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Abstract: Let A be a unital primitive C*-algebra. This paper studies the spectral theories of B-Weyl elements and
B-Browder elements in A , including the spectral mapping theorem and a characterization of B-Weyl spectrum. In
addition, we characterize the generalized Weyl’s theorem and the generalized Browder’s theorem for an element a ∈ A
and f(a) , where f is a complex-valued function analytic on a neighborhood of σ(a) . What’s more, the perturbations
of the generalized Weyl’s theorem under the socle of A and quasinilpotent element are illustrated.
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1. Introduction
Throughout this paper, all algebras will be infinite dimensional unital Banach algebras over the field of complex
numbers. Let B(X) (B(H)) denote the algebra of bounded linear operators on an infinite dimensional Banach
space X (Hilbert space H ).

In recent years, spectral theory, which has numerous and important applications in many parts of modern
analysis and physics, has witnessed considerable development [2]. The classical Fredholm theory of bounded
linear operators on a Banach space is familiar to many mathematicians [2, 3, 7, 9, 11, 13, 14, 25]. Fredholm
theory in semisimple and semiprime algebras was pioneered by Barnes [4, 6]. This theory was extended to
general Banach algebras by Smyth [29]. Smyth defined Fredholm elements, Weyl elements, Riesz elements and
so on, and developed some of their elementary properties [29]. Subsequently, the spectral theories of Fredholm,
Weyl, Browder and B-Fredholm elements have been developed by some scholars [2, 5, 16, 18, 20, 21, 23, 25, 26].
The purpose of this paper is to discuss the spectral theory of B-Weyl elements and B-Browder elements in a
primitive C*-algebra A .

P. Aiena [3] provided an introduction to some classes of operators which have their origin in the classical
Fredholm theory of bounded linear operators on Banach spaces, including Fredholm operators, Weyl operators
and Browder operators and so on. It is well known by the Atkinson’s theorem [12, Theorem 0.2.2] that T ∈ B(X)

is a Fredholm operator if and only if T is invertible modulo F (X) , where F (X) means the set of all finite rank
operators on X . B-Fredholm operators were introduced in [11] as a natural generalization of Fredholm operators
and have been extensively studied in [7, 9, 11, 18]. Particularly, in 2001, Atkinson-type theorem for B-Fredholm
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operators was developed. In detail, the set of B-Fredholm operators on a Banach space X is described as
those bounded linear operators, which are Drazin invertible modulo the ideal of finite rank operators in B(X) .
M. Berkani [7] defined B-Weyl operators and B-Weyl spectrum, and studied their properties. [16] argued the
properties of B-Browder operators and characterized B-Fredholm spectrum, B-Weyl spectrum and B-Browder
spectrum. More studies about the spectral theory of B-Fredholm operators, B-Weyl operators and B-Browder
operators can be found in [7, 13–16, 25].

Now more and more scholars are devoted to generalizing the above to a general unital algebra. M.
Berkani [10] defined B-Fredholm elements in a unital primitive Banach algebra A , which are Drazin invertible
modulo the socle. Meanwhile, M. Berkani [10] established a connection between B-Fredholm elements in A
and B-Fredholm operators on Ap , where p is a minimal idempotent in A . In addition, [10] defined B-Weyl
elements and described B-Fredholm elements of index 0 as the sum of a Drazin invertible element in A and an
element in Soc(A) when A is a unital primitive Banach algebra satisfying the conditions in [10, Theorem 3.4].
[23] defined Browder elements, and characterized the socle of a primitive C*-algebra by B-Fredholm elements.
In addition, [17] studied B-Browder elements with respect to a Banach algebra homomorphism. Motivated by
all of the above, the first purpose of this paper is to consider the spectral mapping theorems and properties of
B-Fredholm spectrum, B-Weyl spectrum and B-Browder spectrum.

In [31], H. Weyl proved his celebrated theorem on the structure of the spectrum of hermitian operators
on a Hilbert space, which is called the Weyl’s theorem. Weyl’s theorem has been extended from hermitian
operators to hyponormal and Toeplitz operators, and to several classes of operators including seminormal
operators [13, 16]. Recently, M. Berkani and J.J. Koliha extended Weyl’s theorem and Browder’s theorem to
generalized Weyl’s theorem and generalized Browder’s theorem, and they showed that T satisfies the generalized
Weyl’s theorem whenever T is a normal operator on Hilbert space. Kong et al. [24] characterized the Weyl’s
theorem in a semisimple Banach algebra and illustrated the perturbations of the Weyl’s theorem. Illuminated
by Berkani M. [7, 24], the second purpose of this paper is to discuss the generalized Weyl’s theorem for an
element in a primitive C*-algebra.

The structure of the paper is as follows. Section 2 lists some necessary conceptions and notations
in a unital primitive C*-algebra. Section 3 gives a characterization of B-Weyl spectrum, and meanwhile,
demonstrates the spectral mapping theorems of B-Weyl spectrum and B-Browder spectrum. Section 4 studies
the generalized Weyl’s theorem and the generalized Browder’s theorem for an element a and f(a) , respectively,
where f is a complex-valued function analytic on a neighborhood of σ(a) . Finally, the section explores how the
generalized Weyl’s theorem and the generalized Browder’s theorem survive under the perturbation of Soc(A)

or quasinilpotent elements.

2. Preliminaries
Recall that an algebra is called primitive if {0} is a primitive ideal of A . The socle of A in this case is the
algebraic sum of all the minimal left ideals of A (which equals the sum of all the minimal right ideals), or {0}
if A has no minimal left ideals. Also, the socle of A (if it exists) denoted by Soc(A) is an ideal in A . Recall
also that it is well known that a primitive Banach algebra is a semiprime algebra.

Definition 2.1 [2, Page 244] Let A be any complex algebra. e0 is called a minimal idempotent element if
e0 6= 0 and e20 = e0 such that e0Ae0 is a division algebra.
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When A is a unital semisimple Banach algebra, the socle of A always exists from [28, Lemma 2.1.12].
We will assume that the socle of A is not reduced to {0} , so in this case, A possesses minimal idempotents
[4]. Denote the set of all minimal idempotents of A by Min(A) . Next we provide the concepts of Fredholm
elements, Weyl elements and Browder elements.

Definition 2.2 [26, Page 587] Suppose that A is a unital semisimple Banach algebra. The element a ∈ A is
called a Fredholm element if it is invertible modulo Soc(A) . In other words, a+Soc(A) is an invertible element
in A/Soc(A) . And the set of Fredholm elements is denoted by Φ(A) .

An element a ∈ A is called relatively regular if aba = a for some b ∈ A . In this case b is called
a pseudo-inverse of a . For the convenience, recall some concepts about Weyl element. For a ∈ A , set
R(a) = {x ∈ A : ax = 0} , L(a) = {x ∈ A : xa = 0} . Suppose that J ⊆ A is a right(left) ideal of A .
J is called having finite order if it can be written as the sum of a finite number of minimal right(left) ideals
of A . The order Θ(J) of J is defined to be the smallest number of minimal right(left) ideals satisfying the
condition that the sum of them equals to J . Set Θ({0}) = 0 , and Θ(J) = +∞ if J does not have finite order
[26, Page 586].

Definition 2.3 [26, Page 587] Suppose A is a semisimple Banach algebra. For a ∈ A , the nullity of a is
defined by

nul(a) = Θ(R(a)),

and the defect of a is defined by
def(a) = Θ(L(a)).

Applying with [26, Proposition 3.5], a is a Fredholm element if and only if it is relatively regular and
nul(a) < ∞ , def(a) < ∞ . Define the index of a Fredholm element a as follows: index(a) = nul(a) − def(a) .
We call an element a ∈ A a Weyl element if it is a Fredholm element with index(a) = 0 .

Let T ∈ B(X) , we are already acquainted with the ascent of T denoted by α(T ) , the descent of T

denoted by β(T ) and the index of T denoted by ind(T ) . Next let us introduce the ascent and descent of a ∈ A
illustrated by the operator ascent and descent.

Let a ∈ A and let the linear operator La : A −→ A be defined by

La(x) = ax for any x ∈ A.

Put pl(a) = α(La) and ql(a) = β(La) , we call pl(a) the ascent of a and ql(a) the descent of a .

Definition 2.4 [24, Definition 2.3] Suppose A is a unital semisimple Banach algebra and a ∈ A . If a is a
Fredholm element, and pl(a) < ∞ , ql(a) < ∞ , then a is called a Browder element.

Recall that an element a ∈ A is said to be Drazin invertible in A if there exist a unique b ∈ A and
some k ∈ N such that bab = b , ab = ba , akba = ak [17, Page 3730]. Suppose A is a unital semisimple Banach
algebra. Clearly, an invertible element in A must be a Drazin invertible element. Conversely, if a ∈ A is a
Drazin invertible element with nul(a) = 0 , it is not difficult to show that a must be an invertible element. The
following aims to introduce B-Fredholm elements and B-Weyl elements and B-Browder elements.
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The quotient algebra A/Soc(A) is written as Â . Evidently, Â is not a Banach algebra since Soc(A) is
not closed [2, Page 245]. For a ∈ A , we denote the canonical homomorphism

π : A → Â
a 7→ a+ Soc(A),

and write â = a+ Soc(A) for the coset of a in Â .

Definition 2.5 [10, Definition 1.2] Let A be a unital semiprime Banach algebra. An element a ∈ A is called
a B-Fredholm element of A if it is Drazin invertible modulo Soc(A) . In other words, â is Drazin invertible in
Â .

Definition 2.6 [9, Definition 2.1] Let I be an ideal in a Banach algebra A . A function τ : I → C is called a
trace on I if

(1) τ(p) = 1 if p ∈ I is an idempotent of rank one.
(2) τ(a+ b) = τ(a) + τ(b) for all a, b ∈ I .
(3) τ(αa) = ατ(a) for all α ∈ C and a ∈ I .
(4) τ(ab) = τ(ba) for all a ∈ I and b ∈ A .

Definition 2.7 [10, Definition 3.2] Let τ be a trace on the socle Soc(A) of a unital primitive Banach algebra
A . The index of a B-Fredholm element a ∈ A is defined by

i(a) = τ(aa0 − a0a) = τ [a, a0],

where a0 is a Drazin inverse of a modulo the socle of A .

From [9, Theorem 2.3], the index of a B-Fredholm element a ∈ A is well-defined and is independent of
the Drazin inverse a0 of a modulo the ideal Soc(A) . Since invertible elements are always Drazin invertible, it
follows immediately that Fredholm elements are B-Fredholm elements.

Definition 2.8 [10, Definition 3.3] Suppose that A is a unital primitive Banach algebra and a ∈ A . Then a

is called a B-Weyl element if it is a B-Fredholm element of index 0.

Next, it is necessary to review B-Browder elements.

Definition 2.9 [23, Definition 3.3.1] Assume that A is a unital semisimple Banach algebra, a ∈ A is called a
B-Browder element if there exist a Drazin invertible element b and c ∈ Soc(A) such that bc = cb and a = b+c .

Suppose A is a unital primitive C∗ -algebra and a ∈ A , from [10, Theorem 3.4], one can see that a is a
B-Weyl element if and only if there exist a Drazin invertible element b and c ∈ Soc(A) such that a = b + c .
Hence, a B-Browder element must be a B-Weyl element, a B-Weyl element must be a B-Fredholm element. One
can verify that Fredholm elements must be B-Fredholm elements. In the next section, it can be proved that
Weyl elements must be B-Weyl elements and Browder elements must be B-Browder elements.

When A is a unital primitive C*-algebra, we will assume that the socle of A is not reduced to {0} , so
in this case, A possesses minimal idempotents [4], let p be a minimal idempotent in A in the whole paper [4].
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The set of bounded linear operators on Ap is denoted by B(Ap) . The left regular representation of A on the
Banach space Ap is defined by Γ : A → B(Ap) , such that Γ(a) = La for any a ∈ A . Recall that

Γ(Soc(A)) = F (Ap) ⊆ B(Ap)

by [4, Theorem F.4.3], where F (Ap) denotes the set of all finite rank operators on Ap . From [4, F.2.1], it
follows that the nullity and defect of the operator La ∈ B(Ap) are independent of the choice of p ∈ Min(A) .

Inspired by M. Berkani [10], one can see that a ∈ A is a Fredholm (B-Fredholm) element if and only
if La is a Fredholm (B-Fredholm) operator on Ap when A is a primitive C∗ -algebra, which is the reason of
considering the primitive C∗ -algebra in this paper. Next, some related spectrums are introduced as follows:

Definition 2.10 [23, Definition 3.3.2] Suppose A is a semisimple Banach algebra with a unit e and a ∈ A ,
the spectrum of a , the Drazin spectrum of a , the Fredholm spectrum of a , the Weyl spectum of a , the Browder
spectrum of a , the B-Fredholm spectrum of a , the B-Weyl spectum of a , the B-Browder spectrum of a are
defined by:

σ(a) = {λ ∈ C : a− λe is not an invertible element};

σD(a) = {λ ∈ C : a− λe is not a Drazin invertible element};

σess(a) = {λ ∈ C : a− λe is not a Fredholm element};

σw(a) = {λ ∈ C : a− λe is not a Weyl element};

σb(a) = {λ ∈ C : a− λe is not a Browder element};

σBF (a) = {λ ∈ C : a− λe is not a B − Fredholm element};

σBW (a) = {λ ∈ C : a− λe is not a B −Weyl element};

σBB(a) = {λ ∈ C : a− λe is not a B −Browder element};

respectively. Note that a−λe is always abbreviated to a−λ . Corresponding, set ρ(a) =C \σ(a) , ρD(a) =C \σD(a) ,
ρess(a) =C \σess(a) , ρw(a) =C \σw(a) , ρb(a) =C \σb(a) , ρBF (a) =C \σBF (a) , ρBW (a) =C \σBW (a) , and
ρBB(a) = C \ σBB(a) . Suppose K ⊆C , isoK denotes the set of isolated points of K , accK denotes the set
of accumulation points of K .

Now some necessary conceptions and notations have been listed. In the following, the spectral theories
of B-Fredholm elements, B-Weyl elements and B-Browder elements in a primitive C*-algebra will be studied.

3. B-Weyl spectrum and B-Browder spectrum

From now on, we always assume that A is a primitive C*-algebra with a unit e if there are no special instructions.
The major purpose of this section is to characterize B-Weyl spectrum and study the difference between B-Weyl
spectrum and B-Browder spectrum by the spectral mapping theorem. Firstly, a characterization of B-Weyl
spectrum is illustrated.

Proposition 3.1 Let a ∈ A , then σBW (a) =
∩

c∈Soc(A)

σD(a+ c) .
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Proof Firstly, we prove that σBW (a) ⊆
∩

c∈Soc(A)

σD(a+ c) .

If λ 6∈
∩

c∈Soc(A)

σD(a+ c) , there exists c0 ∈ Soc(A) such that a+ c0 − λ is Drazin invertible in A . One

can get that Lc0 is a finite rank operator in B(Ap) since A is a primitive C*-algebra [4, Theorem F.4.3]. It is
easy to check that La + Lc0 − λLe is a Drazin invertible operator. It follows that

λ 6∈
∩

F∈F (Ap)

σD(La + F ),

which implies that λ 6∈ σBW (La) from the Theorem 4.3 in [7]. Hence, La−λ is a B-Weyl operator, and La−λ

is a B-Fredholm operator, which implies a− λ is a B-Fredholm element since A is a primitive C∗ -algebra [10,
Theorem 3.8]. Applying [9, Lemma 3.2], one can get that i(a− λ) = ind(La − λ) = 0 , and moreover a− λ is a
B-Weyl element. In other words, λ 6∈ σBW (a) .

Secondly, there is no harm in supposing 0 6∈ σBW (a) . In other words, a is a B-Weyl element. It follows
that La is a B-Weyl operator. That is to say, 0 6∈ σBW (La) . It can be proved that there exists F ∈ F (Ap) such
that La + F is a Drazin invertible operator from [7, Theorem 4.3]. One can get that there exists t ∈ Soc(A)

such that F = Lt since A is a primitive C*-algebra [4, Theorem F.4.3]. Hence, La+t is a Drazin invertible
operator in B(Ap) , which implies that La+t is a Drazin invertible operator in Γ(A) . Since A is a primitive
C∗ -algebra, it follows from [4, Page 30] that the left regular representation of A is faithful, which implies
that a + t is a Drazin invertible element in A . Therefore, 0 6∈

∩
c∈Soc(A)

σD(a + c) . Consequently, one has

σBW (a) =
∩

c∈Soc(A)

σD(a+ c) . 2

Let a ∈ A , denote the set of complex-valued analytic functions on a neighborhood of σ(a) by Hol(a) .
Next, the spectral mapping theorem of B-Browder spectrum is stated as follows:

Theorem 3.2 [Spectral Mapping Theorem of B-Browder Spectrum] Suppose a ∈ A , f ∈ Hol(a) , then
σBB(f(a)) = f(σBB(a)) .

Proof Suppose µ 6∈ f(σBB(a)) , there is no harm in assuming that

f(λ)− µ = (λ− λ1)
n1(λ− λ2)

n2 · · · (λ− λk)
nkh(λ),

where λ1, λ2, · · · , λk ∈ σ(a) , n1, n2, · · · , nk ∈ N , h ∈ Hol(a) and h(a) is an invertible element in A . Hence,

f(a)− µ = (a− λ1)
n1(a− λ2)

n2 · · · (a− λk)
nkh(a),

where λ1, λ2, · · · , λk ∈ σ(a) , n1, n2, · · · , nk ∈ N . Evidently, f(λi) = µ for i = 1, 2, · · · , k . One can get
that a − λi is a B-Browder element for i = 1, 2, · · · , k , which implies that La−λi

is a B-Browder operator
since A is a primitive C∗ -algebra [23, Lemma 3.3.4]. According to the fact that La − λi is a B-Browder
operator, then λi 6∈ σBB(La) . Therefore, f(λi) 6∈ f(σBB(La)) . Applying Theorem 2.9 in [16], one can obtain
that f(λi) 6∈ σBB(f(La)) . In other words, f(La) − µ is a B-Browder operator. Associated with the relation
p(La) = Lp(a) holds for any polynomial p with complex coefficients, it follows that f(La) = Lf(a) for any
f ∈ Hol(a) by [30, Page 269], which implies that Lf(a)−µ is a B-Browder operator. This leads to the conclusion
that f(a)− µ is a B-Browder element [23, Lemma 3.3.4]. Therefore, µ 6∈ σBB(f(a)) .
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Conversely, suppose µ 6∈ σBB(f(a)) , then f(a) − µ is a B-Browder element. It follows that Lf(a)−µ is
a B-Browder operator [23, Lemma 3.3.4]. In other words, one can see that µ 6∈ σBB(Lf(a)) = σBB(f(La)) =

f(σBB(La)) referred to [16, Theorem 2.7] and [18, Theorem 2.2]. Suppose

f(La)− µ = (La − λ1)
n1(La − λ2)

n2 · · · (La − λk)
nkh(La),

where λ1, λ2, · · · , λk ∈ σ(a) , n1, n2, · · · , nk ∈ N , h ∈ Hol(a) and h(a) is an invertible element in A . One
can show that λi 6∈ σBB(La) for any i = 1, 2, · · · , k . Then La − λi is a B-Browder operator, which implies
that a− λi is a B-Browder element for i = 1, 2, · · · , k because A is a primitive C∗ -algebra [23, Lemma 3.3.4].
Hence, λi 6∈ σBB(a) . This leads to the conclusion that

f(λi) = µ 6∈ f(σBB(a)).

Therefore, the relation σBB(f(a)) = f(σBB(a)) holds. 2

We have shown the spectral mapping theorem of B-Browder spectrum. The following will give a necessary
and sufficient condition that the spectral mapping theorem of B-Weyl spectrum holds.

Proposition 3.3 Suppose A is a unital primitive Banach algebra. If a ∈ A , f ∈ Hol(a) , then σBW (f(a)) ⊆
f(σBW (a)) .

Proof Suppose µ 6∈ f(σBW (a)) , let us assume that

f(λ)− µ = (λ− λ1)
n1(λ− λ2)

n2 · · · (λ− λk)
nkh(λ),

where λ1, λ2, · · · , λk ∈ σ(a) , n1, n2, · · · , nk ∈ N , h ∈ Hol(a) and h(a) is an invertible element in A . Hence,

f(a)− µ = (a− λ1)
n1(a− λ2)

n2 · · · (a− λk)
nkh(a),

where λ1, λ2, · · · , λk ∈ σ(a) , n1, n2, · · · , nk ∈ N . One can get that λi ∈ ρBW (a) by means of µ 6∈ f(σBW (a)) ,
where i = 1, 2, · · · , k . In other words, a−λi is a B-Weyl element for any i = 1, 2, · · · , k . Since A is a primitive
Banach algebra, it follows from [9, Proposition 3.3] that f(a)− µ is a B-Fredholm element and

i(f(a)− µ) =

k∑
i=1

ni · i(a− λi) + i(h(a)) = 0.

Thus, f(a)− µ is a B-Weyl element and µ 6∈ σBW (f(a)) . 2

However, the spectral mapping theorem of B-Weyl spectrum does not hold; in other words, “σBW (f(a)) =

f(σBW (a))” does not hold for a ∈ A , f ∈ Hol(a) . One can refer to the following example.

Example 3.4 Let U ∈ B(l2) be the unilateral shift and consider the operator T = U
⊕

(U∗ + 2) . Let
p(z) = z(z − 2) , then p ∈ Hol(T ) . From [16, Example 2.8], one can get that 0 6∈ σBW (p(T )) , but
0 ∈ p(σBW (T )) . Hence, σBW (p(T )) 6= p(σBW (T )) .

In the following, we consider when the spectral mapping theorem of B-Weyl spectrum holds.
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Theorem 3.5 [Spectral Mapping Theorem of B-Weyl Spectrum] Suppose a ∈ A , f ∈ Hol(a) , then the following
statements are equivalent:

(1) σBW (f(a)) = f(σBW (a)) for all f ∈ Hol(a) .
(2) either i(a− λ) ≥ 0 for all λ ∈ ρBF (a) or i(a− λ) ≤ 0 for all λ ∈ ρBF (a) .

Proof (1) ⇒ (2) . Suppose that there exist λ0, µ0 ∈ ρBF (a) such that

0 < m = i(a− λ0), i(a− µ0) = n < 0.

Define f(x) = (x− λ0)
n(x− µ0)

m , one can get

f(a) = (a− λ0)
n(a− µ0)

m.

It follows from [9, Proposition 3.3] that f(a) is a B-Fredholm element and i(f(a)) = 0 . Therefore, f(a) is a
B-Weyl element. In other words, 0 6∈ σBW (f(a)) . Since σBW (f(a)) = f(σBW (a)) for all f ∈ Hol(a) , it is
clear that 0 6∈ f(σBW (a)) . However, f(λ0) = f(µ0) = 0 and λ0, µ0 ∈ σBW (a) , in other words, 0 ∈ f(σBW (a)) ,
which is a contradiction with 0 6∈ f(σBW (a)) . Hence, either i(a − λ) ≥ 0 for all λ ∈ ρBF (a) or i(a − λ) ≤ 0

for all λ ∈ ρBF (a) .
(2) ⇒ (1) . From Proposition 3.3, it suffices to prove that f(σBW (a)) ⊆ σBW (f(a)) . Suppose µ 6∈

σBW (f(a)) ; in other words, f(a)− µ is a B-Weyl element. Suppose

f(λ)− µ = (λ− λ1)
n1(λ− λ2)

n2 · · · (λ− λk)
nkh(λ),

where λ1, λ2, · · · , λk ∈ σ(a) , n1, n2, · · · , nk ∈ N , h ∈ Hol(a) and h(a) is an invertible element in A . Hence,

f(a)− µ = (a− λ1)
n1(a− λ2)

n2 · · · (a− λk)
nkh(a),

where λ1, λ2, · · · , λk ∈ σ(a) , n1, n2, · · · , nk ∈ N . Evidently, f(a) − µ is a B-Fredholm element, then Lf(a)−µ

is a B-Fredholm operator [10, Theorem 3.6]. It follows that

Lf(a)−µ = Lf(a) − Lµ = (La − Lλ1
)n1(La − Lλ2

)n2 · · · (La − Lλk
)nkLh(a).

According to Theorem 3.4 in [11], one can get that La − Lλi
is a B-Fredholm operator for i = 1, 2, · · · , k ,

and thus a − λi (i = 1, 2, · · · , k ) is a B-Fredholm element since A is a primitive C*-algebra. Without loss of
generality, one can suppose i(a−λ) ≥ 0 for all λ ∈ ρBF (a) . Since f(a)−µ is a B-Fredholm element, it follows
from [9, Proposition 3.3] that

i(f(a)− µ) =

k∑
i=1

ni · i(a− λi) + i(h(a)) = 0,

which implies that i(a − λi) = 0 since i(a − λ) ≥ 0 for all λ ∈ ρBF (a) . Hence, a − λi (i = 1, 2, · · · , k ) is a
B-Weyl element. In other words, λi 6∈ σBW (a) . Consequently, µ 6∈ f(σBW (a)) . This completes the proof. 2

Next, an example satisfying the condition (2) in Theorem 3.5 is provided. Let T ∈ B(l2) be defined
by T (x1, x2, · · · ) = (x2

2 , x3

3 , · · · ) . From [32, Remark 2.1] and [25, Theorem 2.1], it follows that T satisfies the
conditions (1) and (2) in Theorem 3.5.
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Remark 3.6 We can classify B-Fredholm elements according to Theorem 3.5. P. Aiena defined the upper
semi-B-Weyl operators and the lower semi-B-Weyl operators and studied their properties [3, Definition 3.45].
Inspired by P. Aiena and based on Theorem 3.5, one can divide B-Fredholm elements into two classes, one is
upper semi-B-Weyl elements and the other is lower semi-B-Weyl elements. In detail, suppose A is a unital
primitive C∗ -algebra and a ∈ A , a is called an upper (lower) semi-B-Fredholm element if La is an upper
(lower) semi-B-Fredholm operator. We call the element a an upper semi-B-Weyl element if it is an upper
semi-B-Fredholm element with i(a) ≤ 0 . Similarly, we call the element a a lower semi-B-Weyl element if it is
a lower semi-B-Fredholm element with i(a) ≥ 0 . Denote the upper (lower) semi-B-Weyl elements by USB(A)

(LSB(A)), respectively.

This section considers the properties of B-Weyl spectrum and B-Browder spectrum. Based on the above
spectral theories, the generalized Weyl’s theorem and the generalized Browder’s theorem for an element in a
primitive C*-algebra will be discussed in the next section, which generalizes the operator situation in B(H) .

4. Generalized Weyl’s theorem and generalized Browder’s theorem in primitive C*-algebra
This section aims to consider the generalized Weyl’s theorem and the generalized Browder’s theorem for a ∈ A
and f(a) , where f ∈ Hol(a) . Meanwhile, the perturbations of the generalized Weyl’s theorem and the
generalized Browder’s theorem are investigated.

In this section, we always assume that A is a primitive C*-algebra with a unit e if there are no special
instructions. Let T ∈ B(H) , denote the dimension of the null space of T and the co-dimension of the range
of T by n(T ) and d(T ) , respectively. If A is a primitive C*-algebra and a ∈ A , we define the rank of a by
rank(a) = rank(La) . In order to study the generalized Weyl’s theorem and the generalized Browder’s theorem
for an element in a primitive C*-algebra, some lemmas will be required as follows.

Lemma 4.1 [4, F.2.4] Suppose A is a unital primitive C*-algebra, then Soc(A) = {x ∈ A : rank(x) < ∞} .

Definition 4.2 [19, Definition 3.9] Suppose A is a semisimple Banach algebra with a unit e . An idempotent
s is called a left Barnes idempotent for a ∈ A if aA = (e − s)A and a right Barnes idempotent for a ∈ A if
Aa = A(e− s) .

Recall that τ(a) means the trace of a , where τ is a spectral trace on Soc(A) . The trace on finite rank
elements is spectral; in other words, if λ1, λ2, · · · , λn are the eigenvalues of a each repeated according to its

algebraic multiplicity, then τ(a) =
n∑

i=1

λi [19, Page 4]. Since we have for every idempotent p ∈ Soc(A) that

σ(p) ⊆ {0, 1} , we immediately have that τ(p) ∈ N for every such p (see [19, The trace 2.1]). For detailed
introduction, one can refer to [19, Page 4].

Lemma 4.3 [19, Corollary 3.15] Suppose A is a unital semisimple Banach algebra. If a is a Fredholm element
of A with left Barnes idempotent s , then τ(s) = rank(s) and similarly, for a right Barnes idempotent t we
have τ(t) = rank(t) .

Proposition 4.4 Suppose a ∈ Φ(A) , where Φ(A) means the set of all Fredholm elements in A , then
nul(a) = n(La) and def(a) = d(La) .
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Proof Since a ∈ Φ(A) , then a is left (and right) invertible modulo Soc(A) . From [4, F.1.10], a has a right
(and left) Barnes idempotent in Soc(A) . There is no harm in supposing q is a right Barnes idempotent in
Soc(A) of a . Since A is a primitive C*-algebra, associated with [4, F.2.6], one can get that

ker(La) = R(a)
∩

Ap = qA
∩

Ap = qAp,

where p is the minimal idempotent in A . It follows that

n(La) = rank(Lq) = rank(q) = τ(q),

where τ(q) means the trace of q . Applying [19, Theorem 3.14], τ(q) = θ(R(a)) = nul(a) . Hence, nul(a) =

n(La) .
Next we prove def(a) = d(La) . Since a is right invertible modulo Soc(A) , it has a left Barnes idempotent

l in Soc(A) [4, Theorem F.1.10]. Because A is primitive, one can prove that

La(Ap) = aAp = (e− l)Ap

and
Ap/La(Ap) = Ap/(e− l)Ap = lAp.

So it can be obtained that d(La) = rank(Ll) = rank(l) . According to Lemma 4.3, it follows that rank(l) = τ(l) .
Associated with [19, Theorem 3.14], this indicates that rank(l) = τ(l) = θ(L(a)) = def(a) = d(La) . This
completes the proof. 2

The following generalizes the generalized Weyl’s (Browder’s) theorem for an operator T ∈ B(X) to a
general situation and shows that for an element a in a primitive C*-algebra, if a satisfies the generalized Weyl’s
theorem, then a satisfies the generalized Browder’s theorem.

Definition 4.5 Suppose A is a unital semisimple Banach algebra. We say that the generalized Weyl’s theorem
holds for a ∈ A if σ(a)\σBW (a) = π0(a) , and the generalized Browder’s theorem holds for a if σ(a)\σBW (a) =

P0(a) . Here π0(a) = {λ ∈ isoσ(a) : nul(a− λ) 6= 0} , and P0(a) = {λ : λ is a pole of the resolvent of a} .

Recall that the left regular representation of the primitive C*-algebra A on the Banach space Ap is
defined by

Γ : A → B(Ap) such that Γ(a) = La,

where p is the minimal idempotent element in A . According to [1, Page 903], it follows that Γ is an isometric
irreducible ∗ -representation. Next, an indispensable lemma is provided.

Lemma 4.6 An element a ∈ A is a Drazin invertible element if and only if pl(a) < ∞ and ql(a) < ∞ .

Proof Suppose that pl(a) < ∞ and ql(a) < ∞ , in other words, α(La) < ∞ and β(La) < ∞ . Hence, La is
a Drazin invertible operator [16, Page 1425]. Since A is a primitive C*-algebra, it follows that Γ(A) is Drazin
inverse closed in B(Ap) from Example 3.5 in [10], where p is the minimal idempotent in A . Therefore, there
exists Lb ∈ Γ(A) such that Lb is a Drazin inverse of La , where b ∈ A . That is to say,

LbLaLb = Lb, LaLb = LbLa
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and
(La)

kLbLa = (La)
k = Lak = LakLbLa.

Note that the left regular representation Γ is faithful since A is a primitive C*-algebra [1, Page 903], which
implies that

bab = b, ab = ba and akba = ak,

Hence, a is a Drazin invertible element.
Conversely, if a ∈ A is a Drazin invertible element, then there exist b ∈ A and k ∈ N such that

bab = b, ab = ba, akba = ak . It follows that

LbLaLb = Lb, LaLb = LbLa

and
LakLbLa = Lak = (La)

k = (La)
kLbLa,

which implies that La is a Drazin invertible operator in B(Ap) . Applying [16, Page 1425], one can get that
α(La) < ∞ and β(La) < ∞ . One can see pl(a) < ∞ and ql(a) < ∞ from the definitions of the ascent and
descent of an element. This completes the proof. 2

Next, the characterizations of the generalized Browder’s theorem will be presented.

Theorem 4.7 Suppose a ∈ A , then the following statements are equivalent:
(1) a satisfies the generalized Browder’s theorem.
(2) σBW (a) = σBB(a) .
(3) σ(a) = σBW (a)

∪
π0(a) , where π0(a) = {λ ∈ isoσ(a) : nul(a− λ) > 0} .

(4) accσ(a) ⊆ σBW (a) .
(5) σ(a)\σBW (a) ⊆ π0(a) .

Proof (1) ⇒ (2) . It suffices to prove that σBB(a) ⊆ σBW (a) . Suppose a− λ is a B-Weyl element, it is not
harmful to suppose λ ∈ σ(a) \ σBW (a) . Since a satisfies the generalized Browder’s theorem, then one can get

pl(a− λ) < ∞ and ql(a− λ) < ∞,

which means that a−λ is a Drazin invertible element in A by Lemma 4.6. Therefore, for any b ∈ Soc(A) with
(a − λ)b = b(a − λ) , a − λ + b is also Drazin invertible in A . In other words, λ 6∈ σD(a + b) . Applying [23,
Proposition 3.3.3], it follows that λ 6∈ σBB(a) , which implies that a−λ is a B-Browder element. Consequently,
σBW (a) = σBB(a) .

(2) ⇒ (1) . Firstly, we show σ(a) \ σBW (a) ⊆ P0(a) , where

P0(a) = {λ : λ is a pole of the resolvent of a}.

Assume λ ∈ σ(a) \ σBW (a) , which implies that a − λ is a B-Weyl element, and furthermore a B-Browder
element. According to [23, Proposition 3.3.3], there exists an element

b ∈ Soc(A) with (a− λ)b = b(a− λ)
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such that a− λ+ b is Drazin invertible in A . Hence, a− λ is a Drazin invertible element in A . It follows that
λ is a pole of the resolvent of a , and that λ ∈ P0(a) .

Conversely, if λ ∈ P0(a) , then λ is a pole of the resolvent of a . From [27, Page 303], it follows that
pl(a − λ) < ∞ and ql(a − λ) < ∞ , which implies that a − λ is Drazin invertible but not invertible in A
according to Lemma 4.6. From [22, Theorem 4.2], one can show that λ ∈ isoσ(a) . It follows from [23] that
a− λ is a B-Weyl element. Finally, one can get that λ ∈ σ(a) \ σBW (a) .

(2) ⇒ (3) . It suffices to prove that σ(a) ⊆ σBW (a)
∪

π0(a) . If λ ∈ σ(a) \ σBW (a) , then a − λ is a
B-Weyl element. Associated with the condition (2), it follows that a−λ is a B-Browder element, which implies
λ 6∈ σBB(a) . Therefore, there exists b ∈ Soc(A) with (a−λ)b = b(a−λ) such that a−λ+b is Drazin invertible
in A . This indicates that a− λ is Drazin invertible in A . Furthermore, one can obtain that λ ∈ σ(a) \ σD(a) ,
which shows that

λ ∈ isoσ(a) and nul(a− λ) > 0.

Otherwise, if nul(a − λ) = 0 , then it is an invertible element in A . It is a contradiction with the fact that
λ ∈ σ(a) . Hence, λ ∈ π0(a) . Consequently, σ(a) = σBW (a)

∪
π0(a) .

(3) ⇒ (2) . It suffices to prove that a − λ is a B-Browder element provided that a − λ is a B-Weyl
element.

Suppose that a−λ is a B-Weyl element, it is not harmful to suppose that λ ∈ σ(a) \σBW (a) . Then one
can get that λ ∈ isoσ(a) and nul(a− λ) > 0 . Applying [23, Proposition 3.2.2], it follows that a− λ is Drazin
invertible in A . Therefore, for any b ∈ Soc(A) with (a− λ)b = b(a− λ) , we have the conclusion that a− λ+ b

is Drazin invertible in A , which implies that

λ 6∈ σD(a+ b).

It is not difficult to check that 0 6∈ σBB(a−λ) . It follows that a−λ is a B-Browder element. This leads to the
conclusion that σBW (a) = σBB(a) .

(1) ⇔ (4) . Suppose λ 6∈ σBW (a) , which infers that a − λ is a B-Weyl element. It is not harmful
to suppose that λ ∈ σ(a) \ σBW (a) , one can get that λ ∈ isoσ(a) and nul(a − λ) > 0 since a satisfies the
generalized Browder’s theorem. Therefore, λ 6∈ accσ(a) .

Conversely, if λ ∈ σ(a) \ σBW (a) , then λ ∈ isoσ(a) . Since a − λ is a B-Weyl element, it follows that
a−λ is Drazin invertible in A from [23, Proposition 3.2.2]. Therefore, λ ∈ P0(a) . For the converse direction, if
λ ∈ P0(a) , then λ is a pole of the resolvent of a . From [27, Page 303], pl(a−λ) < ∞ and ql(a−λ) < ∞ , which
implies that a − λ is Drazin invertible but not invertible in A according to Lemma 4.6. From [22, Theorem
4.2], it can be proved that λ ∈ isoσ(a) . Applying [23, Proposition 3.2.2], a − λ is a B-Weyl element. That is
to say, P0(a) ⊆ σ(a) \ σBW (a) . Consequently, a satisfies the generalized Browder’s theorem.

(4) ⇔ (5) . Suppose λ ∈ σ(a) \ σBW (a) , then λ 6∈ accσ(a) from the condition (4), and thus λ ∈ isoσ(a) .
Therefore, a− λ is Drazin invertible in A , which implies that nul(a− λ) > 0 . Otherwise, if nul(a− λ) = 0 , it
is an invertible element in A , which contradicts with the fact that λ ∈ σ(a) . Hence, λ ∈ π0(a) .

Conversely, if σ(a) \ σBW (a) ⊆ π0(a) holds. Let λ ∈ σ(a) \ σBW (a) , then λ ∈ π0(a) . One can see that
λ ∈ isoσ(a) , which indicates that

λ ∈ σ(a) \ accσ(a).

Therefore, accσ(a) ⊆ σBW (a) . This completes the proof. 2
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Example 4.8 (1)Recall that an element a of a unital Banach algebra is said to be algebraic if there exists
a polynomials α with complex coefficients such that α(a) = 0 . If a ∈ A is an algebraic element, then it
satisfies the generalized Browder’s theorem from Theorem 4.7. Indeed, it is enough to note that σ(a) = {0} and
accσ(a) = ∅ .

(2) If a ∈ A is a quasinilpotent element, then it satisfies the generalized Browder’s theorem from Theorem
4.7 due to σ(a) = {0} and accσ(a) = ∅ .

For a ∈ A , we will give two corollaries applying Theorem 4.7, one corollary discusses whether a∗ satisfies
the generalized Browder’s theorem if a satisfies the generalized Browder’s theorem, and the other characterizes
the generalized Browder’s theorem of f(a) , where f ∈ Hol(a) .

Corollary 4.9 Suppose a ∈ A , then it satisfies the generalized Browder’s theorem if and only if a∗ satisfies
the generalized Browder’s theorem.

Proof From the Theorem 2.11 in [16], it follows that

σ(La) = σ((La)
∗) and σBW (La) = σBW ((La)

∗).

This leads to the conclusion that

a is an invertible element ⇔ La is an invertible operator in Γ(A)
⇔ (La)

∗ is an invertible operator in Γ(A)
⇔ La∗ is an invertible operator in Γ(A)
⇔ a∗ is an invertible element in A.

Since A is a primitive C*-algebra, one has

a is a B −Weyl element ⇔ La is a B −Weyl operator
⇔ (La)

∗ is a B −Weyl operator on Ap
⇔ La∗ is a B −Weyl operator on Ap
⇔ a∗ is a B −Weyl element in A.

Therefore, σ(a) = σ(a∗) and σBW (a) = σBW (a∗) , which implies that

accσ(a) ⊆ σBW (a) ⇔ accσ(a∗) ⊆ σBW (a∗).

Applying Theorem 4.3, one can get that the element a satisfies the generalized Browder’s theorem if and only
if the element a∗ satisfies the generalized Browder’s theorem. 2

Corollary 4.10 If a ∈ A satisfies the generalized Browder’s theorem, then the following statements are
equivalent:

(1) f(a) satisfies the generalized Browder’s theorem for any f ∈ Hol(a) .
(2) for any λ, µ ∈ ρBF (a) , i(a− λ) · i(a− µ) ≥ 0 .
(3) σBW (f(a)) = f(σBW (a)) for any f ∈ Hol(a) .

Proof From Theorem 3.5, it is clear that (2) ⇔ (3) . It suffices to prove (3) ⇔ (1) .
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(3) ⇒ (1) . Suppose σBW (f(a)) = f(σBW (a)) . From Theorem 4.7(2) and Proposition 3.2, it follows that

σBB(f(a)) = f(σBB(a)) = f(σBW (a)) = σBW (f(a)).

Applying Theorem 4.7(2), one can get that f(a) satisfies the generalized Browder’s theorem for any f ∈ Hol(a) .
(1) ⇒ (3) . Since a satisfies the generalized Browder’s theorem, applying Theorem 4.7(2) and Proposition

3.2, one can obtain that σBW (f(a)) = σBB(f(a)) = f(σBB(a)) = f(σBW (a)) . This completes the proof. 2

In what follows, we will discuss the relations between the generalized Weyl’s theorem and the generalized
Browder’s theorem by virtue of the following fact: if a ∈ A , then P0(a) ⊆ π0(a) . Indeed, it is not harmful to
suppose that 0 ∈ P0(a) , then pl(a) < ∞ , ql(a) < ∞ . One can prove that 0 ∈ isoσ(a) . Note that in this case
a is a Drazin invertible element in A by Lemma 4.6, which implies that nul(a) > 0 . Otherwise, if nul(a) = 0 ,
then it is an invertible element in A . It is a contradiction with the fact that 0 ∈ σ(a) . Therefore, nul(a) > 0 .
In other words, 0 ∈ π0(a) .

Proposition 4.11 Suppose a ∈ A satisfies the generalized Weyl’s theorem, then it satisfies the generalized
Browder’s theorem.

Proof Firstly, the relation “σ(a)\σBW (a) ⊆ P0(a)” will be proved. If λ ∈ σ(a) and a−λ is a B-Weyl element.
One can get that λ ∈ π0(a) since a satisfies the generalized Weyl’s theorem. That is to say, λ ∈ isoσ(a) and
nul(a− λ) > 0 . Associated with [23, Proposition 3.2.2], it follows that a− λ is Drazin invertible in A , then λ

is a pole of the resolvent of a , which implies that λ ∈ P0(a) .
Subsequently, the relation “P0(a) ⊆ σ(a) \ σBW (a)” will be examined. Suppose λ ∈ P0(a) , then λ is

a pole of the resolvent of a . From Lemma 4.6, a − λ is Drazin invertible in A . Therefore, 0 ∈ isoσ(a) [22,
Theorem 4.2]. One can assert that nul(a − λ) > 0 . Indeed, if nul(a − λ) = 0 , then it is an invertible element
in A . It is a contradiction with the fact that λ ∈ σ(a) . Thus, nul(a− λ) > 0 , which means λ ∈ π0(a) . Since
a satisfies the generalized Weyl’s theorem, then λ ∈ σ(a) \ σBW (a) . This completes the proof. 2

The following example shows that the converse of Proposition 4.11 is not true.

Example 4.12 Let T1 ∈ B(l2) be given by

T1(x1, x2, x3, · · · ) = (0,
x1

2
,
x2

3
,
x3

4
, · · · ).

Let T2 = 0 and T =

(
T1 0
0 T2

)
. One can calculate that σ(T ) = σBW (T ) = π0(T ) = {0} and P0(T ) = ∅ .

Therefore, T satisfies the generalized Browder’s theorem, but it does not satisfy the generalized Weyl’s theorem.

Next, we give necessary and sufficient conditions such that a ∈ A satisfies the generalized Weyl’s theorem
when it satisfies the generalized Browder’s theorem.

Proposition 4.13 If a ∈ A satisfies the generalized Browder’s theorem, then the following statements are
equivalent:

(1) a satisfies the generalized Weyl’s theorem.
(2) σBW (a)

∩
π0(a) = ∅ .

(3) P0(a) = π0(a) .
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Proof (1) ⇒ (2) . If a satisfies the generalized Weyl’s theorem, then σ(a) \ σBW (a) = π0(a) . It can be easily
got that σBW (a)

∩
π0(a) = ∅ .

(2) ⇒ (3) . It suffices to prove π0(a) ⊆ P0(a) . Suppose λ ∈ π0(a) , then one can get that λ ∈ σ(a)\σBW (a)

since σBW (a)
∩
π0(a) = ∅ . It follows that a−λ is a B-Weyl element, which implies that a−λ is Drazin invertible

in A [23, Proposition 3.2.2]. Therefore, λ is a pole of the resolvent of a , which means λ ∈ P0(a) .
(3) ⇒ (1) . It is clear from Definition 4.5. 2

Now we come to the final result of this paper, which gives the perturbations of the generalized Weyl’s
theorem and the generalized Browder’s theorem under the socle of A . To begin with, we need a lemma which
investigates the perturbation of the Drazin spectrum under Soc(A) .

Lemma 4.14 Suppose a ∈ A , k ∈ Soc(A) with ak = ka , then σD(a) = σD(a+ k) .

Proof In order to prove σD(a) = σD(a + k) , we only need to check that if 0 6∈ σD(a) , then 0 6∈ σD(a + k) .
Therefore, it suffices to prove that if a ∈ A is Drazin invertible, k ∈ Soc(A) with ak = ka , then a + k is
Drazin invertible. Suppose a is Drazin invertible, then one can show that La is a Drazin invertible operator.
It follows that Lk ∈ F (Ap) since A is a primitive C*-algebra [1, Page 903]. It is clear that LaLk = LkLa since
ak = ka . One can get that La + Lk is also Drazin invertible by Theorem 2.7 in [8]. In other words, La+k is
a Drazin invertible operator in B(Ap) . Therefore, La+k is a Drazin invertible operator in Γ(A) since A is a
primitive C*-algebra [10, Example 3.5]. Since A is a primitive C*-algebra, then the left regular representation
is isometric [1, Page 903], this leads to the conclusion that a + k is a Drazin invertible element. It can be
obtained from the above discussion that σD(a) = σD(a+ k) . 2

Theorem 4.15 Suppose a ∈ A satisfies the generalized Weyl’s theorem and s ∈ Soc(A) with as = sa , then
a+ s satisfies the generalized Weyl’s theorem if and only if π0(a+ s) = P0(a+ s) .

Proof If a+s satisfies the generalized Weyl’s theorem, then a+s satisfies the generalized Browder’s theorem.
From Proposition 4.13, one can get that π0(a+ s) = P0(a+ s) .

Conversely, if π0(a + s) = P0(a + s) , since a satisfies the generalized Weyl’s theorem, then one can
conclude that σBW (a) = σD(a) . Indeed, if a is Drazin invertible in A , then a + s is Drazin invertible in A .
It follows that 0 ∈ isoσ(a + s) , which implies that a + s is a B-Weyl element from [23, Proposition 3.2.2].
Applying [9, Proposition 3.3], one can see that a is a B-Weyl element. It is not harmful to suppose that
0 ∈ σ(a) \ σBW (a) . Since a satisfies the generalized Weyl’s theorem, then 0 ∈ π0(a) , which means 0 ∈ isoσ(a)

and nul(a) > 0 . It follows that a is Drazin invertible in A . According to [9, Proposition 3.3],

σBW (a) = σBW (a+ s).

Associated with Lemma 4.14, σD(a) = σD(a+ s) , which suggests σBW (a+ s) = σD(a+ s) . One can check that
a + s satisfies the generalized Browder’s theorem. From Proposition 4.13 and π0(a + s) = P0(a + s) , one can
obtain that a+ s satisfies the generalized Weyl’s theorem. This completes the proof. 2

An element a ∈ A is called an isoloid element if nul(a− λ) > 0 for λ ∈ isoσ(a) . Next, two applications
of Theorem 4.15 will be listed as follows:

Example 4.16 If a ∈ A is an isoloid element satisfying the generalized Weyl’s theorem and s ∈ Soc(A) with
as = sa , then a+ s satisfies the generalized Weyl’s theorem. Indeed, it suffices to prove π0(a+ s) ⊆ P0(a+ s) .
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It is not harmful to suppose that 0 ∈ π0(a+ s) , then 0 ∈ isoσ(a+ s) and nul(a+ s) > 0 . One can check that
0 ∈ isoσ(a) , which implies nul(a) > 0 . Therefore, 0 ∈ π0(a) . It follows that 0 ∈ P0(a) since a satisfies the
generalized Weyl’s theorem. It can be proved that 0 ∈ P0(a+s) . Hence, π0(a+s) = P0(a+s) , and consequently,
a+ s satisfies the generalized Weyl’s theorem.

Example 4.17 If a ∈ A is a quasinilpotent element satisfying the generalized Weyl’s theorem and s ∈ Soc(A)

with as = sa , then a+s satisfies the generalized Weyl’s theorem. In fact, it suffices to prove π0(a+s) ⊆ P0(a+s) .
One can conclude that σBW (a) = ∅ if a is a quasinilpotent element. Indeed, one can get that σ(La) = {0}
since σ(a) = {0} . It follows that σBW (La) = ∅ . Hence, σBW (a) = ∅ since A is a primitive C*-algebra [10,
Theorem 3.8]. Suppose

0 ∈ isoσ(a+ s) and nul(a+ s) > 0,

then one can check that 0 ∈ isoσ(a) . It is easy to calculate that

σ(a) \ σBW (a) = {0}.

Hence, π0(a) = {0} since a satisfies the generalized Weyl’s theorem. It can be obtained that P0(a) = {0} . In
other words, a is Drazin invertible in A , which implies a+ s is Drazin invertible in A . From Lemma 4.6, it
follows that 0 ∈ P0(a + s) . Consequently, the relation π0(a + s) = P0(a + s) holds. Therefore, a + s satisfies
the generalized Weyl’s theorem.

Similarly, one has the following result.

Corollary 4.18 If a ∈ A satisfies the generalized Browder’s theorem and s ∈ Soc(A) with as = sa , then a+ s

satisfies the generalized Browder’s theorem.

Proof From the proof of Theorem 4.15, one can see that σBW (a) = σBW (a+ s) and σD(a) = σD(a+ s) . It
can be proved that a+ s satisfies the generalized Browder’s theorem applying Theorem 4.7. 2

Example 4.19 If a ∈ A is a quasinilpotent element and s ∈ Soc(A) with as = sa , then a + s satisfies the
generalized Browder’s theorem. Indeed, from Example 4.8, it follows that a satisfies the generalized Browder’s
theorem. Applying Proposition 4.18, one can get that a+ s satisfies the generalized Browder’s theorem.
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