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Abstract: In this article, we study word standardization in comparison to Young tableau standardization. We count
the number of words (respectively Young tableau) standardized to a given permutation (respectively to a given standard
Young tableau). We prove that both rectification and standardization applications commute and show that the standard-
ization commutes with the insertion of Robinson–Schensted. We show that the standardizations of Knuth-equivalent two
words are also Knuth equivalent. Finally, using word standardization we establish a proof for the following well-known
equality:

∀l ∈ {0, 1, . . . , n− 1} ,
⟨n
l

⟩
= dn,l = an,l =

∑
0≤k≤l

(−1)k
(
n+ 1

k

)
(l + 1− k)n.

Key words: RSK the correspondence of Robinson–Schensted–Knuth, Young tableaux, word standardization, Knuth
equivalent of words, Eulerian number

1. Multisets
The notion of multiset is a generalization of the notion of set, in the sense that an element of multiset could
be present more than once (see [3, 5]). This notion is useful in mathematics in general, for example the roots
of a polynomial naturally form a multiset. This notion is particularly used in combinatorics, where it provides
similar enumeration problems, different from those for sets.

Definition 1.1 A multiset, of a set A , is a couple (A,m) where m is a function from A to the set N∗ of
positive integers, called multiplicite.

The multiset (A,m) could be seen as a set of elements of A where an element can appear several times:
in such case in the multiset (A,m) , the element x appears m(x) times. A finite multiset is denoted by using
double braces {{...}} which enclose the elements, having a strictly positive multiplicity, and which are repeated
as many times as their multiplicity. Thus {{a, b, a, b, b, c}} represents the multiset ({a, b, c} ,m) where m is the
function such that m(a) = 2 , m(b) = 3 , and m(c) = 1 .

We call the number of multisets of cardinal k , with the elements choosen from a finite set of cardinal n ,
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the multinomial coefficient
((
n
k

))
, this notation (for example used in [5]) can be given explicitly by

((
n

k

))
=

n(n+ 1)(n+ 2) · · · (n+ k − 1)

k!
=

(
n+ k − 1

k

)
=

(
n+ k − 1

n− 1

)
. (1.1)

We can define a generalized binomial coefficient(
n

k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)

k!
(1.2)

in which n is not required to be a positive integer, but may be negative and even a rational (see [2] 5.1). So
the number of multisets of cardinal k choosen from a set of cardinal n is

((
n

k

))
= (−1)k

(
−n
k

)
, (1.3)

because

n(n+ 1)(n+ 2) · · · (n+ k − 1)

k!
= (−1)k−n(−n− 1)(−n− 2) · · · (−n− k + 1)

k!

= (−1)k
(
−n
k

)
.

(1.4)

Then we have the following formula

∑
k≥0

((
n

k

))
xk = (1− x)−n. (1.5)

Considering that ∑
k≥0

(−1)k
(
−n
k

)
xk = (1− x)−n. (1.6)

Lemma 1.2 Given R1, . . . ,Rn−1 fixed order relationships among {<,≤} , such that

t = # {i ∈ [n− 1] : Ri =<} , (1.7)

The number of sequences c1, . . . , cn ∈ N with

1 ≤ c1 R1 c2 R2 · · ·Rn−2 cn−1 Rn−1 cn ≤ m (1.8)

is equal to

((
n+ 1

m− 1− t

))
. (1.9)

Proof We will present a demonstration based on a generalization of the bijection between the set of sequences

1 ≤ c1 ≤ c2 ≤ · · · ≤ cn ≤ m (1.10)
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and the set of sequences
1 ≤ a1 < a2 < · · · < an ≤ m+ n− 1, (1.11)

where ∀i ∈ [n− 1], ai := ci + i− 1.

For a property P , we will use the following notation [[P]] which is 1 if this property is true, and 0 if this
property is false. The set of sequences

1 ≤ c1 R1 c2 R2 · · ·Rn−2 cn−1 Rn−1 cn ≤ m (1.12)

is in bijection with the set of sequences

1 ≤ d1 R1 d2 R2 · · ·Rn−2 dn−1 Rn−1 dn ≤ m+ n− 1− t (1.13)

where

di = ci +

i−1∑
k=1

[[Rk = ≤]], because (1.14)

if Ri = < : ci < ci+1 ⇔ di < di+1 ,

if Ri = ≤ : ci ≤ ci+1 ⇔ di < di+1 and

t =

n−1∑
k=1

[[Rk = <]] = n− 1−
n−1∑
k=1

[[Rk = ≤]]. (1.15)

The cardinal of this set of sequences is(
m+ n− 1− t

n

)
=

((
m− t

n

))
=

((
n+ 1

m− t− 1

))
, (1.16)

if n+m− t ≥ 1 , which is true because t ≤ n− 1 (all of Ri = <). 2

2. Word standardization
We denote by [m]n the set of all words of length n whose letters are in the alphabet [m] := {1, 2, ...,m} . Let us
provide the set N2 with the following four order relations, for each (i, j), (i′, j′) ∈ N2 , we suppose ≺ ∈ {<,>} :

(i, j) ≺r (i′, j′) if i < i′ or (i = i′andj ≺ j′); (2.1)

and
(i, j) ≺c (i

′, j′) if j < j′ or (j = j′andi ≺ i′). (2.2)

Definition 2.1 Let w = w1w2 · · ·wn ∈ [m]n , and let π = (i1, i2, . . . , in) be the unique permutation that satisfies

(wi1 , i1) ≺r (wi2 , i2) ≺r · · · ≺r (win , in) (2.3)

We define the standardization of w (denoted by st≺(w)), for ≺ , as the permutation π−1 satisfying
π−1
ij

= j .
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Example 2.2 Let w = 4 1 2 1 4 2 3 1 3 5 3 ∈W11([5]) , then the unique element (i1, i2, . . . , i11) ∈ [11]11 which
satisfies

(wi1 , i1) ≺r (wi2 , i2) ≺r · · · ≺r (wi11 , i11) (2.4)

is
(2, 4, 8, 3, 6, 7, 9, 11, 1, 5, 10) if ≺ is <, (2.5)

(8, 4, 2, 6, 3, 11, 9, 7, 5, 1, 10) if ≺ is >, (2.6)

then to standardize w , we replace in w

(w2, w4, w8, w3, w6, w7, w9, w11, w1, w5, w10) if ≺ is <, (2.7)

or
(w8, w4, w2, w6, w3, w11, w9, w7, w5, w1, w10) if ≺ is >, (2.8)

by (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) to have

st<(w) = 9 1 4 2 10 5 6 3 7 11 8. (2.9)

st>(w) = 10 3 5 2 9 4 8 1 7 11 6. (2.10)

Corollary 2.3 Let π be a permutation in Sn , then we have st≺(w) = π if the following two conditions are
satisfied

• wπ−1
1
≤ wπ−1

2
≤ · · · ≤ wπ−1

n
.

• For each i ∈ {1, 2, . . . , n− 1} , if π−1
i+1 ≺ π−1

i , then wπ−1
i

< wπ−1
i+1

.

Proof According to the definition of st≺ , we have

st≺(w) = π ⇐⇒ (wπ−1
1

, π−1
1 ) ≺r (wπ−1

2
, π−1

2 ) ≺r · · · ≺r (wπ−1
n

, π−1
n ), (2.11)

but according to the definition of the order relation ≺r , the two expressions

(wπ−1
1

, π−1
1 ) ≺r (wπ−1

2
, π−1

2 ) ≺r · · · ≺r (wπ−1
n

, π−1
n ) (2.12)

and

(
wπ−1

1
≤ wπ−1

2
≤ · · · ≤ wπ−1

n

)
and

(
wπ−1

i
< wπ−1

i+1
if π−1

i+1 ≺ π−1
i

)
(2.13)

are equivalent. So

st≺(w) = π ⇐⇒
(
wπ−1

1
≤ wπ−1

2
≤ · · · ≤ wπ−1

n

)
and

(
wπ−1

i
< wπ−1

i+1
if π−1

i+1 ≺ π−1
i

)
. (2.14)

2
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Corollary 2.4 For each permutation π ∈ Sn , the number of words w ∈ [m]n such as st≺(w) = π is equal to

((
n+ 1

m− 1− d(π−1)

))
if ≺ is <, (2.15)

and ((
n+ 1

m− 1− a(π−1)

))
if ≺ is > . (2.16)

Proof We fix a permutation π ∈ Sn , and we denote st−1
≺,m(π) the set of words w of length n in the alphabet

[m] , where st≺(w) = π . According to Corollary 2.3, this set is equal to the set of words

{
w1 . . . wn / 1 ≤ wπ−1

1
≤ · · · ≤ wπ−1

n
≤ m and

(
wπ−1

i
< wπ−1

i+1
if π−1

i+1 ≺ π−1
i

)}
. (2.17)

By writing ci for the letter wπ−1
i

, this set is in bijection with that of the sequence c1, . . . , cn such as

1 ≤ c1 R1 c2 R2 · · ·Rn−2 cn−1 Rn−1 cn ≤ m, (2.18)

where Ri is the relation ≤ if π−1
i < π−1

i+1 , and Ri is the strict inequality < if π−1
i+1 < π−1

i . So d(π−1)

inequalities are strict if ≺ is < , and if ≺ is > this number will be a(π−1) . According to Lemma 1.2, the
cardinal of this set of sequence is

((
n+ 1

m− 1− d(π−1)

))
if ≺ is <, (2.19)

and of cardinal ((
n+ 1

m− 1− a(π−1)

))
if ≺ is > . (2.20)

2

2.1. Word’s standardization and that of Young tableaux

Let T be any semistandard Young tableau of n cases. Suppose that the distinct entries of T are taken form
i1, i2, . . . , im (which are in increasing order), and that the weight of T is µ = (µ1, µ2, . . . , µm) , i.e. that means
ij is repeated µj times in T , ∀j ∈ [m] .

We define the standardization of T , denoted by st(T ) , in informal way as the unique standard Young
tableau obtained from T by replacing his n boxes with the integers 1, 2, . . . , n according to the following rule.

We start with the smallest entry i1 in T , we replace the letters i1 , repeated µ1 times, by 1, 2, . . . , µ1 ,
by going from left to right in the tableau (these letters are never in the same column), then we replace the i2 ,
repeated µ2 times, by µ1+1, µ1+2, . . . , µ1+µ2 , and always starting from left to right, etc . . . , until we replace
im by µ1 + µ2 + · · ·+ µm−1 + 1, . . . , µ1 + µ2 + · · ·+ µm = n . For example if

T =
1 2 2 4
2 9
4

then st(T ) =
1 3 4 6
2 7
5

. (2.21)
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Let T be a Young tableau, we denote the result of inserting the letter x by row (respectively by column)
in T by T ← x (resp. x → T ), we denote � the empty tableau. For each word w = w1w2 · · ·wn it exists
Young tableaux we get by inserting the letters of w (from left to right) by row and by column, which we denote
by

� ← w := (((� ← w1)← w2)← · · · )← wn, (2.22)

and
f0(w)→ � := wn → (· · · → (w2 → (w1 → �))), (2.23)

where f0(w1w2 · · ·wn) = wnwn−1 · · ·w1 .
Let S be a skew Young tableau, we denote Rect(S ) for the rectification of S (i.e. Young tableau which

we get from S by ”jeu de taquin” (See [1], 1.2)). We define the standardization of a skew Young tableau
similarly to that of a Young tableau. We say that i is a descent of a standard skew Young tableau T if i + 1

is in a line lower than the line of i in T , and say i is ascent of T if i is not a descent.

Proposition 2.5 The jeu de taquin on a skew standard Young tableau does not change the descents or ascents
of this tableau.

Proof It suffices to show that a stage of elemental taquin does not change descents or ascents. Let a < b two
positive integers, we have two cases If b = a+ 1 , we notice that a is a descent for both tableaux

a
b

,
a
b

(2.24)

on the other hand a is an ascent for the two tableaux

b
a

, a b . (2.25)

2

Before giving the following Proposition, which shows the switching between standardization and ”jeu de

taquin”, we start with a very particular case. Let T be a skew young tableau such as sh(T ) = , we will

verify that st(Rect(T )) = Rect(st(T )) .

Suppose that T =
b

a c
, with a ≤ c, b ≤ c . There are two cases:

If a ≤ b , then
b

a c
Rect−→ a b

c
st−→ 1 2

3
, (2.26)

b
a c

st−→ 2
1 3

Rect−→ 1 2
3

. (2.27)

If b < a , then
b

a c
Rect−→ b c

a
st−→ 1 3

2
, (2.28)
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b
a c

st−→ 1
2 3

Rect−→ 1 3
2

, (2.29)

so we have (in both cases)

st

(
Rect

(
b

a c

))
= Rect

(
st

(
b

a c

))
. (2.30)

Proposition 2.6 Both rectification and standardization applications commute, i.e.

st(Rect(P )) = Rect(st(P )). (2.31)

Proof Just consider a single sliding: P ▷ P ′ and to show st(P ) ▷ st(P ′) (Because P ▷ · · · ▷ Rect(P ) gives
st(P )▷· · ·▷st(Rect(P )) which is rectified, so st(Rect(S)) = Rect(st(S)) ). Let T = st(P ) . It exists f : [n] −→ A

weakly increasing with P = f(T ) (which designates the application of f to all the entries of T ) and (Pi,j = Pi′,j′

and j < j′ ) =⇒ Ti,j < Ti′,j′ . Let T ′ the result of the slip on T to the same box as in P▷P ′ . Then st(P ) = T ▷T ′

and it is about showing T ′ = st(P ′) . We will prove by recurrence on k ∈ A (the alphabet of P ) that

B′
k =

{
(i, j) / T ′

i,j ∈ f−1(k)
}
=
{
(i, j) / P ′

i,j = k
}

(2.32)

(a horizontal band) and T ′ is “ increasing from left to right” on this band. Let s be the empty box in the
slip P ▷ P ′ after the sliding of the values < k . According to the recurrence hypothesis

{
(i, j) / f(T ′

i,j) < k
}
=∪

l<k B
′
l so in the slip T ▷ T ′ , the empty box after sliding of the boxes have values in f−1([1, k − 1]) is also s .

In P the values k fill a horizontal band Bk = {(i, j) / f(Ti,j) = k} and T is increasing from left to right on Bk .

Let s = (i, j) , we have two possibilities: s↓ ∈ Bk or s↓ /∈ Bk (where (i, j)↓ = (i+ 1, j)) .
(1) If s↓ ∈ Bk then B′

k = (Bk

⨿
{s}) \

{
s↓
}

.
(2) If s↓ /∈ Bk then B′

k is obtained from Bk by sliding to left all the boxes in the line i of s .

In the case (1), Ti+1,j < Ti,j+1 (if it exists) : If f(Ti,j+1) > k it is by “increasing” of f , if not
f(Ti,j+1) = k (that means (i, j + 1) ∈ Bk) and j < j + 1 =⇒ Ti+1,j < Ti,j+1 by the “ increasing from left to
right of T on Bk ” so the slip operates on Ti+1,j which slides to (i, j) . In both cases, the values in Bk in T

are found in B′
k in T ′ and they are always increasing from left to right: in the case (1) no value changes of

column, and in the case (2) the sliding values do not change order between them, nor with the others (because
they do not have common columns before or after, and displacement of each concerns at most one column). 2

We denote

Skew(w1, w2, . . . , wn) =

wn

w2

w1

, (2.33)

that is, the only skew Young tableau with n boxes distributed in n rows and n columns with only one box at
each row and each column, and such as the i -th column contains wi , for all i ∈ [n] .
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According to [1] appendix A2 Proposition 1, we have

� ← w = w → �, (2.34)

so
� ← w = Rect (Skew(w1, w2, . . . , wn)) (2.35)

and
f0(w)→ � = Rect (Skew(wn, . . . , w2, w1)) . (2.36)

Lemma 2.7 Let w = w1w2 · · ·wn be a word of length n , such as st<(w) = π1π2 . . . πn , then

st


wn

w2

w1

 =

πn

π2

π1

. (2.37)

Lemma 2.8 Let f0 be the involution on the set of words of length n , which reverses the words, i.e.

f0 (w1 . . . wn) = wn . . . , w1, (2.38)

then
st> (f0(w)) = f0 (st<(w)) , st< (f0(w)) = f0 (st>(w)) . (2.39)

Proof We will prove that st> (f0(w)) = f0(st<(w)) , the other being analogous. Suppose that st> (f0(w)) =

π1 . . . πn , then according to the Lemma 2.3, we have

f0(w)π−1
1
≤ f0(w)π−1

2
≤ · · · ≤ f0(w)π−1

n
and f0(w)π−1

i
< f0(w)π−1

i+1
si π−1

i < π−1
i+1, (2.40)

but f0(w)j = wn+1−j ,∀j ∈ [n] , so

wn+1−π−1
1
≤ wn+1−π−1

2
≤ · · · ≤ wn+1−π−1

n
(2.41)

and
wn+1−π−1

i
< wn+1−π−1

i+1
if n+ 1− π−1

i > n+ 1− π−1
i+1. (2.42)

Then st<(w) = σ−1
1 σ−1

2 . . . σ−1
n , where σ is the permutation sending i 7→ n+1−π−1

i , and so σ−1 is the
permutation sending i 7→ πn+1−i , i.e.

st<(w) = πnπn−1 . . . π1 = f0(π1 . . . πn). (2.43)

But

st> (f0(w)) = π1 . . . πn, (2.44)

so
st<(w) = f0(π1 . . . πn) = f0(st> (f0(w))). (2.45)

2
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Proposition 2.9 Let w = w1w2 · · ·wn be a word of length n , such as st≺(w) = π≺
1 π

≺
2 . . . π≺

n , for ≺∈ {<,>} ,
then

1.
st(� ← w1 ← w2 ← · · · ← wn) = � ← π<

1 ← π<
2 ← · · · ← π<

n (2.46)

or
st(� ← w) = � ← st<(w). (2.47)

2.
st(wn → · · · → w2 → w1 → �) = π>

n → · · · → π>
2 → π>

1 → � (2.48)

or
st(f0(w)→ �) = f0(st>(w))→ �. (2.49)

Proof Let w be a word of length n , we will prove that st(� ← w) = � ← st<(w) . Suppose that
st<(w) = π<

1 π
<
2 . . . π<

n , then according to the two previous lemmas, we have

st(� ← w) = st (Rect (skew(w1, w2, . . . , wn)))

= Rect (st (skew(w1, w2, . . . , wn)))

= Rect
(
skew(π<

1 , π
<
2 , . . . , π

<
n )
)

= � ← π<
1 ← π<

2 ← · · · ← π<
n

= � ← st<(w).

(2.50)

On the other hand, we have

st(f0(w)→ �) = st(� ← f0(w)) = � ← st<f0(w)

= � ← f0 (st>(w)) = f0 (st>(w))→ �.
(2.51)

2

Proposition 2.10 We have a bijection ∗, called Schensted correspondence, between the set of words of length n

with letters in [m] , and the set of pairs of tables (P,Q) , of the same form with n boxes, where P is semistandard
with entries in [m] , and Q is standard.

According to Propositions 2.10 and 2.9, we have the following Corollary.

Corollary 2.11 If the word w corresponds by RSK to the pair of tableaux (P,Q) , then the word st<(w)

corresponds the pair of standard tableaux (st(P ), Q) .
If the word w′ corresponds (by Schensted correspondence with insertions by columns) to the pair of

tableaux (P ′, Q′) , so the word st>(w
′) corresponds to the standard pair of tableaux (st(P ′), Q′) .

∗This bijection is actually older than RSK; it was described by Schensted [4].
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Definition 2.12 (The descents of a permutation or Young tableau)
1. We say that i ∈ [n− 1] is a descent of the permutation π if πi > πi+1 .
2. We say that i is a descent of a standard Young tables T if i+ 1 is in a line lower than the line of i

in T .
We denote des(π) (respectively des(T )) the set of descents of π (respectively T ).

Proposition 2.13 Let P be a skew standard Young tableau with n cases, and let (desP ) be the set of descents
of P (cf 2.12), we denote its cardinal by d(P ) . Then the number of semistandard skew Young tableau (with
entries in [m]) whose standardization is P , is((

n+ 1

m− 1− d(P )

))
. (2.52)

Proof Let P be a skew standard Young tableau with n cases, and suppose that

Pik,jk = k, ∀k ∈ [n], (2.53)

and
des(P ) = {Pi,j / (i, j) ∈ D} . (2.54)

Let T be a skew Young tableau with n cases and entries in [m] , then according to the definition of the
standardization of a Young tableau, we have st(T ) = P iff
1 ≤ Ti1,j1 ≤ Ti2,j2 ≤ · · · ≤ Tin,jn ≤ m, with Tik,jk < Tik+1,jk+1

if (ik, jk) ∈ D , ∀k ∈ [n − 1] . So the number
of semistandard skew Young tableaux with n cases and entries in [m] , whose standardization is P , is equal to
the number of preceding sequences (with d(P ) lower strict fixed positions), and according to Lemma 1.2, this
number is equal to ((

n+ 1

m− 1− d(P )

))
. (2.55)

2

Definition 2.14 If two words w,w′ correspond (by RSK) to the couple of Young tableau (P,Q), (P ′, Q′)

respectively, then we will say that w,w′ are Knuth equivalent if P = P ′ .

Corollary 2.15 If two words are Knuth equivalent, then their standardization, for ≺ , are also Knuth equivalent.

Proof
Suppose that the two words w,w′ are Knuth equivalents, then the insertion by line (resp. Column) of

these two words gives the same tableau, that means

� ← w = � ← w′ ( resp. w → � = w′ → � ), (2.56)
so

st(� ← w) = st(� ← w′) ( resp. st(w → �) = st(w′ → �) ), (2.57)

which gives us according to Proposition 2.9

� ← st<(w) = � ← st<(w
′) ( resp. st>(w)→ � = st>(w

′)→ � ); (2.58)

in other words, the two words st<(w), st<(w
′) (resp. st>(w), st>(w

′) ) are Knuth equivalent.
2
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3. An application of word standardization

In this section, we will establish a proof of the following equality which is well known (cf.[2], 6.38 given without
a proof), using the notion of standardization of words.

∀l ∈ {0, 1, . . . , n− 1} ,
⟨n
l

⟩
= dn,l = an,l =

∑
0≤k≤l

(−1)k
(
n+ 1

k

)
(l + 1− k)n, (3.1)

where dn,l (respectively an,l ) denote the number of permutations in Sn with l descents (respectively l ascents),
and this number is called

⟨
n
l

⟩
the Eulerian number.

For each permutation π ∈ Sn , we denote st−1
≺,m(π1π2 . . . πn) for the set of words w ∈ [m]n , of length n

in the alphabet [m] , whose standard, for ≺ , is the word π1π2 . . . πn .
So, as each word has a unique standardization (for < as for >)

[m]n =
⨿

π∈Sn

st−1
<,m(π1π2 . . . πn) =

⨿
π∈Sn

st−1
>,m(π1π2 . . . πn) (3.2)

where
⨿

refers to the disjointed union. As

#st−1
<,m(π1π2 . . . πn) =

((
n+ 1

m− 1− d(π−1)

))
, (3.3)

and

#st−1
>,m(π1π2 . . . πn) =

((
n+ 1

m− 1− a(π−1)

))
, (3.4)

so

mn = #[m]n =
∑
π∈Sn

#st−1
<,m(π1π2 . . . πn) =

∑
π∈Sn

((
n+ 1

m− 1− d(π)

))

=
∑
π∈Sn

#st−1
>,m(π1π2 . . . πn) =

∑
π∈Sn

((
n+ 1

m− 1− a(π)

))
,

(3.5)

Then if we take the generating function of the sequence (mn)m≥1 , we will have

∑
m≥1

mnXm =
∑
m≥1
π∈Sn

#st−1
<,m(π1π2 . . . πn)X

m =
∑
m≥1
π∈Sn

#st−1
>,m(π1π2 . . . πn)X

m

=
∑
m≥1
π∈Sn

((
n+ 1

m− 1− d(π)

))
Xm =

∑
m≥1
π∈Sn

((
n+ 1

m− 1− a(π)

))
Xm

=
X

(1−X)n+1

∑
π∈Sn

Xd(π) =
X

(1−X)n+1

∑
π∈Sn

Xa(π).

(3.6)
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By writing this result in the form

(1−X)n+1.
∑
m≥1

mnXm−1 =

n−1∑
i=0

dn,iX
i =

n−1∑
i=0

an,iX
i, (3.7)

so (
n+1∑
k=0

(−1)k
(
n+ 1

k

)
Xk

)∑
m≥1

mnXm−1

 =

n−1∑
i=0

dn,iX
i, (3.8)

then by taking the coefficient of X l :

⟨n
l

⟩
=

l∑
k=0

(−1)k
(
n+ 1

k

)
(l + 1− k)n, (3.9)

which is the searched formula.
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