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Abstract: Let P, := H*(RP*®)") & Zs[x1,x2,...,Zn] be the polynomial algebra of n generators z1,x2,...,z, with
the degree of each z; being 1. We investigate the Peterson hit problem for the polynomial algebra P,, regarded as a
module over the mod-2 Steenrod algebra, A. For n > 4, this problem remains unsolvable, even with the aid of computers
in the case of n = 5.

In this article, we study the hit problem for the case n = 6 in degree ds = 6(2° — 1) + 3.2°, with s an arbitrary
nonnegative integer. By considering Z, as a trivial A-module, then the hit problem is equivalent to the problem of
finding a basis of Zsa-vector space Z2® 4Pn. The main goal of the current article is to explicitly determine an admissible
monomial basis of the Zj vector space Zo® 4P, for n =6 in some degrees.

One of the most important applications of the hit problem is to investigate homomorphism introduced by Singer,

which is a homomorphism

On t Tt i a(Za, Zo) — (Zo® 4Pn)§H %)

from the homology of the Steenrod algebra to the subspace of (Z2®4Pr)q consisting of all the GL(n;Zz)-invariant
classes. It is a useful tool in describing the homology groups of the Steenrod algebra, Torﬁ ntd(Z2,Zz). The behavior of

the sixth Singer algebraic transfer in degree ds = 6(2° — 1) + 3.2° was also discussed at the end of this paper.
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1. Introduction

Throughout the paper, we denote a prime field with two elements by Z,. Let RP> be the infinite dimensional
real projective space. Then, H*(RP>) & Zy[z1], and therefore, the mod-2 cohomology algebra of the direct
product of n copies of RP> is isomorphic to the polynomial algebra Zs[x1,xa,. .., x,], regarded as an unstable
A-module on n generators xi,xs,...,T,, each of degree 1. In other words, based on the Kiinneth formula for

cohomology, we have an isomorphism of Zs-algebras

Pn = H*((RPOO)") = Zg[ﬂ?l] ®Z2 e ®Z2 Zg[mn} = ZQ[Il,Jjg, . 7$n],
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where z; € H'((RP>)") for every i.
The A-module structure of P, is explicitly determined in Steenrod and Epstein [14] by the Cartan
formula and the properties of the Steenrod operation.

Let g be a homogeneous polynomial of degree d in P,. Then, g is called “hit” if there is an equation
in the form of a finite sum g = Zi>0 Sq2i (gi), where the degree of g; is less than d. That means g belongs to
AtP,, where AT is an ideal of A generated by all Steenrod squares Sq¢* with k > 0.

The hit problem in algebraic topology is to find a minimal generating set for P,,, regarded as a module
over the mod-2 Steenrod algebra A. If we consider Z, as a trivial A-module, then the hit problem is equivalent

to the problem of finding a basis of Zs-vector space:

Zo@aPn = P (Z2®aPn)a = Pp /APy

d>0

Here, (Py)q is the subspace of P,, consisting of all the homogeneous polynomials of degree d in P,, and
(Z2®4Pr)a is the subspace of Zo® 4P, consisting of all the classes represented by the elements in (P,,)4.

In [7], Peterson conjectured that as a module over the Steenrod algebra A, P,, is generated by monomials
in degree d that satisfy the inequality «(d + n) < n, where «(d) is the number of digits one in the binary
expension of d, and proved it for n < 2, in general, it is proved by Wood [24]. This is an extremely useful
tool for determining A-generators for P,. After then, the hit problem was investigated by many authors (see
Repka-Selick [11], Silverman [12], Nam [6], Sum [16], Sum-Tin [18], Tin [21, 23] and others).

Let r,s,t be nonnegative intergers. From the results in Wood [24], Kameko [3], and Sum [16], the hit
problem is reduced to the case of degree d of the form d = r(2* — 1) + 2%s such that 0 < u(s) < r < n, where

u(d) =min{a € Z : a(d+a) < a}.

Now, the tensor product Zo® 4P, was completely determined for n < 4, (see Peterson [7] for n = 1,
and n = 2, see Kameko for n = 3 in his thesis [3], see Sum [16] for n = 4). For n > 4, this problem remains
unsolvable, even with the aid of computers in the case of n = 5.

In the present paper, we study the hit problem for the case n = 6 in degree ds = 6(2° — 1) 4 3.2%, with
s an arbitrary nonnegative integer. The main goal of the current paper is to explicitly determine an admissible
monomial basis of the Z,-vector space Zo® 4Pg in some degrees. The proofs of the main results will be presented
in Section 3. In addition, the behavior of the sixth Singer algebraic transfer in degree ds; = 6(2° — 1) + 3.2° was

also discussed at the end of this article.

2. Preliminaries

First, we recall some necessary results in Kameko [3], and Sum [16], which will be used in the next section.
Notation 2.1 We will denote by N, = {1,2,...,n} and

X1 = X1 garedy = H zj, J={j1,42,. .-, Js} C Ny,
JENL\T

In particular, Xy, =1, Xp=z122...2p, Xj =21...25...2,, 1 <j<n, and X, € Pr_1.
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Let ay(d) be the t-th coefficient in dyadic expansion of d. Then, d = 3,5 a(d).2" where ay(d) € {0,1}.

Let © = 27'25? .. .2 € P,,. Denote vj(z) =a;,1 <j<n. Set

Ji(z) ={j e N, : u(vj(x)) =0},

for t > 0. Then, we have x = Ht>0 in(a:)‘

Definition 2.2 For a monomial x in P, , define two sequences associated with x by

w(z) = (wi(x),wa(x),...,wi(zx),...), o) = 1(z),(x),...,vn(z)),
where wi(z) =21 i<, @im1(vj () = deg Xy, (2), 1 2 1.

The sequences w(z) and o(x) are respectively called the weight vector and the exponent vector of x.
Let w = (w1,wa,...,w;,...) be a sequence of nonnegative integers. The sequence w is called the weight vector
if w; =0 for i > 0.

The sets of all the weight vectors and the exponent vectors are given the left lexicographical order. For

a weight vector w, we define degw = >_._ 2" 'w;. Denote by P,(w) the subspace of P, spanned by all

i>0
monomials y such that degy = degw, w(y) < w, and by P, (w) the subspace of P,, spanned by all monomials
y € Pp(w) such that w(y) < w.

Definition 2.3 Let f, g be two polynomials of the same degree in P,, and w a weight vector. We define the

T 9

equivalence relations and “ =,

(i) f=g ifand onlyif f —ge ATP,.
(i) f=,9 if and only if f—g € ATP, + P, (w).

on P, by stating that

It is very easy to check that the relations = and =, are equivalence ones. Then, one has
QPn(w) = Pu(w)/(ATPr N Pu(w)) + Py, (w)).

For a polynomial f € P,, we denote by [f] the class in Zo® 4P, represented by f. If w is a weight
vector, and f € P, (w), then denote by [f]. the class in QP,(w) represented by f.

Definition 2.4 Let u and v be monomials of the same degree in P,,. We say that u < v if one of the following
holds:

() w(u) <w(v);

(i) w(u) =w(), and o(u) < o(v).

Definition 2.5 A monomial u is said to be inadmissible if there exist monomials vy,va, ...,y such that
v; <u fori=1,2,....m and u—> " v; € ATP,.

We say u is admissible if it is not inadmissible. Clearly, the set of all the admissible monomials of degree

d in P, is a minimal set of A-generators for P,, in degree d.
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Definition 2.6 Let u be a monomial in P,. We say that w is strictly inadmissible if there exist monomials
U1,V2,...,U;m such that v; < u, for j = 1,2,...,m and u = Z;nzl v; + Zf:zl Sqi(f;) with s = max{k :
wk(u) >0}, fi € Pn.

It follows immediately from the definitions 2.5 and 2.6 that if w is strictly inadmissible monomial, then
it is inadmissible monomial. In general, the opposite is not true.
For instance, for each integer r > 0, the monomial x = wlxgtlmgul ...xz% te, is inadmissible, but it

sy,

is not strictly inadmissible.

Theorem 2.7 (Kameko [3], Sum [16]) Let u,v,w be monomials in P, such that wi(u) =0 for t >k >0,
wr(w) # 0 and wy(w) =0 for t >r > 0. Then,

(i) ww? is inadmissible if w is inadmissible.

(ii) wv? s strictly inadmissible if w is strictly inadmissible.

Singer showed in [13] that if u(d) < n, then there exists uniquely a minimal spike of degree d in P,.

The spike monomial has the following definition.

Definition 2.8 Let z = 28292 .. 2% in P,. The monomial z is called a spike if d; = 2% — 1 for t; a
nonnegative integer, j =1,2,...,n. Moreover, if t1 >t > ... >t._1 2t >0 and t; =0 for j > r, then z

is called the minimal spike.

The following is a Singer’s criterion on the hit monomials in P,,.

Theorem 2.9 (Singer [13]) Suppose z is the minimal spike of degree d in P,, and u € (P,)q such that
w(d) < n. If w(u) < w(z), then u is hit.

dy ,.d2 d

We will denote by P2 and P, the A-submodules of P,, spanned all the monomials z{*z4?...z%" such

that dy...d, =0, and d; ...d, > 0, respectively. It is easy to see that P and P; are the A-submodules of

P,.. Then, we have a direct summand decomposition of the Zs-vector spaces:
Zo®APn = (Za®aP)) & (Zo®@APy).

From now on, let us denote by K,,(d) the set of all admissible monomials of degree d in P,. Denote by
|S| the cardinal of a set S.

3. The main results

In this section, we study the hit problem for the polynomial algebra of six variables in some degrees. For s = 0,
then do = 6(2° — 1) + 3.2°. An easy computation proves that the following proposition, which is an immediate

consequence of the result in [16].

Proposition 3.1 The set {[z3], [z;27], [vjopze] : 1 < i, j k0 < 6, j < k < £} is a basis of Zs-vector space
(Z2®4P6)6(20—1)43.20. This implies (Zo®APs)6(20—1)+3.20 has dimension 41.
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For s = 1, then d; = 6(2' — 1) + 3.2, We explicitly determine an admissible monomial basis of the
Zo-vector space (Zo®4Pg)12 as follows:

First, we recall the definition of the Kameko’s squaring operation

—0 —0
Sq, = (Sq*)(n;n+2d) (Zo®APn)ny2da — (L2@4Pn)d,

which is induced by an Zs-linear map S, : P,, — Py, given by

0, otherwise

. o n 2
Sn(x) e {y’ lf r= Hi:l xly

for any monomial x € P,, (see Kameko [3]).

—~0
Since P, = ©g>0(Pn)a is the graded polynomial algebra, and Kameko’s homomorphism (Sq,);12) is a

Zo-epimorphism, it follows that

—~0 —~0
(Za @4 Po)12 = (Za @4 Po)12 @ (Ker(Sq,)6:12) N (Z2 @4 Pg )12) @Im(sq*)(ﬁ;m)

Let Ly = {1 = (i1,02,...,4) : 1 <d1 < ... < iy <n}, 1 <t <n. ForIe %,y , we define
the homomorphism f; : P, — P, of algebras by substituting fr(z¢) = x;, with 1 < £ < t. Then, f; is a
monomorphism of A4-modules.

Using the result in Mothebe-Kaelo-Ramatebele [4], we have a direct summand decomposition of the

Zo-vector subspaces:

ZyoaPr= P P @rPH),

1<t<n—11€Z( 1
where Qf1(P;") = Za @4 f1(P;).

Hence, dim(Q fr(P;"))a = dim(Zy ®4 P; )a, and | %] = (7). Combining with the results in Wood
[24], one gets

dim(Zs ®4 Pp)a = Z <Ttl> dim(Zy ® 4 Py )a-

pu(d)<t<n—1

Since (12) = 4, it follows that if t < 4 then the spaces (Zy ®4 P; )12 are trivial. Moreover, using the

results in Phuc-Sum [8], and Sum[16], one gets

21, if t=4,

dim(Zo® AP, )61 =
Im(Za®aP," )e(21-1)+3.21 {85, if ¢t=5.

From the above results, we obtain
. 0 6 6
dlm(Z2®AP6)6(21,1)+3.21 = 4 21 + 5 85 = 825
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On the other hand, consider the homomorphism 7; : P5s — Pg, for 1 <t < 6 by substituting:

It is easy to see that T; is a homomorphism of A-modules. Moreover, Phuc-Sum [8] showed that

(Z2®4Ps5)g(21 —1)+3.21 is an Zy-vector space of dimension 190 with a basis consisting of all the classes represented
by the monomials a;, 1 < j < 190. Consequently, |K5(6(2! — 1) + 3.21)| = 190.

Using the above result, an easy computation shows that

6
| Te(Ks(6(2" — 1) + 3.2"))| = 825,

t=1
and the set

6
{bi b € | Ti(a;),1 < j <190,1 <i < 825}

t=1
is a minimal set of generators for A-modules P§ in degree twelve. More specifically, we obtain the following

proposition.

Proposition 3.2 The set {[b;] : 1 <1 <825} is a basis of Zy-vector space (Za@aPg)s21—1)+3.2:- This implies

(ZQ@AP8)6(21,1)+3'21 has dimension 825.

The following corollary is an immediate consequence of Proposition 3.1.

—~0
Corollary 3.3 The space Im(Sq,)@;12) 5 isomorphic to a subspace of (Zz @4 Pe)e21—1)4+3.21 generated by

all the classes represented by the admissible monomials of the form H?Zl x;u?, for u € Kg(3). Consequently,

) —~—0
dlm(lm(SQ*)(G;IQ)) =41.

—~0
Next, we explicitly determine the Zj-vector space Ker(Sq,):12) N (Z2 ®4 Pg )12. We will denote by
QP (w) = QPp(w) N (Z2®@AP;). Putting wy := (4,4,0), and wy := (4,2,1). Then, we have the following.

—0
Theorem 3.4 Suppose that [x] does not belong to Im(Sq,)6;12) such that x is an element of (Kg(12) N Ps),

then w(x) = &y with t =1,2. Moreover, we have an isomorphism of the K -vector spaces:

—~0 __ __
Ker(Sq,)@6;12) N (Z2 @4 Pd )iz = QPG (w1) ® QP (w2).

—~0 —~0
Proof Assume f € (K¢(12) NPg) such that [f] does not belong to Im(Sq,)s12). Since (Sq,)(s12) is an

—~0
Z-epimorphism, it follows that Ker(Sq,).12)([f]) = 0. It is easy to check that h = z{2z3zs24 is the minimal
spike of degree twelve in Pg and w(h) = (4,2,1). Since f is an admissible monomial, by Theorem 2.9, it shows

that wy(f) > wi(h) = 4. Moreover, deg(f) is an even number, it implies either wy(f) =6 or wi(f) =4.
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If wi(f) =6, then f = H?=1 7;9°, where g € Kg(3). By Theorem 2.7, g is an admissible monomial.

Thus, we have (SA'Z]E:)(G;H)([f]) = [g] # 0. This contradicts the fact that [f] belongs to Ker(g(/](:)(ﬁ;m). Hence,
wi(f) = 4. From this, f = z;z;z2.u?, where u € Kg(4), and 1 <i < j < k < £ < 6. By Theorem 2.7, u is
also admissible monomial.

Note that if d < n then (Zo®aPn)a = (Z2®4P:)4. Using the results in Kameko [3] and Sum [16], one
has

: 6\ .
dim(Zo®APs)4 = Z (t) dim(Zy ®.4 P;" )4 = 85,
2=p(4)<t<5
and the set {[xlmi;’], [wizjapae], [pzewd] : 1< i, 5, k,0,t <6, £ <t} is a basis of Zy-vector space (Z2®.4Ps)a.
Since u € Kg(4), it follows that either w(u) = (4,0) or w(u) = (2,1). And therefore, either w(f) = w1
or w(f) = ws.

For a weight vector w of degree d, we set K,,(w) := K,,(d) N Pp(w). Observe that K,,(d) = U Kn(w).
deg w=d

Denote
QPy = ({[u] € Zo® APy, : w(x) = w, and u is admissible }).

It is easy to check that the map QP,(w) — QPY, [u], — [u] is an isomorphism of Zsy-vector spaces.

Hence, we can identify the vector space QP (w) with QPY C Za® APy. Furthermore, we obtain

(Z:204Pn)a= P QPy= P QPu(w).

deg w=d degw=d

From this, it follows that (Ze® APy )12 = Dacgw=12 QPg (w). Thus, we can deduce that

—~0 . .
Ker(5q,)(6;12) N (Za @4 P§ )12 = QP (@1) @ QPg (wa).

Therefore, the theorem is proved. O

Theorem 3.5 Let F, (w) be the set of all admissible monomials in P, (w). Then, we have

~ 45, if t=1,
B @) = rr=
90, if t=2.

—~0
Consequently, dim (Ker(Sq*)(G;lg) N (Zs @4 733')12) = 135.

Proof We prove the above theorem by explicitly determining all admissible monomials in ’P6+ (wg) for k=1,2.

The proof is divided by 2 cases:
Case 1. Consider the weight vector w = w;. Assume that x is an admissible monomial in Pg such that
w(z) = w1, then z = z;xjz,2,.y* With a suitable polynomial y € (Pg)4, 1 <i<j<k</{<E6.

We set C} i= {mzjaprpy? : 1 <i < j <k <l<6,w(y) = (4,0)}NPg. It is easy to check that |C| = 90,
and Span{C}} = P¢ (w01). Moreover, using Theorem 2.7, it follows that if = € Kg(12) such that w(z) = (4,4),
then z € C§.
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It is easy to check that every monomial x%xlw]xfxixf is an inadmissible (more precisely by Sq'), where

i,7,¢,k,t) is an arbitrary permutation of (2,3,4,5,6), and 2?x;x;x2z32> € Ci. On the other hand, we have
1LiX Ty Ty Ty 6
rixdzizpied = St (v3woxjapria}) + smaller than.

From this, the monomials z$x3z;zx22? are inadmissible, where (j,/,k,t) is an arbitrary permutation of
(3,4,5,6). Similarly, z32323z,z,2? are inadmissible, with (¢, k,t) a permutation of (4,5,6).

From the above results, it shows that ’Pgr (w1) is generated by 45 elements ¢;, with 1 < ¢ < 45 as follows:

1. adxdziziaia? 2. adaxladalaia 3. wdxlalzdalal 4 xiadadxlaial
9. xix?m%x%x%mé 6. x%lx%x%x%x%x%z 7. xix%x%m%x%x% 8. xix%x%x%m},gx%
9. zizsxzxizirg  10. xizswsrivsrg 11, wirsrsxizsrg 12, xixaxs3TiTET

13. aiadwdziaal 14, adxladziaal 15, adalaiziaad  16. zladadaxialal

17. eiadaeiaiadad 18, piadadaizad 19, piadadaizlad 20, afxdadaladal

13,2312 1,3.2..1,.3..2 1,123,352 3,1,2,.3.2.1
21. xywsxsTywsxs 22, x{THXETLTEXE 23, TTRTFXLTETE 24, TIXRTZTLXTET
25. p3zladuiatad 26, wiazdadadaial 27 wiadadaiaiad 28 wixladadaiad

29. p3ziadaixdal 30, afxiadaixlad 31, wixdadaixdal 32, wiadadaixlad

33. x%x%xéazéx%m% 34. mixéx%m%xéxé 35. xim%x%xéx%xé 36. x%m%xéx%m%x%
37. x%x%mgxgsc?xg 38. x%x%x:%z%xgxg 39. x%xgxgxéng? 40. x%x%xgxgx?xg
41. zywsrzriesry 42, viwsxzvirEry 43, 1T T 44 X T5TF5TLTETE

45. rlx3airiadad
We next prove that the vectors [¢;], 1 < i < 45, are linearly independent in Zo® 4Ps. Denote

Nn: (j;J):J:(jlana"'ajt)31<j<jl<~~~<jt<n;0<t<n}a

where by convention J = if ¢ =0. Writing ¢ = £(J) for the length of J.
For any (j;J) € Ng, we define ;. ;) : Ps — Ps by substituting:

Ty, if1<i<j—1,
PG (20) = § ey @or, i =,
Ti1, if j <i<6.

It is straightforward to determine whether these homomorphisms are A-modules homomorphisms. We
utilize them to establish that a given set of monomials is the set of admissible monomials in Pg by demonstrating
that they are linearly independent in Zo® 4Ps.

Suppose that there is a linear relation

U= Z vic; =0, (3.1)

1<i<45

with v; € Zo, 1 € I ={1,2,...,45}.

We recall the result in [8] that (Zo®4P5 )12 is a Zg-vector space of dimension 85 with a basis consisting

of all the classes represented by the following admissible monomials:
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s1 = xixdalalal sy =alalaladal sy =alalalalad sy = alalalala?
sy = xixdadaial  s¢ =alaladadal sy =alaladalad sy = alaladalal
sg = zimdaizial  s10 = xlzladaiad sy = aixladatal s = wlaladalal
s13 = rizlaSalad sy = xlalaladal s =alxlalzia? si6 = 2lalalaixl
s17 = xizdzizlal  s15 = wladalaiad s = wiadalafad soo = axladalalaxl
so1 = xizdwdalal  soo = wlaxdadaial  ses = wiadalziad  soy = xladadaixl
sop = wixdalalal  sap = aladaizial sy = xladalalal  sas = aladaiadal
s99 = wizdrdalal  s30 = wladadalad sz = wiadadafal sz = aladaialad
s33 = vizdriaial sy = wladalala?  sgs = wiadaladal  s3e = xladalalal
s37 = xiaSzixlad  s3s = xlaSalaial  sgo = wiaSadzial sy = alalalala?
sq1 = xizlriadal sy = xlaladalel sy = adadaixlal sy = 2drialalal
sus = Tiziwiatad  sae = wivirdaia? sy = afxlalalal  sus = adwdadalald
sq9 = vixizdaial  sso = adwdadala?  s5 = adadalatal  sso = adalalalal
ss3 = aizdrizia?  ssy = wdadaladal  osys = alxlalrial sse = 2lalxlaixl
ss7 = alzirdzial  sss = xlzladadal sso = wixladaiad seo = xladaladad
se1 = riazdriaiad  see = xladadalzd s = wiadazdxial  seq = aiwixladad
ses = rizsrizied  see = viviadaird  ser = wixladxiazl  ses = diwiafaiad
seo = Tiwsxiaial  sqo = afadaiziat sy = afadalatal s = afadadzial
S73 = z‘ix%xéz%x% S74 = zi‘x%xéx%xé S5 = xi’xéx%x%xé S76 = wix%’x‘éx%x%
spr = xlzdrdadad  sps = xladadaiad s = wixdadaiad sgo = aiwladaial
ss1 = xiziwdatad  sgo = xdxiadaiad  ssy = wdadziadal sgy = 2iadalaiad
sgs = xizswixial.

Acting the homomorphism ¢(5.6) on both sides of (3.1), and explicitly computing ¢(s.)(U) in terms of

admissible monomials in Ps(mod (AT P5)), we obtain

©5:6)(U) = (v23 + Y28)56 + (712 + 718)510 + (736 + V39)518 + (135 + Y38) 521
+ (711 +17)s27 + (22 + v27)830 + (Y0 + Y15) 545 + (720 + Y25) 548
+ Y6558 + Y5560 + VaS62 + Y3564 + Y2566 + V1570 + (V10 + V16)S77
+ (721 + V26)878 + (34 + V37)879 + (V8 + V14)881 + (Y19 + V24) 882

+ (y7 +713)s84 = 0.

From the above equalities, we get v; =0, for all 1 <14 < 6.

So, the relation (3.1) becomes

U= Z vici =0, (32)

i€I\Ng

The homomorphisms ¢4;5) and ¢(3.6) send the relation (3.2) to the following relations in Ps(mod (A Ps5))

a5 (U) = (728 +733)87 + 712811 + (V30 + Y42)810 + (V37 + V40)S22 + V11528
+ (Y26 + ¥31)831 + Y9546 + (Y24 + Y29)S49 + V18859 + (Y27 + V32)S78
+ 717861 + V16563 + V15565 + Y14S67 + V13571 + V10876 + Y8580

+ (38 4 741)579 + (725 + ¥30)S82 + Y7583 = 0,
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and @(3;6)(U) = V3356 + 28510 + (35 + Va5)518 + (V34 + Va4)521 + 27527 + 32530
+ V25545 + Y30548 + V23558 + V22560 + V21562 + V20564 + V19566

+ 26577 + V31578 + (Y36 + V43)S70 + V24581 + 20582 = 0.

From the above equalities, we get v; = 0, for all 7 <17 < 33.

Therefore, the relation (3.2) becomes

U= Z vici = 0, (3:3)

i1€I\N33

Similarly, the homomorphisms 2,4y and ¢(1;5) to the relation (3.3), it shows that v; = 0,34 < i < 45.
From this, the vectors [¢;],1 < i < 45, are linearly independent in Zo® 4Ps.

In summary, the set {[c;] : 1 < i < 45} is a basis of the Zy-vector space QPg (w1). Consequently,
dim QPg (wy) = 45.

Case 2. Consider the weight vector w = wy. By similar arguments, we also see that Pg (wz) = Span{C2}.
Here,

C2 = {mizjmprpu® 1 <i < j<k<l<6,wu)=(2,1)}NPF, and |C3] = 150.

Remarkably, by Theorem 2.7, if u € Kg(12) such that w(u) = (4,2,1), then u belongs to C3. By direct

calculations, using Theorem 2.7, we remove the inadmissible monomials in CZ, and we get Pg (wz) which is

generated by 90 elements d;, 1 <7 < 90 as follows:

1. zlzdadxlaial 2. zlalzlalalel 3. 2dalzlxlaiad 4. xladaizialad
5. axtmdadalaiad 6. axlxlaladaiat 7. adwlalrlada? 8. aladalrlatad
9. zialedaleia? 10, plzdaledaia? 110 zlzlalaizlal 12, aialalalala?
13. ziwdxizloiat 14, pixdzladzlad 15, xlzladziaizt 16, zizlzlodzdal
17. 3zdxlatzia? 18, zixdzlztala?  19. xlazladziaia 20, zlzlzledxda?
21. wlzlziaialal 22, xlalaelalalal 23, afxlzlzizdal 24, 2iadalaialal
25. wizlzdziadal  26. xizleiziadad 27, x¥xlalzizial 28, wiadalaiaixd
29. rizladaiaial 30, wizlalaiatad 31, wizladazixlad 32, wixlaSaixla?
33. wizladxialed 34, wiadadaialad 35, wixladadalad 36 vixladaladad
37. pixiadriala? 38, xladrizlaix? 39, zlalaZadala? 40, pizladxlaia?
41. zladadalalal 42, xlalalalaial 43 xdzladzixial 44, xladaizialixl
45. zlzdrdadatal 46 xlaladaiaiad AT, adzladziadal 48, aladalziadal
49. plzdaiabaial 50, wlzdadaiatad 51, xlazladabalel 52, wialaSaixlal
53. wiziadatalel b4, wixzdadaialel 55, wixzladaxixdal 56, wixladzixlald
57. eixdziadxlal 58, rladeixazixl  59. zlxixaixdzl 60, pizizdxizied
61. pixdzioialad 62 xlaSalzlala? 63 zladadzixlad 64, rizdalzdazlad
65. zizdrixiadad  66. aizdrixiala? 67 xladadzixlal  68. alzdalzialad
69. zixdziriada?  70. xladxlalalal 71 zlaSalzialal 72, piadadxlalxl
73. wizdaladatal 74 wizdaleiaiad 75 adadalaiaial 76, wizdadaialal
77. wizdalabaial 78, wizdalaiatad 79, wizdalalalal 80, wiaSalzixlad
81. wixdadrtalal 82 xlalala2adal 83 zlxdzlzixlal 84, afxiazixdalz
85. zizdrdafalal  86. xlaxdzixiadal 87 xladalzixlad  88. alzdaizixlxl

1,2,4.1,3.1 1,2,4..1,.1.3
89. ziwsx3wiryTg 90, TITITITLXETE
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Suppose that there is a linear relation

1<i<90

with ~; € Zo, 1< i < 90.

By the same calculation as above, we explicitly compute ¢(;,)(S), (j;J) € N, in terms of 55,1 < j < 85.
From the relation ¢(;,7)(S) =0, 1 < £(J) <2, we also get v; =0 for all 1 < i< 90.

That means, the vectors [d;],1 < i < 90, are linearly independent in Zs® 4Ps. Hence, {[di}, 1<i< 9()}
is a basis of QPg (w2). Consequently, |Fy (wz)| = 90. The theorem is proved. O

From the results of Proposition 3.2, Corollary 3.3, and Theorems 3.4, 3.5, we obtain the following.

Corollary 3.6 The set {b;}3% U {c; ;il U {de}9%, U {ex}il, is a minimal set of A-generators for Pg in

degree twelve. Consequently, dim(Zao®4Ps)e21—1)43.21 = 1001. Here, e}, € {H?Zl rw? i x € IC6(3)}, for all
k=1,...,41.

Note that Mothebe-Kaelo-Ramatebele [4] used a different method to verify the dimension result in the

above Corollary.

—~0
For s = 2, then dy = 6(22—1)+3.22. We also see that the Kameko’s homomorphism (5S¢, ) 6.6(22—1)+3.22)

is a Zso-epimorphism, it follows that
—~0 —~0
(Za ®4 Pe)30 = (Za ®4 Pg)30 @ (Ker(Sq,)6:30) N (Z2 @4 Pg )30) @ Im(Sq,)6;30)
The following proposition is an immediate consequence of Corollary 3.6.

—~0
Proposition 3.7 Im(Sq,);30) 45 isomorphic to a subspace of (Zz @4 Pe)so generated by all the classes

—~0
represented by the admissible monomials of the form H?:1 202, for every v € Ke(12). This implies Im(Sq.,) ;30

has dimension 1001.

We can prove the following theorem using the same argument as the former.
Theorem 3.8 The following statements are true:

—~0
(i) If u is an admissible monomial in (Pg)e(22—1)43.22 such that [u] belongs to Ker(Sq,) 30y, then w(u)

s one of the following sequences:
wny = (2a 2a 2) 2)7 Wi2] = (27 27 4a 1)) Wi3] = (25 47 37 1)a W4 = (2a 47 5)7

Wis) = (4a37371)a Wie] = (475a2a 1)7 Wi = (45375)a Wig] = (475a4)

Moreover, we have an isomorphism of the Zs -vector spaces:
—0 8
(Ker(Sq,) (6:30) N (Z2 ®4 Py )30) = EB QP (wim))-
m=1
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(ii) The set {[v;] : v; € U?Zlﬁ(lC5(6(22 —1)+3.22), 1 < i < 4115} s a basis of Zs-vector space
(Zg@APg)ﬁ(gz_l)_,_&gz. This implies (Z2®A,P8)6(22—1)+3422 has dimension 4115.

Proof First, we prove Part (i) of the above theorem. We set
QPg := Span{[z] € Zy@4Ps : w(x) = w, and z is admissible monomial }.

By the same argument as in the proof of Theorem 3.4, we also see that the map QPs(w) — QP¢,

[u],, — [u] is an isomorphism of Zs-vector spaces. Hence, one gets

(Z2®APs)6(22—1)43.22 = @ QPg = @ QPs(w).

deg w=30 deg w=30
As a result of this, we may deduce that (ZQ®APJ)6(22_1)+3_22 = D QPF(w).
deg w=30

Assume that u is an admissible monomial of degree 6(2? — 1) + 3.22 in Pg such that [u] belongs

to Ker(%i)(ﬁ;go). Observe that z = x1{°21% is the minimal spike of degree 6(2%2 — 1) + 3.22 in P and
w(z) = (2,2,2,2). By Theorem 2.9, one gets wy(u) > 2. Since the degree of (u) is even number, it shows
that wq(u) =2, wi(u) =4, or wi(u) =6.

Case 1. If wy(u) = 2, then u = z;2;X? with X a monomial of degree fourteen in Pg, and 1 <i < j < 6.
By Theorem 2.7, X is admissible monomial. Since u € Kg(14), it shows that w(X) = (2,2,2), or w(X) =
(2,4,1), or w(X) = (4,5), or w(X)=(4,3,1), or w(X)=1(6,2,1), or w(X) = (6,4) (see Tin [22]).

Using the results in Sum [15], we see that if v is a monomial in Pg such that w(v) = (2,6,2,1), or
w(v) = (2,6,4), then v is strictly inadmissible. Therefore, v is inadmissible. From this, w(u) = (2,2,2,2), or
w(u) =(2,2,4,1), or w(u) =(2,4,5), or w(u) =(2,4,3,1).

Case 2. If wy(u) =4, then u = z;z;x,2,Y?, where Y is an admissible monomial of degree thirteen in
P, and 1 < i< j<k</l<6. It is a simple matter to see that the monomial w = x7z3x3 is a minimal spike
of degree thirteen in Pg, and w(w) = (3,3,1). By Theorem 2.9, one gets w;i(Y) > 3. Since the degree of (Y)
is odd number, it shows that either wy(Y) =3, or w1(Y) = 5.

If wi(Y) =3, then Y = 2,,7,2;Z%, where Z is an admissible monomial of degree five in Pg, and

1<m < n<t<6. An easy computation shows that

K¢(b) = {xi:vjxi;mixjkagxt;ximjxkxmxi :1<i, 5,k 6 t,m,n < 6;m < n}
Since Z € Kg(5), it shows that either w(Z) = (3,1), or w(Z) = (5,0). Thus, either w(Y) = (3,3,1), or
w(Y) = (3,5,0).

If wi(Y) =5, then Y = x,,z,2:2,2,T2, where T is an admissible monomial of degree four in Pg, and
l<m<n<t<r<s<6. Since T € Kg(4), it yields either w(T) = (2,1), or w(T) = (4,0). Hence, either
W(¥) = (5,2,1), or w(Y) = (5,4,0).

So, w(u) = (4,3,3,1), or w(u) = (4,3,5), or w(u) =(4,5,2,1), or w(u) = (4,5,4).

Case 3. If wi(u) = 6 then u = [[\_, #;F?, with F a monomial of degree nine in Pg. Since u is

admissible monomial, using Theorem 2.7, F' is also an admissible monomial. Hence, [F] # 0. Moreover,

[F] = (%S)(e;%)([“}) # 0. This contradicts the fact that [u] € Ker(%i)(ﬁ;go).
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In summary, we obtain w(u) = Wy, for all m = 1,...,8. Therefore, we have an isomorphism of the

Zo-vector spaces:

(Ker(Sq*)(ﬁ 30) N (Z2 ®.4 Py )30) @ QP (w

Next, we prove Part (ii) of the theorem. Since u(6(2% — 1) + 3.2%) = 2, it follows that if ¢ < 2 then the

spaces (Za ®4 P; )g(22—1)43.22 are trivial. From the results in Peterson [7], Kameko [3], and Sum [16], one gets

1, if t=2,
dim(Zg®_A,Pt+)6(22_1)+3.22 = 4, if t= 3,
48, if t=4.

At the same time, Tin showed in [20] that |K5(6(22 — 1) + 3.2%)| = 840. That means, the space
(Z2®.4Ps)6(22—1)+3.2> has dimension 840. Note that the result dimension of the space (Z2®.4Ps)g(22—1)+3.2> has
been verified by using a computer calculation program in SAGE (Software for Algebra and Geometry Experimen-
tation) by V. H. Viet (we would like to thank for his support). Moreover, we have dim(Zg®AP§)6(22_1)+3.22 =
290, and dim(Zo®4P5 )6(22—1)+3.02 = 550.

From the above results, one gets

. 6 ..
dim(Zo® APg)6(22—1)+3.22 = Z <m> dim(Zo® AP )6(22 1) +3.22

2<m<5

A

Suppose that K5(6(22 — 1) +3.2%) = {u; : 1< i< 840}. An easy computation shows that

6
{ U Te(wi), 1<i <550} = 4115.
Furthermore, we obtain the set

6
{li] : vi € | Te(Ks(6(2% — 1) +3.2%)), 1< i <4115}

t=1

is a basis of Zs-vector space (ZQ@AP8)6(22_1)+3'22. The theorem is proved. O

Consider the degrees ds, = 6(2° — 1) + 3.2%, for any s > 3. Let GL(n;Z2) be the general linear group
over the field Zs. This group acts naturally on P,, by matrix substitution. Since the two actions of A and

GL(n;Zs) upon P, commute with each other, there is an action of GL(n;Zs) on Zs @ 4 P,,. We set
¢(n;d) = max{0,n —a(d+n) —&(d+n)},

where £(n) the greatest integer m such that n is divisible by 2™. We have the following theorem.
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Theorem 3.9 (Tin-Sum [19]) Let d be an arbitrary nonnegative integer. Then

—~0
(Sq,)"7° : (Z2 ®A Pr)n@r—1)12rd — (L2 ® .4 Pn)n(2s—1)125d
is an isomorphism of GL(n;Zs)-modules for every r > s if and only if s = ((n;d).

It is not difficult to see that for n = 6 and d = 66 then a(d+n) = a(72) = 2, and £(d+n) = £(23.9) =

Therefore ((n;d) = ((6;72) = 1. Using the above theorem, we get an isomorphism of Zs-vector spaces:
(Zz @4 Ps)o2r—1)+66.27 = (Za @4 Pe)o(21—1)466.20 for all r > 1.

Therefore, we obtain

(Z2 ®4 Ps)e(2s—1)+3.20 = (Za @4 Ps)6(21—1)+66.20 for all s > 3.

That means, dim(Zy ® 4 Pe)e(2:—1)+3.20 = dim(Za ® 4 Ps)g(21—1)+66.21 for all s > 3.

Moreover, we get the set {[z] : z € ®*7*(Kg(6(2* — 1) + 3.2%))} is a basis of the Zy-vector space
(Z2®4P6)6(2:—1)+3.2¢+ forall s > 3. Here, ® : P — Pg is the homomorphism determined by ®(z) = H?:1 ;22
for all = € Pg.

Therefore, we need only to study the Zs-vector space (Zz®4Ps)e(2¢—1)+3.2¢ for s < 4. At the same time,
these findings will also be applied to the study of the sixth algebraic transfer and the modular representation

of the general linear group GL(n;Zs).
Remark 3.10

Let (Zy ®4 ’Pn)gL(";ZZ) be the subspace of (Zs ® 4 Pn)a consisting of all the GL(n;Zs)-invariant classes of

degree d, and Zy®qr(nz,) PHi((RP>)") be dual to (Zz @4 ’Pn)gL(";ZQ). One of the major applications of
hit problem is in surveying a homomorphism introduced by W. M. Singer. It is a useful tool in describing the
n,n-+x*

cohomology groups of the Steenrod algebra, Ext’y"" " (Zg, Z3).

Singer [13] defined the algebraic transfer, which is a homomorphism
U Lo®GL(nz) PH((RP®)") — Ext’y" " (Zs, Zo).

Singer has indicated the importance of the algebraic transfer by showing that 1, is an isomorphism with
n = 1,2 and at some other degrees with n = 3,4, but he also disproved this for ¥5 at degree 9, and then gave

the following conjecture.

Conjecture 3.11 For any n > 0, the algebraic transfer 1, is a monomorphism.

It could be seen from the work of Singer the meaning and importance of the hit problem. In [1], Boardman
confirmed this again by using the modular representation theory of linear groups to show that s is also an
isomorphism.

For n > 4, the Singer algebraic transfer was studied by many authors (See Boardman [1], Bruner-Ha-

Hung [2], Minami [5], Sum-Tin [17], Phuc [9] and others). However, Singer’s conjecture is still open for n > 4.
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We will use the results of the hit problem to study and verify the Singer conjecture for the algebraic

transfer in the above degrees. More specifically, we use the admissible monomial basis of degree 6(2° —1) + 3.2°

GL(6;Z2)

in Pg to explicitly compute the vector space (Zs ®4 736)6(25_1)+3_25,

and combining the computation of

the cohomology groups of the Steenrod algebra Ext36(2571)+3'25+6(22,Zg), to obtain information about the

behavior of the sixth Singer algebraic transfer in these degrees.

Remarkably, by using Theorem 3.9, we also get

GL(6,Z2 ~ GL(6,Zo
(ZQ ®.A P6)6(2§71)i3.25 - (ZQ ®_A P6)6(2§71)~)F3.24’ for all s > 4.
gj GL(n;Z2) . co\n
ince (Za @4 Pn)x is dual to Zo®qr(n;z,) PH«((RP*)"), we have

Zo®GL(6:22) PHo(2: —1)+3.2: (RP®)®) 2 (Zo®c 1,(6:20) PHo(24—1)+3.2¢ (RP™)%)), for all s > 4.

Therefore, we need only to compute the dimension of vector spaces Z2®GL(6;ZQ)PH6(25,1)+3_25((RP‘”)G) for

s < 4. This is an open problem. We will continue to study this problem in the near future.
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