof Consider the Pierce decomposition

R ∼=
(

e1Re1 e1Re2
e2Re1 e2Re2

)
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If e1R ∼= e2R , then R ∼= M2(e1Re1) , where e1Re1 is a local ring. By using Lemma 2.9 , e1Re1 is an SWR ring.
Then in view of [12, Theorem 5 ], e1Re1 is reduced. If e1R ≇ e2R , then e1Re2 and e2Re1 are contained in J(R)

by Lemma 4.1 . Again by Lemma 2.9 , either e1Re1 or e2Re2 is SWR. It follows that either e1Re1 or e2Re2

is a reduced ring. We assume that e1Re1 is a reduced ring. Note that e1Re2Re1 ⊆ J(R) ∩ e1Re1 = J(e1Re1)

and e2Re1Re2 ⊆ J(R) ∩ e2Re2 = J(e2Re2) . So take A = e1Re1 , B = e2Re2 , X = e1Re2 and Y = e2Re1 , we

obtain that R ∼=
(

A X
Y B

)
. 2

Proposition 4.3 Let R be a semiperfect ring with 1 = e1 + e2 + e3 , where {e1, e2, e3} is a orthogonal set of
primitive idempotents. If R is almost SWR, then R is isomorphic to one of the followings:

(1) M3(C) for some reduced ring C ;

(2)
(

R1 X
Y R2

)
where R1 is a reduced ring, R2 is a local ring and XY ⊆ J(R1) , Y X ⊆ J(R2) ;

(3)
(

R1 X
Y R2

)
where R1 is semiprime, R2 is a local ring and XY ⊆ J(R1) , Y X ⊆ J(R2) ;

(4)
(

A X
Y C

)
with A ∼=

(
R1 X1

Y1 R2

)
and R1, R2, C are reduced rings, X1Y1 ⊆ J(R1) , Y1X1 ⊆ J(R2) .

Proof Case 1. If eiR ∼= ejR for all i, j , then R ∼= M3(e1Re1) where e1Re1 is a local ring. By Lemma 2.9 ,
e1Re1 is a reduced ring.

Now we consider Pierce decomposition

R ∼=
(

(1− e1)R(1− e1) (1− e1)Re1
e1R(1− e1) e1Re1

)

Case 2. Assume that e1Re1 is local but not a reduced ring, then (1 − e1)R(1 − e1) is a reduced ring
by [12, Theorem 5 ]. Thus, e2Re2 and e3Re3 are reduced rings. So by Lemma 4.1 , e1Re2, e2Re1, e1Re3 and
e3Re1 are all contained in J(R) . Thus (1− e1)Re1R(1− e1) ⊆ J(R)∩ (1− e1)R(1− e1) = J((1− e1)R(1− e1))

and e1R(1− e1)Re1 ⊆ J(R) ∩ e1Re1 = J(e1Re1) . Hence, R is as in (2) above.
Case 3. Suppose that all eiRei are reduced rings. If e2R ∼= e3R but e1R ≇ e2R , then (1 − e1)R(1 −

e1) ∼= M2(C) for some reduced ring C , and so C is a semiprime ring. Then M2(C) is semiprime by
[13, Proposition 10.20 ]. Hence, (1 − e1)R(1 − e1) is semiprime. By Lemma 4.1 , (1 − e1)Re1R(1 − e1) ⊆
J((1− e1)R(1− e1)) and e1R(1− e1)Re1 ⊆ J(e1Re1) . Thus, R is as in (3) .

Case 4. Suppose that eiRei is a reduced ring for all i=1,2,3 and e1R ≇ e2R ≇ e3R . Then

(1− e1)R(1− e1) ∼=
(

e2Re2 e2Re3
e3Re2 e3Re3

)
,

where e2Re3Re2 ⊆ J(e2Re2) and e3Re2Re3 ⊆ J(e3Re3) . Now note that (1− e1)Re1R(1− e1) ⊆ J(R) ∩ (1−
e1)R(1− e1) = J((1− e1)R(1− e1)) . So by taking e2Re2 = R1, e3Re3 = R2, e3Re2 = Y1, e2Re3 = X1, e1Re1 =

C, (1− e1)Re1 = Y, e1R(1− e1) = X . Thus (3) follows. 2
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5. Almost SWR group rings
Let G be a group and R be a ring, then the group ring of G and R is denoted by RG . If R is commutative,
then RG is called a group algebra. The augmentation ideal ωG of RG is generated by {1 − g | g ∈ G} .
Then, ωG is the kernel of the augmentation map, ω : RG → R defined by ω(

∑
g∈G agg) =

∑
g∈G ag and

RG/ωG ∼= R . If every element g ∈ G has a finite number of conjugates in G, the group is called an FC group.
If the set of all the element g ∈ G has a finite number of conjugates in G , then G is called FC-center ∆(G)

of G . Note that ∆(G) = {g ∈ G | |G : CG(g)| < ∞} is a normal subgroup of G . For further results of group
rings, we refer to Passman [18] and Connell [7].

We start this section with the necessary conditions for RG to be SWR.

Theorem 5.1 If RG is an SWR ring. Then, R is an SWR ring and G is a torsion group.

Proof By the augmentation map, R is an image of RG . Since homomorphic image of an SWR ring is SWR,
R is SWR. Let g(̸= 1) ∈ G . Since RG is SWR, 1−g = (1−g)x where x ∈ ((1−g)2) . Then, (1−g)(1−x) = 0 .
This implies that 1 = x ∈ ωG , which is a contradiction. Thus, 1− g is a zero divisor, and hence g is of finite
order by [7, Proposition 6 ]. Thus, G is a torsion group. 2

Recall that an abelian torsion group is locally finite.

Corollary 5.2 Let G be an abelian group. If RG is SWR, then R is SWR, and G is locally finite.

Theorem 5.3 If RG is an SWR ring. Then for each n ∈ o(G) , n is a unit in R , where o(G) denotes the set
of orders of all finite subgroups of G .

Proof Let n be the order of g ∈ G . We will show that n is a unit in R . Since RG is SWR, there exist x, y ∈
RG such that (1−g)(1−x(1−g)2y) = 0 . By using [7, Proposition 6 ], (1−x(1−g)2y) = (1+g+g2+· · ·+gn−1)r

for some r ∈ RG and by applying augmentation map ω : RG → R on above equation, we get 1 = nω(r) , where
ω(r) ∈ R . 2

The following example shows that the converse of Theorem 5.1 is not true.

Example 5.4 Let R = Z2C2 . Then, Z2 is SWR and C2 is torsion but R is not SWR.

If RG is commutative, then we have necessary and sufficient conditions for RG to be SWR.

Theorem 5.5 Let RG be a commutative ring. Then RG is SWR if and only if

(1) R is SWR.

(2) G is locally finite.

(3) for each n ∈ o(G) , n is a unit in R .

Proof The necessity follows from Theorem 5.1 and Theorem 5.3 , and the sufficiency follows from the fact
that commutative SWR rings are VNL and by [7, Theorem 3 ]. 2

The next result gives necessary conditions for group algebra KG over a field K satisfying a nontrivial
polynomial identity to be SWR.
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Theorem 5.6 Let KG be a group algebra over a field K satisfying a nontrivial polynomial identity. If KG is
SWR, then K is SWR, and G is locally finite.

Proof Suppose that KG is SWR. Then, since homomorphic image of an SWR ring is SWR, K is SWR. In
view of Theorem 5.1 , G is a torsion group, and by [19, Theorem 5.5 ], we have |G : ∆(G)| < ∞ . Let H be a
finitely generated subgroup of G . Then |H : H ∩ ∆(G)| < ∞ , and in view of [19, Lemma6.1 ], H ∩ ∆(G) is
a finitely generated subgroup of ∆(G) . Since by [19, Lemma2.2 ], the center C(H ∩∆(G)) of H ∩∆(G) is a
subgroup of finite index, |H : C(H ∩∆(G))| < ∞ . Thus, again, by [19, Lemma6.1 ], C(H ∩∆(G)) is a finitely
generated torsion group. So, C(H ∩∆(G)) is finite. Hence, H is finite. 2

Remark 5.7 The condition in Theorem 5.3 is not necessary for RG to be almost SWR since R = Z4C2 is
almost SWR, but 2 is not a unit in Z4 .

Let p be a prime number. A group G is called p -group if the order of each element g ∈ G is a power of
p .

Theorem 5.8 Let R be a commutative local ring and G an abelian p-group with p ∈ J(R) . Then, RG is an
almost SWR ring.

Proof Suppose that R is a commutative ring and G an abelian p -group with p ∈ J(R) . Following [20,
Lemma 2.1 ] we get that ωG ⊆ J(RG) . Then, R being local implies that RG is local by [15]. Hence, RG is
an almost SWR ring. 2

Example 5.9 Let R = Z(p) =

{
b

a
| b, a ∈ Z, gcd(a, p) = 1

}
and G = Cp . The group ring RG is almost SWR.

Lemma 5.10 Let G be a group. If RH is almost SWR for every finitely generated subgroup H of G , then
RG is almost SWR.

Proof Let α ∈ RG and H be a subgroup generated by the support of α . Then H is a finitely generated
subgroup of G . Thus, either α or 1 − α is SWR in RH . Assume that α is SWR, then we have α ∈
αRHα2RH ⊆ αRGα2RG . It follows that α is SWR in RG . Similarly, if 1 − α is SWR in RH , then
1− α ∈ (1− α)RH(1− α)2RH ⊆ (1− α)RG(1− α)2RG . Thus, 1− α is an SWR element in RG . Hence, RG

is an almost SWR ring. 2

If H and K are subgroups of G such that: H ◁ G,H ∩ K = {1} and HK = G , then G is called a
semidirect product of H by K , denoted by G = H ⋊ K . The following result shows that the converse of
Lemma 5.10 partially holds.

Theorem 5.11 Let G = H ⋊K , |H| < ∞ . If RG is an almost SWR ring, then RK is an almost SWR ring.

Proof For any α ∈ RK , either α or 1−α is SWR in RG . Assume that α is SWR, then we have α = αaα2b

for some a, b ∈ RG . Let a =
∑

aiki and b =
∑

biki , where ai, bi ∈ RH , ki ∈ K and let α =
∑

αjkj ,
where αj ∈ R . Denote x =

∑
ω(ai)ki, y =

∑
ω(bi)ki , so x, y ∈ RK . We will show that α = αxα2y for some

x, y ∈ RK .
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Let ξ : G → G/H stand for the natural group homomorphism and then extend ξ to a ring homomorphism
ξ : RG → R(G/H) , defined by ξ(

∑
αigi) =

∑
αiξ(gi) . Obviously, Ker(ξ) ∩ RK = 0 and ξ(z) = ω(z) for all

z ∈ RH .
Since 0 = α− αaα2b , we have

0 = ξ(α)− ξ(α)ξ(a)ξ(α2)ξ(b)

= ξ(α)− ξ(α)ξ(
∑

aiki)ξ(α
2)ξ(

∑
biki)

= ξ(α)− ξ(α)
∑

ω(ai)ξ(ki)ξ(α
2)

∑
ω(bi)ξ(ki)

= ξ(α)− ξ(α)ξ(
∑

ω(ai)ki)ξ(α
2)ξ(

∑
ω(bi)ki)

= ξ(α)− ξ(α)ξ(x)ξ(α2)ξ(y)

= ξ(α− αxα2y).

Then, α− αxα2y ∈ Ker(ξ) ∩RK = 0 , so we have α = αxα2y . Similarly, if 1− α is SWR, then we can
find t =

∑
ω(ti)ki and s =

∑
ω(si)ki in RK such that 1− α = (1− α)t(1− α)2s . 2

Remark 5.12 An artinian ring RG may not be an almost SWR ring.

Example 5.13 The group ring (Z4 × Z4)C2 is artinian but not almost SWR.

For any nontrivial finite group G , group ring RG may or may not be an almost SWR ring.

Example 5.14 ZG is not almost SWR for any nontrivial finite group G .

Example 5.15 Let Z2 = {0, 1} and G = ⟨g|g2 = 1⟩ . An element 1 + g ∈ Z2G is not SWR but 1− (1 + g) is
SWR. So Z2G is an almost SWR ring.

Proposition 5.16 Let K be a field of char(K) = p > 0 and G a finite p-group. Then group algebra KG is
almost SWR.

Proof Suppose that K be a field of char(K) = p > 0 and G a finite p -group. Then by [13, Corollary 8.8 ],

jacobson radical of group algebra J(KG) is equal to augmentation ideal ωG with J(KG)
|G|

= 0 . It follows
that KG/J(KG) ∼= K . Since K is a division ring, KG is local. Thus, KG is an almost SWR ring. 2

Acknowledgment

The authors are grateful to the referee for his/her helpful suggestions and comments.

References

[1] Ashrafi N, Nasibi E. Rings in which elements are the sum of an idempotent and a regular element. Bulletin of the
Iranian Mathematical Society 2013; 39 (3): 579-588.

[2] Brown B, McCoy NH. The maximal regular ideal of a ring. Proceedings of the American Mathematical Society
1950; 1: 165-171. doi.org/10.2307/2031919

1909



JANGRA and UDAR/Turk J Math

[3] Camillo V, Xiao YF. Weakly regular rings. Communications in Algebra 1950; 22 (10): 4095-4112.
doi.org/10.1080/00927879408825068

[4] Camillo VP, Yu HP. Exchange rings, units and idempotents. Communications in Algebra 1994; 22 (12): 4737-4749.
doi.org/10.1080/00927879408825098

[5] Chen H. On almost unit-regular rings. Communications in Algebra 2012; 40 (9): 3494-3506.
doi.org/10.1080/00927872.2011.590953

[6] Chen W, Tong W. On noncommutative VNL-rings and GVNL-rings. Glasgow Mathematical Journal 2006; 48 (1):
11-17. doi.org/10.1017/S0017089505002806

[7] Connell IG. On the group ring. Canadian Journal of Mathematics 1963; 15: 650-685.doi.org/10.4153/CJM-1963-
067-0

[8] Contessa M. On certain classes of pm-rings. Communications in Algebra 1984; 12 (11-12): 1447-1469.
doi.org/10.1080/00927878408823063

[9] Danchev PV. Weakly tripotent rings. Kragujevac Journal of Mathematics 2019; 43 (3): 465-469.

[10] Goodearl KR. Von Neumann regular rings. Monographs and Studies in Mathematics, 4, Boston: Pitman (Advanced
Publishing Program), MA, 1979.

[11] Grover HK, Khurana D. Some characterizations of VNL-rings. Communications in Algebra 2009; 37 (9): 3288-3305.
doi.org/10.1080/00927870802502761

[12] Gupta V. A generalization of strongly regular rings. Acta Mathematica Hungarica 1984; 43 (1-2): 57-61.
doi.org/10.1007/BF01951326

[13] Lam TY. A first course in noncommutative rings. Graduate Texts in Mathematics, 131, New York: Springer-Verlag,
1991.

[14] Lam TY. Lectures on modules and rings. Graduate Texts in Mathematics, 189, New York: Springer-Verlag, 1999.

[15] Nicholson WK. Local group rings. Canadian Mathematical Bulletin 1972; 15: 137-138. doi.org/10.4153/CMB-1972-
025-1

[16] Nicholson WK. Lifting idempotents and exchange rings. Transactions of the American Mathematical Society 1977;
229: 269-278. doi.org/10.1090/S0002-9947-1977-0439876-2

[17] Osba EA, Henriksen M, Alkam O. Combining local and von Neumann regular rings. Communications in Algebra
2004; 32 (7): 2639-2653. doi.org/10.1081/AGB-120037405

[18] Passman DS. The algebraic structure of group rings. Pure and Applied Mathematics, New York: Wiley-Interscience,
1977.

[19] Passman DS. Infinite group rings. Pure and Applied Mathematics, 6, New York: Marcel Dekker, Inc., 1971.

[20] Wang X, You H. Cleanness of the group ring of an abelian p -group over a commutative ring. Algebra Colloquium
2012; 19 (3): 539-544. doi.org/10.1142/S1005386712000405

1910


	Introduction
	Basic properties and examples
	Extension rings
	Semiperfect almost SWR rings
	Almost SWR group rings

